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ABSTRACT
The proliferation of location and GPS data streams which
are collected in a wide variety of participatory sensing ap-
plications has created numerous possibilities for analysis of
the underlying patterns of activity. Typically, the spatio-
temporal patterns arising from such activity can be ana-
lyzed in order to determine the latent community structure
in the underlying data. In this paper, we will examine the
problem of online community detection from the location
data collected from such social sensing applications in real
time. Such data brings numerous challenges associated with
it, in that they can be of a relatively large scale, and can be
extremely noisy from the perspective of both data represen-
tation and analysis. Furthermore, the community structure
in the underlying data cannot be directly inferred from the
shape of the underlying trajectories, since a considerable
amount of variation may exist in terms of trajectories of in-
dividuals belonging to the same community. In this paper,
we will design online algorithms for community detection
in social sensing applications. Our algorithm uses a robust
and efficiently updateable model with the use of Gibbs sam-
pling, and we will show its effectiveness and efficiency for
social sensing applications.

Categories and Subject Descriptors
H.2.8 [Databases Management]: Database Applications

Keywords
Social Sensing

1. INTRODUCTION
The proliferation of mobile phones and a wide variety of

other hardware with embedded and wearable sensors have
resulted in a tremendous amount of GPS and trajectory da-
ta in a wide variety of applications. Such data can often be
mined in order to determine the useful communities from
the underlying data. A number of recent hardware advance-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 2013 ACM 978-1-4503-1869-3/13/02 ...$15.00.

ments have lead to the increased importance of social sensing
applications:

• The increasing accessibility of wearable sensors with
GPS-enabled devices has made it much easier to track
and collect individual locations in mobile sensing ap-
plications.

• The rapid popularization of smartphone technology
with GPS abilities has increased our ability to collect
spatio-temporal data in the context of a wide variety
of applications.

Such spatiotemporal data can often be very useful for de-
termining communities with the use of spatial and temporal
co-location information between different entities. Never-
theless, the process of determining such communities can be
extremely noisy and challenging because of a wide variety of
reasons:

• At any given time, a pair of entities could be present
at the same location purely by chance. It is only on
the basis of repeated interactions between the pair of
entities over different times that the entities may be
said to belong to the same community.

• In many cases, the repeated co-location of communi-
ties may not occur over continuous periods in time.
This is quite different from many trajectory clustering
models, which tend to determine clustering behavior
of trajectories on the basis of their shape, and the be-
havior over contiguous time stamps.

• GPS data is usually highly incomplete, as a result of
which the locations of only a subset of the entities may
be available at a given moment in time. Therefore, the
community maintenance process must be highly cog-
nizant of the errors and noise in the underlying data.

• Locations which have higher selectivity in terms of en-
abling the interaction of a small number of participants
at a given time are often more indicative of community
behavior. In locations containing an extremely large
number of participants, the spatial proximity of a pair
of participants may often not be quite as indicative
of community behavior unless the two participants are
extremely close to one another over a long period of
time. In this context, the inherent errors of data col-
lection may play a role, because an error of a few me-
ters in location tracking in a spatial region of very high
density may be significant, whereas it may not be quite



as significant in a spatial region of low density. Thus,
the significance of the co-location of a pair of entities
should be evaluated in the context of the density of
the point of co-location.

• The underlying communities may often evolve over
time, as new interactions are observed between differ-
ent participants. Therefore, one can incorporate tem-
poral information in the community detection process
in order to perform the detection in real time. While
recent interactions may be very relevant, the history
of previous interactions should also play an important
role in the community detection process.

The main challenge in the modeling process is to use all the
different statistical indicators of community formation in a
balanced way in order to continuously determine and track
the underlying communities in real time. For example, while
a considerable amount of work has been done recently in the
area of trajectory clustering [4, 11, 13, 14, 17, 18], most of
these methods are not designed for online community de-
tection. Furthermore, most of these methods impose the
constraint of either similar trajectory shape, or the occur-
rence of two objects at the same location over consecutive
snapshots.
In this context, the problem of determining swarms in

spatio-temporal data was proposed in [18], which determines
groups of objects which occur together at possibly non-
consecutive snapshots. However, this work requires signifi-
cant global pre-processing of the trajectories, and has several
constraints in the context of real-time community-detection:

• The work in [18] decouples the spatial and temporal
aspects of the problem by performing a static (spa-
tial) pre-clustering of the objects at each time stamp
with the use of an off-the-shelf algorithm for further
temporal analysis. In a sense, the spatial component
of the problem is largely abstracted out by this work.
This may not be practical in real applications, and
the quality and speed of the approach is highly de-
pendent on the quality of the (off-the-shelf) algorithm
used for spatial pre-clustering. Thus, if hundreds of
thousands of time-stamps are collected, such a spa-
tial pre-clustering would need to be performed at each
time-stamp to begin with. Such an approach cannot
be used for real-time applications, especially in cases,
where a large number of objects and time-stamps are
involved. The de-coupling of the spatial and temporal
aspects of an inherently spatio-temporal problem (and
the subsequent de-emphasis on the spatial component
by using an off-the-shelf spatial clustering algorithm)
is also not qualitatively the most effective design. This
can lead to a tremendous loss of information in the s-
patial pre-clustering phase.

