
Charu C. Aggarwal

T J Watson Research Center

Hawthorne, NY, USA

Haixun Wang

Microsoft Research Asia

Beijing, China

On Dimensionality Reduction of Massive

Graphs for Indexing and Retrieval

IEEE ICDE Conference, 2011

Introduction

• The problem of dimensionality reduction has been widely

studied in the multi-dimensional domain.

• Dimensionality reduction is a useful tool for reducing the size

of the data for various database applications such as indexing

and retrieval.

• We will examine the problem of dimensionality reduction of

massive disk-resident graphs.

Graph Mining Scenarios

• In one scenario, the different graphs may be drawn on a lim-

ited domain, and the size of the graph data is quite modest.

eg chemical analysis or biological compound analysis.

• In a second and more challenging scenario, the base node

domain is drawn on a massive set of nodes. eg. URL ad-

dresses in a web graph, the IP-addresses in a communication

network, or the user identifiers in a social network.

• We study the second scenario in which the graphs may be

drawn on a massive domain of nodes.

• It is assumed that the data set is too large to be stored in

main memory.

Assumptions

• The nodes are associated with a massive domain of unique

identifiers.

• Examples of such identifiers could be a web address URL, an

IP-address, or a user identifier in a social network.

• Real data sets are often sparse, which implies that the indi-

vidual graphs satisfy the sparsity property.

• Our goal is to develop a reduction which can be performed

efficiently in the massive-domain and disk-resident scenario.

• Reduction method should continue to retain its usefulness

for indexing and retrieval applications.

Challenges

• Since the number of nodes is very large, it is extremely dif-

ficult to adapt matrix-based dimensionality reduction tech-

niques.

• The interpretability of standard dimensionality reduction

methods is very low.

• Many applications such as communication analysis and social

networking create a huge volume of data which needs to be

stored on disk ⇒ Challenges to efficiency and scalability

Overall Approach

• We design an efficient algorithm for dimensionality reduction

of massive graph data sets.

• We mine important structural concepts from the data, and

the entire graph is represented as a function of these con-

cepts.

• The transformed data has the property that it activates only

a small proportion of these concepts.

• This representation also maintains its interpretability in terms

of the original graph.

Notations and Definitions

• Data contains graphs denoted by G1 . . . Gr

• The labels of the nodes in the graphs are defined over a node

label set N , which is assumed to be massive.

• The number of nodes in N is denoted by N .

• The edges on the graphs are undirected.

• While the base set N may be very large, each individual graph

may be defined only over a subset of the node set N .

Conceptual Representation

• Goal: determine underlying structural concepts.

• The concepts reflect the broad characteristics of the graphs.

• Retains the sparsity property in the sense that only a small

fraction of the multi-dimensional values take on non-zero

values.

• Allows the use of sparsity-based data structures such as the

inverted index to perform effective storage and retrieval of

the data.

Basis Structure

• The basis structure is a set of edge-disjoint graphs H1 . . . Hl.

• The edges in the graphs H1 . . . Hl are weighted, and the

weights correspond to the relative edge frequencies.

• The frequency of the edge with node labels X and Y in N in

the graph Hj is given by F(X, Y,Hj).

• We note that this basis is orthonormal, when the graphs

H1 . . . Hl are edge-disjoint. In that case:
∑

(X,Y)∈Hi∪Hj

F(X, Y,Hi) · F(X, Y,Hj) = 0

• For ease in interpretability, we assume that the graphs

H1 . . . Hl are node disjoint.

Coordinate Computation

• Let n(Gj) be the number of edges in the graph Gj.

• The coordinate c(Gj, Hi) of the graph Gj along the concept

Hi is defined as follows:

c(Gj, Hi) =

∑

(X,Y)∈Gj
F(X, Y,Hi)

√

n(Gj)
(1)

Conceptual Representation

• The coordinate of the graph Gj along a concept is simply the

sum of the corresponding edge frequencies of the concept

graph along the edges included in Gj.

• A normalization factor of
√

n(Gj) is used in the denominator.

• The conceptual representation of the graph Gj along the

conceptual basis {H1 . . . Hl} is defined by the coordinate set

(c(Gj, H1) . . . c(Gj, Hl)).

Basis Construction by Sampling

• Need to construct the basis structure of a data set of fixed

size n containing the graphs {G1 . . . Gn}.

• The value of n may typically be quite large.

• The node set size N = |N | may be very large, and therefore

the data may need to be stored on disk.

• The most important desiderata for a basis structure, which

are those of space-requirements and basis locality.

• We would like to retain only a small subset of representative

edges from the original graph, so as to optimize the space

requirements for the basis structure.

Bridge Edges

• We would like each graph Gi to be described completely by

as few components from the basis as possible.

• We refer to an edge in Gi as a bridge edge, if one end of the

edge lies in one partition, and the other end lies in a different

partition.

