
On Clustering Graph Streams

Charu C. Aggarwal∗ Yuchen Zhao† Philip S. Yu‡

Abstract
In this paper, we will examine the problem of clustering massive
graph streams. Graph clustering poses significant challenges be-
cause of the complex structures which may be present in the under-
lying data. The massive size of the underlying graph makes explicit
structural enumeration very difficult. Consequently, most tech-
niques for clustering multi-dimensional data are difficult to gen-
eralize to the case of massive graphs. Recently, methods have been
proposed for clustering graph data, though these methods are de-
signed for static data, and are not applicable to the case of graph
streams. Furthermore, these techniques are especially not effec-
tive for the case of massive graphs, since a huge number of dis-
tinct edges may need to be tracked simultaneously. This results
in storage and computational challenges during the clustering pro-
cess. In order to deal with the natural problems arising from the
use of massive disk-resident graphs, we will propose a technique
for creating hash-compressed micro-clusters from graph streams.
The compressed micro-clusters are designed by using a hash-based
compression of the edges onto a smaller domain space. We will
provide theoretical results which show that the hash-based com-
pression continues to maintain bounded accuracy in terms of dis-
tance computations. We will provide experimental results which
illustrate the accuracy and efficiency of the underlying method.

1 Introduction
In recent years, there has been a renewed focus on graph
mining algorithms because of applications involving the
web, bio-informatics, social networking and community
detection. Numerous algorithms have been designed for
graph mining applications such as clustering, classification,
and frequent pattern mining [1, 4, 11, 10, 20]. A detailed
discussion of graph mining algorithms may be found in [4].

The problem of clustering has been studied extensively
in the data mining literature [13, 14, 22]. Recently, the
problem has also been examined in the context of graph
data [4, 11, 18]. The problem of clustering graphs has
traditionally been studied in node clustering of individual
graphs, in which we attempt to determine groups of nodes
based on the density of linkage behavior. This problem has
traditionally been studied in the context of graph-partitioning
[15], minimum-cut determination [19] and dense subgraph
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determination [12, 21].
Recently, the problem has also been studied in the

context of object clustering, which we attempt to cluster
many different individual graphs (as objects) [1, 10], which
are defined on a base domain. This is distinct from the
problemof node clustering in which the nodes are the entities
to be clustered rather than the graphs themselves. However,
the available techniques [1, 10] are designed for the most
straight-forward case, in which the graphs are defined over
a limited domain. Furthermore, it is assumed that the graph
data sets are available on disk. This scenario arises in the
context of certain kinds of XML data [1, 10], computational
biology, or chemical compound analysis.

We study a much more challenging case in which the
graphs are defined over a massive domain of distinct nodes.
Furthermore, these graphs are not available at one time
on disk, but are continuously received in the form of a
stream. The node labels are typically drawn over a universe
of distinct identifers, such as the URL addresses in a web
graph [17], an IP-address in a network application, or a
user-id in a social networking application. Typically, the
individual graphs constitute some kind of activity on the
larger graph, such as the click-graph in a user web-session,
the set of interactions in a particular time window in a
social network, or the authorship graphs in a dynamically
updated literature site. Often such graphs may individually
be of modest size, though the number of distinct edges
may be very large on the aggregate data. This property
is referred to as that of sparsity, and is often encountered
in a variety of real applications. This makes the problem
much more challenging, because most clustering algorithms
would require tracking the behavior of different nodes and
edges. Since the number of possible edges may be of
the order of the square of the number of nodes, it may
often be difficult to explicitly store even modest summary
information about the edges for all the incoming graphs.
Clearly, such a problem becomes even more challenging in
the stream scenario. Examples of such graph streams are as
follows:

• The click-graph derived from a proxy-log in a user-
session is typically a sparse graph on the underlying
web graph.

• The interactions between users in a particular time-
window in a social network will typically be a collec-



tion of disjointed graphs.

• The authorship graphs of individual articles in a large
scientific repository will be small graphs drawn across
millions of possible authors.

The currently available algorithms are designed either
for the case of node-entity clustering, or for the case in
which we have disk-resident data sets over a limited domain
[1, 10]. Such algorithms require multiple passes over the
data [1, 10], and are not applicable to the case of data
streams. Furthermore, these algorithms do not scale very
well with the underlying domain size. While the problem
of stream clustering has been studied extensively in the
context of multi-dimensional data [2, 7], there are no known
algorithms for the case of clustering graph streams. In this
paper, we will propose the first algorithm for clustering
graph streams. We use a model in which a large number
of graphs are received continuously by the data stream. It
is also assumed that the domain size of the nodes is very
large, and this makes the problem much more challenging.
Thus, the large domain size of the stream and the structural
characteristics of graphs data pose additional challenges
over those which are caused by the data stream scenario.