• The purpose of clustering and community detection
is to report a small number of groups of related enti-
ties, which further allows for easy assimilation and a
concise representation. However, the work in [18] may
determine hundreds of thousands of swarms by using a
temporal frequent-pattern mining like approach on the
pre-clustered data. The reported swarms may be high-
ly overlapping, and in many cases, the total number of
swarms reported may be greater than the number of

objects being tracked. This does not serve the pur-
poses of a problem such a community detection very
well.

In this paper, we design a real time and online approach
for determining the set of continuously evolving communities
from the locations of a set of users. Different from tradition-
al methods, the approach is real-time and continuous, and
is not based on trajectory shape. It is also different from
link prediction, which is typically based on very long ter-
m analysis, and typically cannot be performed in real time.
Our approach uses relatively limited location information
for the analysis process, and is also different from most of
the (offline) pattern-based co-location clustering methods.

This paper is organized as follows. The remainder of this
section discusses related work. In Section 2, we formulate
and motivate the problem and introduce notations. In Sec-
tion 3, we propose an Infinite Community Dynamic Random
Field (IC-DRF) model to capture the community structure
in the context of object locations and their dynamics. In
Section 4, a Gibbs Sampling algorithm is presented for effi-
cient incremental inference of community configurations of
objects at each time stamp. In Section 5, we experimentally
compare our approach with other state-of-the-art algorithm-
s. Section 6 contains the conclusions and summary.

1.1 Related work
The problem of community detection is generally defined

in the form of a clustering of the underling network [8, 19, 10,
16, 15]. A survey of a number of important algorithms for
community detection is provided in [6]. Discussion of impor-
tant statistical properties of web communities is discussed in
[16]. Evolutionary characteristics of dynamic communities
are studied in [2, 7, 8]. The problem of community detec-
tion has also been studied in the context of combining node
and edge content in order to improve its effectiveness [21,
25, 27].

Social sensing [1] has recently found increasing interest be-
cause of the increasing importance of mobile phones and par-
ticipatory sensing technology. Recent work has extensively
studied common properties [9, 20, 22] of common spatio-
temporal social networks, which reveal the link patterns be-
tween people in these networks. The work in [24] is more
closely related to the problem of link prediction, though is
not designed for real-time analysis. In this context, a con-
siderable amount of work has been performed for trajectory
clustering [4, 11, 13, 14, 17, 18]. Most of this work is either
designed for discovering trajectories with similar shapes or
in determining objects which occur together at consecutive
time stamps. In practice, objects in the same community
very rarely show similar trajectories, and the communities
may be determined only on the basis of proximity to one
another over significant periods of time. Furthermore, most
of the existing work is applicable only for offline community
detection, where most of the data is already available. For
example, the swarms proposed in [18], determine temporally
co-occurring patterns of entities from spatially pre-clustered
data, though such an approach has limited applicability for
real time community detection, because of the reasons dis-
cussed in the introduction section.

2. PROBLEM DEFINITION
We denote the set of actors tracked by the social sens-

ing application by O = {o1, · · · , on, · · · }. Their geograph-



ical locations at each time stamp are denoted by L(t) =

{l(t)1 , · · · , l(t)n , · · · }. Since we propose a probabilistic model
in this paper, we will readily handle the missing location
data, which may occur as a result of failure of the device.
Thus L(t) does not need to contain the complete set of loca-
tions for all objects at each time. Our goal is to dynamically
maintain a community partition of these moving objects into
a set of the communities based on the trajectory information
of their locations up to the current time stamp.

Problem 1. Given a set of actors O, along with a set
of streaming locations L, continuously maintain the set of
communities from the actors O in real time.

We denote the community assignment variable of each
of the actors in the social sensing application by Z(t) =

{z(t)1 , · · · , z(t)n , · · · }, where z
(t)
i ∈ {1, 2, · · · , } is the com-

munity index for oi at time t. In order to determine the
community membership of these different participants, we
use their location information, such that the objects, which
are frequently close to one another are more likely to be in
the same community. Intuitively, a good community struc-
ture will have low intra-community distance, and high inter-
community distance across different communities. This can
be quite challenging because of the temporal non-transitivity
of distances; two objects which are consistently far away
from one another, may frequently each be close to a third
object, but never at the same time. This leads to challenges
about how the community structure may be consistently de-
fined in online fashion. In the next section, we will define a
Dynamic Random Field (DRF) which uses this criterion to
yield a probabilistic measurement over the possible configu-
rations of community membership of all the participants.
Moreover, as a dynamic model, DRF should capture the

evolution of objects from one community to another over
time. We know that an object does not evolve between d-
ifferent communities with equal probability. For example,
as long as the object location does not change too much,
an object is more likely to stay in the current community
unless its locations relative to the other objects in the same
community changes dramatically. If the community mem-
bership of an object changes, we can expect that it is more
likely to join in join in a closer community than the other
distant ones. The DRF model will be able to seamlessly
use the spatial and temporal components in online fashion
in order to capture the dynamic changes of moving object-
s between communities. This increases the robustness and
effectiveness of the community detection model.
The community structure of the moving participants e-

volves dynamically as their locations change over time. For
example, some communities may merge with each other as
their member objects encounter each other more frequently;
on the other hand, a new community might appear as some
objects depart from an existing community in order to show
an independent pattern of behavior. Therefore, the number
of communities can change dynamically as the geographi-
cal layout of objects change over time. This suggests that
we cannot pre-decide the number of communities, especially
when the natural granularity of the underlying communities
is inherently dynamic. Therefore, the number of commu-
nities needs to be dynamically determined, on the basis of
their spatial patterns and the corresponding evolution dy-
namics.
In the next section, we will present an Infinite Commu-

nity - Dynamic Random Field (IC-DRF) which derives the
evolving community structure from both the spatial trajec-
tory patterns and the community evolution dynamics. The
number of communities is automatically determined both
from the current spatial dynamics and the temporal history
of previous community structures.