• Bridge edges result from the graph being defined by multiple

components in the basis.

• We would like to choose a basis which minimizes the number

of bridge edges in G1 . . . Gn.

Basis Structure by Partitioning

• Create a graph-partitioning H1∪H2 . . .∪Hl, which minimizes

the number of bridge edges (counting duplicates in the dif-

ferent graphs as distinct edges) in G1 ∪ . . . ∪ Gn, defined by

the basis H1 . . . Hl.

• The graph-partitioning problem is known to be NP-hard.

• This variation is even more difficult since the data is not

available in main memory.

• Nodes cannot be accessed randomly without increasing the

cost of the algorithm significantly.

Assumptions for Partitioning

• Since the data may be disk-resident, one of the goals is that

of limiting the number of passes over the data set.

• Let n be the number of graphs in the data set, and M be

the total number of edges over all graphs.

• Basis contains l components.

Sampling-based Approach (Overview)

• Use a contraction based sampling approach in order to de-

termine the best basis.

• A straightforward contraction-based approach is often used

for determining minimum 2-way cuts of memory-resident

graphs (Tsay, Lovejoy, Karger).

• The technique is not relevant to the disk-resident case, since

it makes random accesses to disk.

• Our approach will carefully reconstruct the contraction pro-

cess into sequential phases in order to limit the number of

passes over the disk-resident data.

Edge-Sampled Compression
(Illustration)

• Illustration of Edge-Sampled Compression

Observations

• Edge-sampled compressions are probabilistically biased to-

wards retaining cuts of lower value from the original graph.

• Edges in dense components are more likely to be sampled,

and will eventually result in a contraction.

• Remaining cuts tend to have a smaller number of edges

Sampling Approach

• Let E be the union of the edges in G1 . . . Gn for the nodes

set N with cardinality N .

• We assume that E is allowed to contain duplicates (or ap-

propriately weighted edges).

• The algorithm proceeds in a number of sequential phases,

each of which requires a pass over the disk.

• In each sequential phase, we sample a set of N edges, where

N is the total number of nodes in the current graph.

• We construct the set of connected components induced by

this set of N edges.

Sampling Approach (Contd.)

• The process of contraction can create self-edges.

– Self-edges are those edges for which both ends are the

same (contracted) node.

• We eliminate all “self-edges” after the sequential phase of

contracting the underlying connected components.

• We allow duplicate edges (with use of weight) which are

created by the contraction.

– Duplicate edges result in an edge-weight bias in the sam-

pling during future iterations.

Sampling Approach (Contd.)

• After the contraction process, let N1 < N nodes remain.

• We sample N1 edges and repeat the contraction approach.

• We repeat the process until at most l connected components

remain.

• The overall approach is repeated k times and the optimal

basis is picked.

• These l connected components constitute the basis for the

algorithm.

Algorithm Efficiency

• The contraction algorithm performs multiple passes over the

data.

• In each pass, the algorithm performs a contraction.

• The number of passes over the data is equal to the number

of contractions.

• Restricting the number of passes over the data is critical in

improving the I/O efficiency of the algorithm.

• We use a potential function argument in order to bound the

number of passes over the data set.

Potential Function Argument

• Each contraction results in reduction of nodes and edges.

• The reduction of nodes is because of the node merges.

• The reduction of edges is because of t self-edge elimination.

• Define the potential function Φ as follows:

Φ = |E| ·N

• Key Result: The expected value of the potential function Φ

at the end of one contraction iteration is less than half of its

value at the beginning of the iteration from one contraction

to the next.

Time Complexity Results

• Since the number of components reduces by a factor of 2

in each iteration, the total number of iterations is at most

logarithmic in graph size.

• At most log(N) + log(M) − log(l) iterations are required in

order to reduce the expected number of nodes to the basis

size of at most l by successive contractions.

• Rephrasing in terms of probabilistic guarantee: Let δ be

any arbitrarily small probability value. After at most log(N)+

log(M)−log(l)+log(1/δ) iterations, the number of contracted

nodes is at most l with probability at least (1− δ).

Time Complexity Analysis

• The computational complexity of the contraction algorithm

is O(M · log(M)) with high probability, where M is the sum

of the number of edges in the graphs G1 . . . Gn.

• In practice the time-complexity is much lower (closer to lin-

ear).

• This is because the first contraction phase takes the most

time, and is the real bottleneck for the algorithm.

• In subsequent iterations, the size of the super-graph G1 ∪

. . . Gn reduces geometrically because of contractions.

Indexing with Reduced Representation

• Unlike other dimensionality reduction methods, this tech-

nique naturally lends itself to indexing.

• Because it yields a basis such that the corresponding pro-

jected coordinates are sparsely populated.

• This means that only a small number of coordinates take on

non-zero values in this system.

• It allows us to use inverted representations in order to con-

struct an index on the underlying data.