In summary, the problem of clustering graph streams is
particularly difficult because of the following reasons:

• Most graph mining algorithms use sub-structural analy-
sis in order to perform the clustering. This may be diffi-
cult in the case of data streams because of the one-pass
constraint.

• The number of possible edges scales up quadratically
with the number of nodes. As a result, it may be difficult
to explicitly hold the summary information about the
massive graphs for intermediate computations.

• The individual graphs from the stream may exhibit the
sparsity property. In other words, the graphs may
be drawn from a large space of nodes and edges,
but each individual graph in the stream may contain
only a very small subset of the edges. This leads to
representational problems, since it may be difficult to
keep even summary statistics on the large number of
edges. This also makes it difficult to compare graphs
on a pair-wise basis.

In this paper, we propose the concept of sketch-based micro-
clusters for graph data. The broad idea in sketch-based
micro-clusters is to combine the idea of sketch-based com-
pression with micro-cluster summarization. This approach
helps in reducing the size of the representation of the under-
lying micro-clusters, so that they are easy to store and use.
We will also show that the approach continues to maintain
bounded accuracy for the underlying computations.

This paper is organized as follows. The remainder of
this section discusses related work and contributions. In the
next section, we will introduce the graph clustering problem,
and the broad frameworkwhich is used to solve this problem.
We will introduce the concept of graph micro-clusters, and
how they can be used for the clustering process. Section 3
discusses the extension of these techniques with the use of
sketch-based structures. Section 4 contains the experimental
results. Section 5 contains the conclusions and summary.

1.1 Related Work and Contributions Graph clustering
algorithms can be either of the node clustering variety in
which we have single large graph and we attempt to cluster
the nodes into groups of densely connected nodes. The
second class of algorithms is the object clustering variety,
wherein we have many graphs which are drawn from a base
domain, and these different graphs are clustered together
based on their structural similarity. In this paper, we will
focus on the latter class of problems.

The case of node-clustering algorithms traditionally
been studied in the context of the minimum cut problem
[19], graph partitioning [15], network structure clustering
[8, 16, 18], and dense subgraph determination [12, 21]. In
particular, the techniques for dense subgraph determination
[6, 12] use min-hash techniques in order to summarize mas-
sive graphs, and then use these summaries in order to cluster
the underlying nodes. However, these techniques are lim-
ited to node clustering of individual graphs, rather than the
clustering of a stream of many graph objects.

Recently, methods have been studied for clustering
graphs as objects in the context of XML data [1, 10]. How-
ever these techniques have two shortcomings: (1) These
techniques are not designed for the case when the nodes are
drawn from a massive domain of possibilities. When the
number of nodes is very large, the number of distinct edges
may be too large to track effectively. (2) The available tech-
niques are designed for disk-resident data, rather than graph
streams in which the individual objects are continuously re-
ceived over time. This paper will achieve both goals. This
paper provides the first time- and space-efficient algorithm
for clustering graph streams.

Space-efficiency is an important concern in the case of
massive graphs, since the intermediate clustering data cannot
be easily stored for massive graphs. This goal is achieved
by performing a hash-compression of the underlying micro-
clusters. We will show that the hash-compression technique
does not lose significant effectiveness during the clustering
process. We will show that the additional process of hash
compression does not lose any effectiveness for the cluster-
ing process. We will illustrate the effectiveness of the ap-
proach on a number of real and synthetic data sets.



2 Graph Stream Clustering Framework
In this section, we will introduce the GMicro framework
which is used for clustering graph streams. We assume that
we have a node set N over which the different graphs are
defined. We note that each graph in the stream is typically
constructed over only a small subset of the nodes. We
assume that each element in N is a string which defines
the label of the corresponding node. For example, in the
case of an intrusion application, each of the strings in N
correspond to the IP-addresses. The nodes of the incoming
graphs G1 . . . Gk . . . are each drawn on the subset of nodes
N .