3. INFINITE COMMUNITY -
DYNAMIC RANDOM FIELDS

In this section, we will define an Infinite Community -
Dynamic Random field (IC-DRF) model to determine the
dynamic community structure in the social sensing prob-
lem. Specifically, the IC-DRF defines a sequence of proba-
bilistic measures on the community configuration of object-
s over time based on their locations. The model derives
the most probable configuration of community assignmen-
t to the moving objects by effectively comparing the intra-
community distances between objects with inter-community
distances over time.

This model has the following advantages:

1. As compared with many spatial community models,
IC-DRF does not need to assume any specific prior
knowledge about the spatial distribution of the mem-
bers of each community. Actually, the spatial distri-
bution of members can vary significantly in different
communities. For example, people who travel together
in dense regions (such as a mall) are usually expected
to be much closer to one another as compared with
those that travel in a mountain area. The IC-DRF
model is flexible to varying community scales without
the need for specializing to the spatial scale of a par-
ticular community.

2. The nonparametric Bayesian construction of this paper
obviates the need to pre-decide the number of com-
munities in the IC-DRF model. Instead, we assume
a possibly infinite number of communities, so that the
number of communities are dynamically determined in
online fashion based on the spatio-temporal patterns of
objects. In real-life applications, the number of com-
munities are rarely constant, since they can evolve,
merge and split because of variations in the underly-
ing social interactions. A model which assumes count-
ably infinite communities can simultaneously capture
the dynamic changes in the number and structure of
communities in a principled manner;

3. The IC-DRF model can maintain the community con-
figuration of objects in an online manner. This is crit-
ical for social sensing applications, in which real-time
analysis is usually an important goal.

To the best of our knowledge, IC-DRF is the first model
to develop an online and dynamic approach for integrated
spatio-temporal evolution and dynamic community analy-
sis. Furthermore, this approach requires no prior knowl-
edge. Straightforward applications of existing nonparamet-
ric Bayesian models assume prior knowledge about the spa-
tial distribution of the objects. This is usually not flexible
enough to capture the dynamic changes of object locations
over time. The IC-DRF model defines a prior-independent
energy function for minimization, which yields the most
probable configuration of community membership of the un-
derlying objects.



3.1 Complete Probabilistic Model
Next, we will introduce the IC-DRF model for community

detection. Let the community assignment from time instants
1 through T be denoted by Z(1:T ) = {Z(1),Z(2), · · · ,Z(T )}.
We define the following probability distribution P (·) for com-
munity assignment model from time instants 1 to T with the
use of the notations introduced in the previous section:

P (Z(1:T )|L(1:T ),γ,π)

∝
T∏

t=1

exp(−E(Z(t)|L(t)))
T∏

t=2

P (Z(t)|Z(t−1),π)P (Z(1)|γ)

(1)
The intuitive explanation for the different components of
this model are as follows:

• The expressionE(Z(t)|L(t)) (which is described in more
detail in the next subsection) defines an energy func-
tion which measures the consistency of object locations
for the community structure at each time t. In prac-
tice, we will use the exponentiated potential function
exp(−E(Z(1)|L(1))) of the energy function for analysis.

• The notations P (Z(1)|γ) and P (Z(t)|Z(t−1), γ, µ, α) (for
t > 1) represent the probability measures for the initial

community assignment Z(1) and the dynamic commu-
nity assignment Z(t) at time t > 1, conditional on the
assignment Z(t−1) at time t− 1, respectively. We use
the naive Bayes assumption to factorize these proba-
bility functions over the different objects.

P (Z(1)|γ) =
∏

oi∈O

P (z
(1)
i |γ) (2)

Also, for each t > 1, we have:

P (Z(t)|Z(t−1),π) =
∏

oi∈O

P (z
(t)
i |z

(t−1)
i ,π) (3)

Here γ is the model parameter for the initial com-

munity assignment with P (Z
(1)
i = k|γ) = γk, and

π = {π1,π2, · · · } are the parameters for the commu-
nity evolution probability, where πk = [πk1, πk2, · · · , ]
gives the probability that a member of community k e-
volves to another community l in the next time stamp,

i.e., P (z
(t)
i = l|z(t−1)

i = k, π) = πkl.

In the following, we will impose the Hierarchical Dirichlet
Process (HDP) prior on the model parameters γ and π,
and give a joint probability of community configurations by
marginalizing out γ and π over the HDP prior:

P (Z(1:T )|L(1:T )) ∝
∫
γ,π

T∏
t=1

exp(−E(Z(t)|L(t)))

×
T∏

t=2

P (Z(t)|Z(t−1), π)P (Z(1)|γ)P (γ,π)dγdπ

(4)

We can see that marginalization of the model parameter-
s couples all the community configurations Z(1:T ) together,
where the community configuration at each time stamp no
longer depends only on its directly preceding community
configuration as in Eq. (1). Therefore, the IC-DRF model
captures the community evolution dynamics in the history
in order to determine the most probable community assign-
ments at each time by maximizing the above probability.
This will become clear after we define the priors for λ and
π.