Indexing with Reduced Representation

• In a given inverted list, we include only those graph identifiers

for which the corresponding coordinate value is at least ε.

• The inverted representation is very compact, because it com-

presses the structural information conceptually without hold-

ing information about individuals.

• Standard query processing techniques in information retrieval

(such as inverted representation) can also be used in this

case.

Experimental Results

• Tested the effectiveness and efficiency of the method on a

number of real data sets

• Effectiveness: What is the quality of retrieval on the use of

the method?

• Compression Rate: How much do we save in terms of stor-

age?

• Efficiency: How much do we save on retrieval?

Data Sets

• Synthetic Data Set: Follows concept modeling to create the

graph

• DBLP Data Set: Each object represented the graph for a

paper

• Two Network intrusion data sets SENS1 and SENS2: Each

object represented the graph patterns for an intrusion event

Baseline

• Key idea is to use sampling approach in order to restrict the

number of passes.

• Uses a different method (FM algorithm) for dimensionality

reduction

• Present comparisons by performing the same steps with the

FM method.

Running time (Synthetic Datasets)

50 300 500 700 1000
10

0

10
2

10
3

of nodes (x 1000)

tim
e

(s
ec

on
ds

)

FM, 10 partitions

FM, 100 partitions

FM, 1000 partitions

Ours, 1000 partitions

10 1000 5000

10
1

10
2

10
3

of partitions

tim
e

(s
ec

on
ds

)

FM

Ours

Varying data size Varying number of partitions

Running time (Real life datasets)

10 20 40 80 160
0

20

40

60

80

100

120

140

160

180

200

of dimensions (x 1000)

tim
e

(s
ec

on
ds

)

DBLP

1 2 4 8 16
0

20

40

60

80

100

120

140

160

180

200

of dimensions (x 1000)

tim
e

(s
ec

on
ds

)

SENS1
SENS2

DBLP SENS1, SENS2

Compression Rate

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

x 10
5

compressed dimension

st
or

ag
e

(b
yt

es
)

orginal vector

compressed vector

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18
x 10

5

compressed dimension

st
or

ag
e

(b
yt

es
)

orginal vector

compressed vector

(a) sparse synthetic data (b) dense synthetic data

Compression Rate

10 30 50 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

compressed dimensions (× 1000)

st
or

ag
e

(M
 B

yt
es

)

orginal vector

compressed vector

0.5 0.8 1 1.5 2 3

10
5

10
6

compressed dimensions (× 1000)

st
or

ag
e

(B
yt

es
)

orginal vector SENS1

compressed vector SENS1

orginal vector SENS2

compressed vector SENS2

(c) DBLP (d) SENS1 & SENS2

Indexing Efficiency

10 30 50 80 100

10
−4

10
−3

10
−2

10
−1

10
0

compressed dimensions (× 1000)

ac
ce

ss
 r

at
io

1−concept query
10−concept query
100−concept query

0.5 0.8 1 1.5 2 3

10
−3

10
−2

10
−1

10
0

compressed dimensions (× 1000)

ac
ce

ss
 r

at
io

SENS1: 1−concept query
SENS1: 10−concept query
SENS1: 100−concept query
SENS2: 1−concept query
SENS2: 10−concept query
SENS2: 100−concept query

(a) DBLP (b) SENS1 & SENS2

Compression quality (NN search over
synthetic data)

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

top k nearest neighbors

av
g

di
st

an
ce

compressed vector
orginal vector
all−pair avg distance

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

top k nearest neighbors

av
g

di
st

an
ce

compressed vector
orginal vector
all−pair avg distance

(a) 100 partitions (b) 50 partitions

Compression quality (NN search over
synthetic data)

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

top k nearest neighbors

av
g

di
st

an
ce

compressed vector
orginal vector
all−pair avg distance

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

top k nearest neighbors

av
g

di
st

an
ce

compressed vector
orginal vector
all−pair avg distance

(c) 30 partitions (d) 10 partitions

Compression quality (NN search over
SENS1)

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

1100

top k nearest neighbors

av
g

di
st

an
ce

compressed vector
orginal vector
all−pair avg distance

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

1100

top k nearest neighbors

av
g

di
st

an
ce

compressed vector
orginal vector
all−pair avg distance

(a) dimension = 10,000 (b) dimension = 50,000

Compression quality (NN search over
SENS2)

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

top k nearest neighbors

av
g

di
st

an
ce

compressed vector
orginal vector
all−pair avg distance

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

top k nearest neighbors

av
g

di
st

an
ce

compressed vector
orginal vector
all−pair avg distance

(a) dimension = 10,000 (b) dimension = 50,000

Conclusions and Summary

• New method for dimensionality reduction of massive graphs

• The approach supports effective indexing and retrieval for

massive graphs.

• Use sampling in order to achieve goals in an efficient way.

• Experimental results for effectiveness and efficiency on a

number of real data sets.

