Charu C. Aggarwal
T J Watson Research Center
Hawthorne, NY, USA

Haixun Wang
Microsoft Research Asia
Beijing, China

On Dimensionality Reduction of Massive

Graphs for Indexing and Retrieval

IEEE ICDE Conference, 2011

e [he problem of dimensionality reduction has been widely
studied in the multi-dimensional domain.

e Dimensionality reduction is a useful tool for reducing the size
of the data for various database applications such as indexing
and retrieval.

e \We will examine the problem of dimensionality reduction of
massive disk-resident graphs.

In one scenario, the different graphs may be drawn on a lim-
ited domain, and the size of the graph data is quite modest.
eg chemical analysis or biological compound analysis.

In a second and more challenging scenario, the base node
domain is drawn on a massive set of nodes. eg. URL ad-
dresses in a web graph, the IP-addresses in a communication
network, or the user identifiers in a social network.

We study the second scenario in which the graphs may be
drawn on a massive domain of nodes.

It is assumed that the data set is too large to be stored in
main memory.

The nodes are associated with a massive domain of unique
identifiers.

Examples of such identifiers could be a web address URL, an
IP-address, or a user identifier in a social network.

Real data sets are often sparse, which implies that the indi-
vidual graphs satisfy the sparsity property.

Our goal is to develop a reduction which can be performed
efficiently in the massive-domain and disk-resident scenario.

Reduction method should continue to retain its usefulness
for indexing and retrieval applications.

e Since the number of nodes is very large, it is extremely dif-
ficult to adapt matrix-based dimensionality reduction tech-
niques.

e [he interpretability of standard dimensionality reduction
methods is very low.

e Many applications such as communication analysis and social
networking create a huge volume of data which needs to be
stored on disk = Challenges to efficiency and scalability

We design an efficient algorithm for dimensionality reduction
of massive graph data sets.

We mine important structural concepts from the data, and
the entire graph is represented as a function of these con-
cepts.

The transformed data has the property that it activates only
a small proportion of these concepts.

This representation also maintains its interpretability in terms
of the original graph.

Data contains graphs denoted by G1...Gy. ...

The labels of the nodes in the graphs are defined over a node
label set N, which is assumed to be massive.

The number of nodes in N is denoted by N.

The edges on the graphs are undirected.

While the base set A/ may be very large, each individual graph
may be defined only over a subset of the node set N.

Goal: determine underlying structural concepts.

The concepts reflect the broad characteristics of the graphs.

Retains the sparsity property in the sense that only a small
fraction of the multi-dimensional values take on non-zero
values.

Allows the use of sparsity-based data structures such as the
inverted index to perform effective storage and retrieval of
the data.

T he basis structure is a set of edge-disjoint graphs Hy ... H;.

The edges in the graphs H;...H; are weighted, and the
weights correspond to the relative edge frequencies.

The frequency of the edge with node labels X and Y in ANV in
the graph H; is given by F(X,Y, H;).

We note that this basis is orthonormal, when the graphs
H,...H; are edge-disjoint. In that case:

Y F(X,Y,H;) F(X,Y,H;) =0
(X,Y)€EH;UH;

For ease in interpretability, we assume that the graphs
H,y ... H; are node disjoint.

Coordinate Computation
o Let n(G;) be the number of edges in the graph Gj;.

e The coordinate c¢(Gj, H;) of the graph G; along the concept
H,; is defined as follows:

Z(X,Y)EGJ- F(X7 Y7 HZ)

/n(G;)

c(Gj, H;) = (1)

e [he coordinate of the graph Gj along a concept is simply the
sum of the corresponding edge frequencies of the concept
graph along the edges included in Gj.

e A normalization factor of ,/n(G;) is used in the denominator.

e [he conceptual representation of the graph Gj along the
conceptual basis {H1 ... H;} is defined by the coordinate set
(c(Gj, Hy) ...c(Gj, Hp)).

Need to construct the basis structure of a data set of fixed
size n containing the graphs {G1...Gn}.

The value of n may typically be quite large.

The node set size N = |N| may be very large, and therefore
the data may need to be stored on disk.

The most important desiderata for a basis structure, which
are those of space-requirements and basis locality.

We would like to retain only a small subset of representative
edges from the original graph, so as to optimize the space
requirements for the basis structure.

We would like each graph G; to be described completely by
as few components from the basis as possible.

We refer to an edge in GG; as a bridge edge, if one end of the
edge lies in one partition, and the other end lies in a different
partition.

Bridge edges result from the graph being defined by multiple
components in the basis.

We would like to choose a basis which minimizes the number
of bridge edges in Gq...Gp.

Create a graph-partitioning H{ U Ho ... U H;, which minimizes
the number of bridge edges (counting duplicates in the dif-
ferent graphs as distinct edges) in Gy U... UGy, defined by
the basis Hy ... H;.

The graph-partitioning problem is known to be NP-hard.