3.2 Location-Sensitive Energy Function
In this subsection, we will formally define the afore-mentioned

location-sensitive community energy function to model the
spatial structure of communities. Given the current com-
munity configuration Z(t) of objects, we define the energy
function as follows:

E(Z(t)|L(t)) = Eintra(Z(t)|L(t))− Einter(Z(t)|L(t)) (5)

where

Eintra(Z(t)|L(t)) =

∑
i ̸=j

d
(t)
ij δ

[[
z
(t)
i = z

(t)
j

]]
∑
i ̸=j

δ
[[
z
(t)
i = z

(t)
j

]] (6)

and

Einter(Z(t)|L(t)) =

∑
i̸=j

d
(t)
ij δ

[[
z
(t)
i ̸= z

(t)
j

]]
∑
i̸=j

δ
[[
z
(t)
i ̸= z

(t)
j

]] (7)

The last two equations represent the average of inter- and

intra-community distances, and where d
(t)
ij is the distance

between object oi and oj computed from their locations li
and lj at time stamp t, δ [[·]] is the indicator function which
outputs 1 if its condition holds, and outputs 0 otherwise.
The first term on the right hand side of the equation com-
putes the average distance between objects in the same com-
munity, and the second term computes the average distance
between objects in the different community. Minimizing the
above energy function will lead to a community configura-
tion for objects that minimizes the average intra-community
distance relative to the average inter-community distance
over time.

It is worth noting that the number of communities do not
need to be pre-decided a-priori. The afore-mentioned ener-
gy function handles different numbers of communities in a
graceful and uniform way. As we will see in the next sub-
section, the number of communities can be automatically
determined from the dynamic model for community evolu-
tion, as it relates to the spatial layout of the objects over
time. The energy function also does not make any assump-
tions about the spatial scales of the underlying communities.
In other words, no assumptions are made about how close
two objects need to be to one another over time in order to
belong to the same community. Thus the proposed model is
adaptive and flexible in its ability to discover communities
over a wide range of spatial scales.

Finally, we also notice that in some cases, some addition-
al content (or meta-information) about moving community
members is available, which can be valuable for the commu-
nity detection process. For example, in a mobile application,
the transportation modes of mobile devices may be avail-
able. It is clear that when two objects often have the same
transportation mode, in addition to spatial locality, this is
more likely to be indicative of similar community member-
ship. Such hints can be seamlessly incorporated into our
model by incorporating the following additional term into
the energy function:

Estatus(Z(t)|S(t)) =
∑
i̸=j

δ
[[
z
(t)
i = z

(t)
j

]]
δ
[[
s
(t)
i ̸= s

(t)
j

]]
(8)

Here, s
(t)
i is the indicator from a set of L statuses {1, 2, · · · , L},

and S(t) = {s(t)i |i = 1, 2, · · · } is the set of the statuses of



all objects at time t. This energy function supports the
membership of objects into the same community, when they
frequently have similar status.

3.3 Infinite Community Evolution Model
To model the possibly infinite number of communities in

IC-DRF, we adopt a Hierarchical Dirichlet Process (HDP)
distribution to impose the prior on the model parameters
γ and π in Eq. (1). We also use the stick-breaking con-
struction [23] in order to perform the modeling. While a
detailed introduction of this construction is beyond the s-
cope of this paper, we briefly describe how it is applied in
the context of this paper. The stick breaking construction
imposes a prior on the probability γ of community assign-
ment for each object. Suppose we have a stick with unit
length. At each time, the stick-breaking construction draws
γi by breaking a portion, which is determined by the Be-
ta distribution Beta(1, α), from the remaining stick. The
larger the concentration parameter α, the more the num-
ber of communities that are constructed. The HDP process
introduces a two-level prior to capture the community evo-
lution. In the first level, γ is drawn from the stick-breaking
construction [23] with a concentration parameter α, i.e.,

γ ∼ GEM(α) (9)

Here, GEM denotes the initials of the authors1 of the stick
breaking convention [23].
Each probability πk from π, denotes the transition prob-

ability from community k. This probability is assumed to
be drawn from the Dirichlet Process DP(β,γ) with concen-
tration parameter θ.

πk ∼ DP(θ,γ), k = 1, 2, · · ·

Thus, all transition probabilities {πk}+∞
k=1 are drawn from

Dirichlet Processes with the same base distribution γ.
As in Eq. (4), we can obtain the joint probability of the

community configurations by marginalizing out γ and π over
the afore-mentioned HDP prior. This results in a two-level
probabilistic model that can be explained by the Chinese
Restaurant process [3]. Suppose there exists an object in
community k at the current moment. Then, the HDP prior
assumes that at the top level, the probability that an object
in community k evolves to community l is proportional to the
number of the times that the same transition occurs before;
and with probability proportional to θ, an oracle sampling
process is invoked for modeling at the bottom level. At the
bottom level, the oracle process determines the probability
that an object evolves to community l is proportional to the
number of the times that community l has been sampled
by this oracle process; and with probability proportional
to α, the object becomes the solitary member of a newly
created community. We refer interested readers to [3] for
more details on the HDP prior.

4. GIBBS SAMPLING FOR IC-DRF
The Gibbs sampling process is critical in efficient online

maintenance of the social sensing model, while retaining a
high level of accuracy. Based on the probabilistic model
of Eq. 4, our goal is to incrementally maintain the most
probable community configurations. In other words, we aim
to maximize the following conditional probability given the

1Griffiths, Engen and McCloskey

previous community configurations and the current member
locations:

Z(T )⋆ = argmax
Z(T )

P (Z(T )|Z(1:T−1),L(T ))

= argmax
Z(T )

P (Z(T ),Z(1:T−1)|L(T ))
(10)

The above optimization problem is computationally in-
tractable, because it has an exponentially large solution s-
pace in terms of the number of objects. Therefore, we use
Gibbs sampling to perform a faster approximation. In Gibbs
sampling, we need to compute the conditional probability of
the community assignment for one object given the commu-
nity assignments of the other objects in each step. Then,
a new community assignment of each object is sequentially
drawn from this conditional probability to replace the old
one.

In our IC-DRF approach, consider the community con-
figuration Z(1:T−1) at time T − 1. At this point, we need

to sample the community assignment z
(T )
j for each objec-

t oj at time T in sequence conditioned on the community

assignments Z(T )
−j of the other objects. Here, Z(T )

−j denotes
the community assignments of the objects at time T leav-

ing out z
(T )
j . According to the Chinese Restaurant process,

the conditional probability P (z
(T )
j = l|Z(1:T−1),Z(T )

−j ) can
be computed by a two-level process depending on whether

the oracle process is invoked. We use u
(T )
j = 1 to indicate

that the oracle is invoked or u
(T )
j = 0 otherwise.

At the top level, when the oracle is not invoked (u
(T )
j = 0),

the probability of assigning object oj to community l is as
follows:

P (z
(T )
j = l, u

(T )
j = 0|Z(1:T−1),Z(T )

−j , z
(T−1)
j = k)

∝ n
(1:T )
k→l,−j exp(−E(z

(T )
j ,Z(T )

−j |L
(t)))

(11)

Here, we emphasize that object oj has been assigned to com-

munity k at time T−1 in the condition, i.e., z
(T−1)
j = k; and

n
(1:T )
k→l,−j is the number of the times of community evolutions

from community k to l, leaving out the evolution of object
oj at time T − 1, i.e.,

n
(1:T )
k→l,−j =

∑
oi∈O

T−1∑
t=2

δ
[[
z
(t−1)
i = k, z

(t)
i = l

]]
+

∑
oi∈O,i ̸=j

δ
[[
z
(T−1)
i = k, z

(T )
i = l

]] (12)

Otherwise, the probability of invoking the oracle process is
as follows:

P (u
(T )
j = 1|Z(1:T−1),Z(T )

−j , z
(T−1)
j = k)

∝ αforacle(z
(T )
j ,Z(T )

−j |L
(t))

(13)

Here, foracle(z
(T )
j ,Z(T )

−j |L
(t)) denotes the expected value of

the potential function when the oracle process is invoked:

foracle(z
(T )
j ,Z(T )

−j |L
(t))

=
Lmax∑
l=1

m
(1:T )
l,−j

m
(1:T )
·,−j + θ

exp
(
−E(z

(T )
j = l,Z(T )

−j |L
(t))

)
+

θ

m
(1:T )
·,−j + θ

exp
(
−E(z

(T )
j = new,Z(T )

−j |L
(t))

) (14)

where Lmax is the number of the existing communities so

far, and m
(1:T )
l,−j is the number of the times that community



l has been chosen by the oracle for the objects excluding
object j at time T , i.e.,

m
(1:T )
l,−j =

∑
oi∈O

T−1∑
t=1

δ
[[
z
(t)
i = l, u

(t)
i = 1

]]
+

∑
oi∈O,i ̸=j

δ
[[
z
(T )
i = l, u

(T )
i = 1

]] (15)

and

m
(1:T )
·,−j =

Lmax∑
l=1

m
(1:T )
l,−j (16)

Combining Eq. (11) and Eq. (13), we have the following
sampling probability to decide which community is sampled
to be assigned to object oj at the top level, or instead the
oracle is invoked as follows:

P (z
(T )
j = l, u

(T )
j = 0|Z(1:T−1),Z(T )

−j , z
(T−1)
j = k)

=
n
(1:T )
k→l,−j

exp(−E(z
(T )
j ,Z(T )

−j |L(t)))

αforacle(z
(T )
j ,Z(T )

−j |L(t))+
Lmax∑
s=1

n
(1:T )
k→s,−j

exp(−E(z
(T )
j =s,Z(T )

−j |L(t)))

(17)
and

P (u
(T )
j = 1|Z(1:T−1),Z(T )

−j , z
(T−1)
j = k)

=
αforacle(z

(T )
j ,Z(T )

−j |L(t))

αforacle(z
(T )
j ,Z(T )

−j |L(t))+
Lmax∑
s=1

n
(1:T )
k→s,−j

exp(−E(z
(T )
j =s,Z(T )

−j |L(t)))

(18)

If u
(T )
i = 1 is sampled at the top level, the oracle is in-

voked, and we have the following conditional probability of

sampling an existing community for z
(T )
j :

P (z
(T )
j = l|Z(T )