This variation is even more difficult since the data is not
available in main memory.

Nodes cannot be accessed randomly without increasing the
cost of the algorithm significantly.

Assumptions for Partitioning

e Since the data may be disk-resident, one of the goals is that
of limiting the number of passes over the data set.

e Let n be the number of graphs in the data set, and M be
the total number of edges over all graphs.

e Basis contains [components.

Use a contraction based sampling approach in order to de-
termine the best basis.

A straightforward contraction-based approach is often used
for determining minimum 2-way cuts of memory-resident
graphs (Tsay, Lovejoy, Karger).

The technique is not relevant to the disk-resident case, since
it makes random accesses to disk.

Our approach will carefully reconstruct the contraction pro-
cess into sequential phases in order to limit the number of
passes over the disk-resident data.

Edge-Sampled Compression
(Illustration)

I
N 5617

e Illustration of Edge-Sampled Compression

e Edge-sampled compressions are probabilistically biased to-
wards retaining cuts of lower value from the original graph.

e Edges in dense components are more likely to be sampled,
and will eventually result in a contraction.

e Remaining cuts tend to have a smaller number of edges

Let £ be the union of the edges in G1...G, for the nodes
set N with cardinality N.

We assume that E is allowed to contain duplicates (or ap-
propriately weighted edges).

The algorithm proceeds in a number of sequential phases,
each of which requires a pass over the disk.

In each sequential phase, we sample a set of N edges, where
N is the total number of nodes in the current graph.

We construct the set of connected components induced by
this set of N edges.

e [he process of contraction can create self-edges.
— Self-edges are those edges for which both ends are the

same (contracted) node.

e \We eliminate all “self-edges” after the sequential phase of
contracting the underlying connected components.

e We allow duplicate edges (with use of weight) which are
created by the contraction.

— Duplicate edges result in an edge-weight bias in the sam-
pling during future iterations.

Sampling Approach (Contd.)
e After the contraction process, let N1 < N nodes remain.
e We sample N;i edges and repeat the contraction approach.

e \We repeat the process until at most [connected components
remain.

e [he overall approach is repeated k£ times and the optimal
basis is picked.

e T hese | connected components constitute the basis for the
algorithm.

The contraction algorithm performs multiple passes over the
data.

In each pass, the algorithm performs a contraction.

The number of passes over the data is equal to the number
of contractions.

Restricting the number of passes over the data is critical in
improving the I/O efficiency of the algorithm.

We use a potential function argument in order to bound the
number of passes over the data set.

Each contraction results in reduction of nodes and edges.

The reduction of nodes is because of the node merges.

The reduction of edges is because of t self-edge elimination.

Define the potential function & as follows:

®=|E|-N

Key Result: The expected value of the potential function ®
at the end of one contraction iteration is less than half of its
value at the beginning of the iteration from one contraction
to the next.

e Since the number of components reduces by a factor of 2
in each iteration, the total number of iterations is at most
logarithmic in graph size.

e At most log(N) + log(M) — log(l) iterations are required in
order to reduce the expected number of nodes to the basis
size of at most [by successive contractions.

e Rephrasing in terms of probabilistic guarantee: Let § be
any arbitrarily small probability value. After at most log(N)+
log(M)—log(l)410og(1/6) iterations, the number of contracted
nodes is at most | with probability at least (1 —6).

The computational complexity of the contraction algorithm
is O(M -log(M)) with high probability, where M is the sum
of the number of edges in the graphs Gq1...Gh.

In practice the time-complexity is much lower (closer to lin-
ear).

This is because the first contraction phase takes the most
time, and is the real bottleneck for the algorithm.

In subsequent iterations, the size of the super-graph G1 U
...Gy reduces geometrically because of contractions.

Indexing with Reduced Representation

e Unlike other dimensionality reduction methods, this tech-
nique naturally lends itself to indexing.

e Because it yields a basis such that the corresponding pro-
jected coordinates are sparsely populated.

e [his means that only a small number of coordinates take on
non-zero values in this system.

e It allows us to use inverted representations in order to con-
struct an index on the underlying data.

Indexing with Reduced Representation

e In a given inverted list, we include only those graph identifiers
for which the corresponding coordinate value is at least e.

e [he inverted representation is very compact, because it com-
presses the structural information conceptually without hold-
ing information about individuals.

e Standard query processing techniques in information retrieval
(such as inverted representation) can also be used in this
case.

Tested the effectiveness and efficiency of the method on a
number of real data sets

Effectiveness: What is the quality of retrieval on the use of
the method??

Compression Rate: How much do we save in terms of stor-
age’

Efficiency: How much do we save on retrieval?

e Synthetic Data Set: Follows concept modeling to create the
graph

e DBLP Data Set: Each object represented the graph for a
paper

e Two Network intrusion data sets SENS1 and SENS2: Each
object represented the graph patterns for an intrusion event

e Key idea is to use sampling approach in order to restrict the
number of passes.

e Uses a different method (FM algorithm) for dimensionality
reduction

e Present comparisons by performing the same steps with the
FM method.