−j , u
(T )
j = 1) ∝ m

(1:T )
l,−j exp(−E(z

(T )
j ,Z(T )

−j |L
(t)))

(19)
Otherwise, we have a new community sampled for oj :

P (z
(T )
j = new|Z(T )

−j , u
(T )
j = 1)

∝ θ exp(−E(z
(T )
j = new,Z(T )

−j |L
(t)))

(20)

Algorithm 1 summarizes the Gibbs sampling procedure
for community configuration Z(T ) at each time T . We can
see that the only role of the previously determined configu-
rations Z(1:T−1) in this sampling procedure is to count the
statistics n and m for each object. Hence, we only need to
store and keep these counts updated at each time. Actually,
we only need these counts and the community assignments
for objects at the previous time Z(T−1) in order to perform
the sampling procedure. The other information in Z(1:T−1)

can be disregarded. This will save space for storing the past
community information and make the online inference pro-
cess of the IC-DRF model more efficient.
In each sampling step, only the community assignment

for one object changes, and the assignments for the other
objects remain the same. Therefore, when we compute the
location-sensitive energy, we do not need recompute it. In-
stead, we can store the total values of intra-community and
inter-community distances in two auxiliary variables and up-
date them with the changed community assignment in each
sampling step. Moreover, since we will use DBSCAN to
cluster all the GPS locations to a much smaller number of
semantic locations in real systems, the distances between
these semantic locations can be precomputed and stored in
a lookup matrix. This will save a lot of computing time in
sampling procedure. Thus, the computational complexity

in each time stamp is O(|O|L2
maxD), which is linear to the

number of objects |O|. This shows that our algorithm can
well scale to large number of objects.

The model of this paper also ensures that the community
membership of an object is determined by its presence in
a community over a significant period of time rather than
at one occasional moment, which we refer to as temporal
consistency. To reflect such temporal consistency, we add a

positive value n0 to the community evolution count n
(1:T )
k→k,−j

for each community k. The larger n0 is, the longer one com-
munity tends to last over time with a stronger temporal
consistency effect. This is because it is not sufficient to de-
termine the community assignment of an object only based
on its location at a particular moment. Community mem-
bers may be co-located at a location by chance. Moreover,
the reported object locations can be erroneous and noisy,
because of the inherent limitations of such location track-
ing technology. The temporal consistency of our community
assignment approach can reduce the negative impact of the
limitations of data collection, and make our approach more
robust in real scenarios.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the proposed IC-DRF model

compared with the other state-of-the-art algorithms. We
will evaluate the approach for effectiveness, efficiency, and
the effectiveness of incorporating content information.

5.1 Data Sets
We evaluate the proposed algorithm on the GeoLife data

set [28], which recorded the trajectories of 164 users with
GPS devices from April 2007 to October 2009 in the city of
Beijing, China. It contains more than 12, 000 different GPS
trajectories over 139, 310 kilometers in geographical scale.

Most of these trajectories were recorded at a sampling
of 1-5 seconds or every 5-10 meters per point. This is not
necessarily desirable, since locations do not change very sig-
nificantly in small time frames. In the experiments, we ap-
ply the DBSCAN to cluster all recorded geo-locations to a
set of “semantic” places. Our idea is the frequently visited
locations correspond to some places with specific activity se-
mantic meaning. For example, they can be a meeting room
in a business building, a fitness facility, or a restaurant. Such
geo-location clustering algorithms have been applied in liter-
ature [28] to automate the discovery of semantic places, and
good performances have been observed on GeoLife dataset.
Thus, we believe people who visit these semantic places si-
multaneously can be considered to be involved in the same
activity. We construct the trajectory for each user by con-
necting their visited semantic places, and sample the tra-
jectories every 10 minutes to form the dynamic networks
at a set of discrete time stamps for community detection.
The data set also contains the transportation modes, such
as walk, bike, bus and car & taxi, associated with some
users. We can use them as meta-information for user sta-
tus in the energy function as Subsection 3.2. However, the
transportation modes are incomplete in the data set, and we
will simply skip them in the energy function when they are
missing.

Since our metrics will require a ground-truth for evalua-
tion purposes, we used the social similarity between users
[29]. The degree of social closeness ranged from +1 (close)
to −1 (not close). Figure 1 illustrates the social relations be-



Algorithm 1: Online inference for community configuration

Input: The community configurations Z(1:T−1) from time 1 to T − 1, α, θ and the number of sampling loops D
Output: The sampled community assignments.
Randomly initialize Z(T ) and compute the number of existing community Lmax according;
for d = 1 to D do

foreach object oj do

Count n
(1:T )
k→l,−j and m

(1:T )
l,−j based on Z(1:T−1) and the currently sampled Z(T );

Compute the conditional probabilities in Eq. (17) and (18):

P (z
(T )
j = l, u

(T )
j = 0|Z(1:T−1),Z(T )

−j , z
(T−1)
j = k) =

n
(1:T )
k→l,−j

exp(−E(z
(T )
j ,Z(T )

−j |L(t)))

αforacle(z
(T )
j ,Z(T )

−j |L(t))+
Lmax∑
s=1

n
(1:T )
k→s,−j

exp(−E(z
(T )
j =s,Z(T )

−j |L(t)))

and

P (u
(T )
j = 1|Z(1:T−1),Z(T )

−j , z
(T−1)
j = k) =

αforacle(z
(T )
j ,Z(T )

−j |L(t))

αforacle(z
(T )
j ,Z(T )

−j |L(t))+
Lmax∑
s=1

n
(1:T )
k→s,−j

exp(−E(z
(T )
j =s,Z(T )

−j |L(t)))
;

Sample z
(T )
j and u

(T )
j based on the above probabilities;

if u
(T )
j = 1 is sampled then
Compute the conditional probabilities according to Eq. (19) and (20):

P (z
(T )
j |Z

(T )
−j , u

(T )
j = 1)

=


m

(1:T )
l,−j

exp(−E(z
(T )
j =l,Z(T )

−j |L(t)))

Lmax∑
s=1

m
(1:T )
s,−j exp(−E(z

(T )
j =s,Z

(T )
−j |L(t)))+θ exp(−E(z

(T )
j =new,Z(T )

−j |L(t)))

, an existing community l is sampled for z
(T )
j

θ exp(−E(z
(T )
j =new,Z(T )

−j |L(t)))

Lmax∑
s=1

m
(1:T )
s,−j exp(−E(z

(T )
j =s,Z(T )

−j |L(t)))+θ exp(−E(z
(T )
j =new,Z(T )

−j |L(t)))

, a new community is sampled for z
(T )
j

;

Sample z
(T )
j based on the above probabilities;

if z
(T )
j = new is sampled then
Lmax ← Lmax + 1;

z
(T )
j = Lmax;

end

end

end

end

tween these 164 users. The colors near the red end denote
stronger social relations between users, whereas the colors
near the blue end illustrate the weaker social relations.

5.2 Evaluation Metrics
We used the following three metrics at different time s-

tamps to evaluate the community detection results, and re-
ported the average values of the metrics over the intervals
of three years (i.e., 2007, 2008 and 2009) for reporting pur-
poses. This compares the performance changes of different
algorithms over years.

• Pearson: The first measure was the Pearson’s coef-
ficient between the ground truth social relations and
the detection results. For each pair of users, we denote
their detected social relation as +1 if they belong to the
same community (as found by the algorithm), and −1
otherwise. Then, we computed the Pearson’s coeffi-
cient between the ground truth social relations and the
detected social relations. Higher values of the Pearson’s
coefficients are indicative of good community structure
in terms of correspondence with the ground truth.

• INTRA: This is the average of intra-community (ground-

truth) social closeness. This metric is computed by
averaging the social closeness over all pairs of intra-
community users. A large value of INTRA suggests
that the users assigned to the same community are
more likely to be familiar with one another. In an in-
direct sense, this metric measures the true positives in
the community detection results.

• INTER: This is the average of inter-community social
closeness. This metric is computed by averaging the
(ground-truth) social closeness over all pairs of inter-
community users. A small value of INTER indicates
that the users assigned to the different communities
are not likely to be socially close to each other. In this
sense, the negated INTER measures the true negatives
in the community detection result.

5.3 Baselines
We compared the proposed IC-DRF model with three

other community detection algorithms: (1) ObjectGrowth
[18] which finds the swarms of moving objects in the same
community;(2) Dynamic stochastic block model (DSBM) [26]
which extends the stochastic block model to dynamic social
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Figure 2: Parameter sensitivity of quality with respect to α, which influences new community formation.

Table 1: Comparison of different community detection algorithms on the GeoLife data set between 2007-2009.
The best performance is highlighted in bold.

Algorithms 2007 2008 2009
Pearson INTRA INTER Pearson INTRA INTER Pearson INTRA INTER

ObjectGrowth 0.2537 0.3043 -0.1124 0.2654 0.2374 -0.153 0.2759 0.2941 -0.1361
DSBM 0.2453 0.1829 -0.1657 0.2631 0.2971 -0.1232 0.2748 0.2637 -0.1489
dIRM 0.2542 0.2818 -0.1208 0.2742 0.2816 -0.1398 0.297 0.2941 -0.1569
IC-DRF 0.3430 0.3302 -0.1864 0.3606 0.3256 -0.2081 0.3956 0.3168 -0.2557
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Figure 1: Illustration of social closeness between
users. The social closeness between the user ranges
from from a value of 1 (the closest) to -1 (the least
close). Several users with IDs after 130 have very
weak social connections with others. These user-
s tend to form isolated communities with smaller
size.

networks. This model also considers the dynamic evolution
between communities in a transition probabilistic model;(3)
Dynamic Infinite Relational Model (dIRM) [12] which al-
so extends the DSBM to consider the dynamic and time-
sensitive changes in the structure of the relational data.

5.4 Results
In Table 1, we report the results of the four compared al-

gorithms on three time segments of the GeoLife data set. In
order to show the experimental results over different periods,
we evaluated the community detection results on three seg-
ments, corresponding to the 2007, 2008, and 2009 years. We
reported the average value of Pearson, INTRA and INTER
over these periods.

It is evident that the proposed IC-DRFmodel achieves the
best performance over all the temporal segments among the
compared algorithms in terms of all metrics. Furthermore,
the performance improves over the different years, because
a larger number of GPS data points progressively improves
the incrementally updated probabilistic model over time. In
general, the community evolution counts became more sta-
ble and robust as the repeated patterns in the community
evolution dynamics were learned by the probabilistic model
of IC-DRF. Thus the model estimation improved over time,
and is manifested in the more accurate results for later peri-
ods in the community detection process. This is particularly
useful in the context of applications in which the community
detection process is likely to be executed over long periods
of time.