Running time (Synthetic Datasets)

10° -

@10 | - ’u?

2 —— FM, 10 partitions e

o o B FM

§ —e— FM, 100 partitions § 10°

© ~+ FM, 1000 partitions Py

E B £ ——o—— Ours
—— Qurs, 1000 partitions =

i 10+ :
10 ¢ ‘ = o

50 300 500 700 1000 10 1000 5000
of nodes (x 1000) # of partitions

Varying data size Varying number of partitions

Running time (Real life datasets)

time (seconds)

20
180~
160

140-

B R
A O ®©® O N
L Q90 o @

N
=

|

10 20

40

80
of dimensions (x 1000)

DBLP

160

20
180-
160
140~
120-

100

time (seconds)

80

60

40

20

——SENSI1
—o— SENS2

o

1 2 4 8 16
of dimensions (x 1000)

SENS1, SENS2

storage (bytes)

X

10°

N
o

N
T

=
a

0.5r

——— orginal vector

o---com pI’ESSEd vector

O
©
o ©

0]
1) 0]

o

0
10

20 30 40 50 60 70 80
compressed dimension

(a) sparse synthetic dat

90

d

100

x 10

18

storage (bytes)
'_\
L

——— orginal vector

o compressed vector

o} ¢} o
o o} o
Q Q | | |

20 30 40 50 60 70 80 90
compressed dimension

(b) dense synthetic data

100

H
&

storage (M Bytes)
N w
N g @ o £

=
eoa

0.5r

———— orginal vector

o Compressed vector

30 50 80
compressed dimensions {000)

(c) DBLP

100

10%

—~~
0
(O]
o
>
m
N
5
S 107
© L
P -
@]
S
(7]

—— orginal vector SENS1
x - compressed vector SENS1
—o— orginal vector SENS2

o compressed vector SENS2

o x

X

05

15
compressed dimensions 1000)

(d) SENS1 & SENS?

P Eox

0.8

access ratio

——1-concept query

100—-concept quet

o 10-concept query |

access ratio

compressed dimensions 1000)

(a) DBLP

30 50 80 100

——SENS1:
o SENS1:
——SENS1:
——SENS2:
o SENS2:

—+— SENS2:

1-concept query
10-concept quer
100-concept que
1-concept query
10—concept quer

100—-concept que rfy

o o
o ¢]
o o E
(e} d
q
08 1 15

2
compressed dimensions 1000)

(b) SENS1 & SENS?2

Compression quality (NN search over
synthetic data)

12 T T T T T T T T 12

10 7 10

O] O]
(@] (8]
C C
8 8
S 6 2
S S
© ©
4 4+ 5
2r —— compressed vector|] 2r —— compressed vector|]
o - orginal vector o orginal vector
all-pair avg distance all-pair avg distance
| | | | | | | | &J | | | | | | | |
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

top k nearest neighbors top k nearest neighbors

(a) 100 partitions (b) 50 partitions

Compression quality (NN search over
synthetic data)

12 T T T T T T T T 12
107 | 10w
o 8
3 e
+— [75) (@]
%) 5 or R o
2 o .
% % O
4 o 4 5
2r —=—compressed vector| | 27 +con.1pressed vector,
> orginal vector o orgma.l vector
all-pair avg distange o | | | | | a"fpa|r avg d|§tanc e
01 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

top k nearest neighbors top k nearest neighbors

(c) 30 partitions (d) 10 partitions

Compression quality (NN search over
SENS1)

110 ; ; ; 110 : : :

—=—compressed vector| | —— compressed vector| |

1000- o orginal vector 1 1000- o orginal vector 1

900+ all-pair avg distange 900+ all-pair avg distange

800 R 800 R

o 700 . o 700]
(&) (&)
g g

& 600 R 7 600 R
© ©

o 500 . o 500F |
®© @

400- R 400r R

300 R 300 R

200 R 200 R

100+ R 100+ R

G} a a o a a. Q (\) (\)) & W

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
top k nearest neighbors top k nearest neighbors

(a) dimension = 10,000 (b) dimension = 50,000

Compression quality (NN search over
SENS?2)

800+ ——compressed vector| - 800 ——compressed vector| 1
o-- orginal vector o-- orginal vector
700k all-pair avg distange| 700k all-pair avg distange|
600~] 600~
(] (]
£ 500- £ 500-
2 2
© ©
o 400 o 400
© ©
300~] 300~
200- 200~
100~ 100~
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
top k nearest neighbors top k nearest neighbors

(a) dimension = 10,000 (b) dimension = 50,000

New method for dimensionality reduction of massive graphs

The approach supports effective indexing and retrieval for
massive graphs.

Use sampling in order to achieve goals in an efficient way.

Experimental results for effectiveness and efficiency on a
number of real data sets.