The results reported above are obtained with α = 80,
θ = 80 and n0 = 20. While the number of communities
is determined in a data-driven manner, the value of α still
continues to have some indirect influence on it, since it af-
fects the rate of new community formation. Therefore, it is
useful to test the impact of α on the quality of the under-
lying communities. In Figure 2, we illustrate the parameter
sensitivity of the IC-DRF model in terms of three metrics
when α changes from 10 to 100. We can see that as long
as α is not too small, the performance does not change too
much. This shows the robustness of the approach. More-
over, Figure 2(a) illustrates the variation in the number of
communities with respect to different values of α. As we
expect, the number of communities tend to increase with
larger values of α.

5.5 Computational Efficiency Results
We also studied the computational efficiency of the IC-

DRF model for updating the community configurations in
each time stamp. Since our approach uses an online incre-
mental inference paradigm, it is critical for the model to
be efficient enough to make simultaneous decisions about
the evolution dynamics of community membership of dif-
ferent users in an incremental way. Recall that our use of
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Figure 3: The variation in (a) the number of communities and (b) computational time (seconds) of IC-DRF
with α.
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Figure 4: The potential function with increasing
number of samples. From about the 160th samplers,
the sampling algorithm begins to converge. After
about 300 samplers, the potential function closely
converges to the maximum value. This indicates
that the most probable community configuration
can be robustly obtained at that point.

the Gibbs sampling process is motivated by its efficiency in
maintaining the incremental model. Our approach is influ-
enced by some parameters in Gibbs sampling process, such
as α, since it indirectly influences the number of communi-
ties. Figure 3(b) illustrates the computational time versus
α. The value of α is illustrated on the X-axis, whereas the
computational time is illustrated on the Y -axis. It is evi-
dent that while the computational time changes with α, the
sensitivity is relatively small. Therefore, the computational
efficiency also tends to be quite robust with α.
We also illustrated the efficiency of the Gibbs sampling

process in terms of its convergence behavior over a smal-
l number of samples. Specifically, we plot the logarithm of
the potential function with increasing number of Gibbs sam-
plers in Figure 4. Recall that the potential function is the
sum of the energy function and the logarithm of HDP like-
lihood. The number of Gibbs samples are illustrated on the
X-axis, whereas the potential function is illustrated on the
Y -axis. We can see that after about 160 samples, the poten-
tial function converges to the maximum value (as averaged
over all users). We further note that the potential function
values were recorded at the early second loop of the Gibbs
sampling. Therefore, after the second loop of Gibbs sam-

pling, we can stop and obtain the most probable community
configuration with these parameters. This demonstrates the
Gibbs sampling process can efficiently infer the most prob-
able community assignment.

5.6 Incorporating Content Information:
Transportation Modes

Finally, we show the impact of incorporating additional
content-based meta-information into the community detec-
tion process, as discussed at the end of subsection 3.2. We
will investigate that the additional labeling information can
improve the community detection accuracy. Specifically, we
use the transportation modes in the data set as the meta-
information. These are incorporated in the energy function,
as discussed in subsection 3.2. Table 2 presents the results
by comparing the models with and without transportation
modes in the IC-DRF model. We can see that the model
with transportation modes performs better than its coun-
terpart, which did not use the transportation modes. We
can also see that the value of INTER metric is improved
more than the value of INTRA metric. It is reasonable and
expected, because users that belong to different communi-
ties can sometimes be recognized by very wide variation in
their transportation modes. On the the other hand, the
improvement of INTER is not obvious since two users in
the same transportation mode do not necessarily belong to
the same community. It is important to recognize that this
additional meta-information is simply additional knowledge
to improve the community detection process, for which the
primary model is the probabilistic spatio-temporal analysis.
The transportation modes simply provide additional infor-
mation for more effective community discovery. Neverthe-
less, this is a useful feature to incorporate in the detection
process, since additional meta-information is often available
in many sensing scenarios.

6. CONCLUSION
In this paper, we investigated the dynamic and evolving

community formation from the social structure implied by
the distance behavior of mobile sensors. The proposed IC-
DRF algorithm defines dynamic random fields over time that
can determine and adjust the community structures on the
basis of the evolving spatio-temporal locality. At the same
time, the number of communities is determined dynamically
and automatically at any given time, so that the model is



Table 2: Comparison of IC-DRF model with and without content information (transportation modes). The
best performance is highlighted in bold.

without using transportation modes with using transportation modes
Dataset Pearson INTRA INTER Pearson INTRA INTER

2007 0.3430 0.3302 -0.1864 0.3458 0.2924 -0.2116
2008 0.3606 0.3256 -0.2081 0.3811 0.3494 -0.2172
2009 0.3956 0.3168 -0.2557 0.3999 0.3309 -0.2508

able to effectively adapt to global changes in the granularity
of the natural community structure. An efficient Gibbs sam-
pling algorithm is used in order to speed up the approach, so
that it can be used in an online incremental manner. This
makes the IC-DRF sufficiently scalable in order to handle
large amounts of incoming GPS data in real time. The ex-
perimental results on the real dataset show the effectiveness
of the proposed model as compared to other state-of-the-art
algorithms.
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