For purposes of notation, we assume that the set of
distinct edges across all graphs are denoted by (X1, Y1)
. . . (Xi, Yi) . . . respectively. Each Xi and Yi is a node
label drawn from the set N . We note that this notation
implicitly assumes directed graphs. In the event of an
undirected graph, we assume that lexicographic ordering
on node labels is used in order to convert the undirected
edge into a directed edge. Thus, the approach can also be
applied to undirected graphs by using this transformation.
We also assume that the frequency of the edge (X i, Yi) in
graph Gr is denoted by F (Xi, Yi, Gr). For example, in a
telecommunication application, the frequencymay represent
the number of minutes of phone conversation between the
edge-pair (Xi, Yi). In many applications, this frequency
may be implicitly assumed to be 1, though we work with
the more general case of arbitrary frequencies. We note
that when the node set N is very large, the total number
of distinct edges received by the data stream may be too
large to even enumerate on disk. For example, for a node
set of 107 nodes, the number of distinct edges may be
more than 1013. This may be too large to explicitly store
within current disk resident constraints. The graph clustering
framework requires us to cluster the graphs into a group of k
clusters C1 . . . Ck, such that each graph from the data stream
is dynamically assigned to one of the clusters in real time.

While micro-clustering [2] has been used in order to
cluster multi-dimensional data, we will construct micro-
clusters which are specifically tailored to the problem of
graph data. In this paper, we will use a sketch-based ap-
proach in order to create hash-compressed micro-cluster rep-
resentations of the clusters in the underlying graph stream.
First, we will discuss a more straightforward representa-
tion of the uncompressed micro-clusters, and the storage and
computational challenges in maintaining these representa-
tions. Then, we will discuss how the sketch-based techniques
can be used in order to effectively deal with these challenges.
We will show that the sketch-based techniques can be used in
combinationwith the micro-clusters to construct the distance
functions approximately over the different clusters.

Next, we will introduce a more straightforward and
direct representation of graph-based micro-clusters. Let us

consider a cluster C containing the graphs {G1 . . . Gn}. We
assume that the implicit graph defined by the summation of
the graphs {G1 . . . Gn} is denoted byH(C). Then, we define
the micro-clusterGCF (C) as follows:
DEFINITION 1. The micro-cluster GCF (C) is defined as
the set (L(C), GCF2(C), GCF1(C),n(C), T (C)), with size
(3·|L(C)|+2), whereL(C) is the set of edges in micro-cluster
C. The individual components of GCF (C) are defined as
follows:

• L(C) is a set which contains a list of all the distinct
edges in any of the graphsGi in C.

• GCF2(C) is a vector of second moments of the edges
in L(C). Consider an edge (Xq, Yq) ∈ L(C). Then the
corresponding second moment for that edge is defined
as

∑n
r=1 F (Xq, Yq, Gr)

2. We note that the value of
F (Xq, Yq, Gr) is implicitly assumed to be zero, when
(Xq, Yq) is not present in the graphGr. We refer to the
second moment value for (Xq, Yq) as J(Xq, Yq, H(C)).

• GCF1(C) is a vector of first moments of the edges in
L. Consider an edge (Xq, Yq) ∈ L(C). Then the cor-
responding first moment for that edge can be computed
as F (Xq, Yq, H(C)) =

∑n
r=1 F (Xq, Yq, Gr). This is

because the first moment is simply the same as the def-
inition of the frequency of the edge, except that the un-
derlying graph (final argument of the function F ()) is
H(C).

• The number of graphs in the micro-cluster C is denoted
by n(C).

• The time stamp is of the last graph which was added to
the cluster C is denoted by T (C).

One observation about micro-clusters is that for two clusters
C1 and C2, the value of GCF (C1 ∪ C2) can be computed as
a function of GCF (C1) and GCF (C2). This is because the
list L(C1 ∪ C2)) is the union of the lists L(C1) and L(C2).
Similarly, the frequencies may be obtained by pairwise
addition, and n(C1 ∪ C2) may be determined by examining
the size of the set L(C1∪C2). The value of T (C1∪C2)may be
determined by computing the minimum of T (C 1) and T (C2).
We refer to this property as additive separability.

PROPERTY 2.1. The graph micro clusters satisfy the addi-
tive separability property. This means that the micro-cluster
statistics for GCF (C1 ∪ C2) can be computed as a function
of GCF (C1) andGCF (C2).
We note that graph micro-clusters also satisfy a limited
version of the subtractivity property. All components of
GCF (C1 − C2) can be computed as a function of GCF (C1)
andGCF (C2). We summarize as follows:



Algorithm GMicro(Number of Clusters: k)
begin
M = {};
{ M is the set of micro-cluster statistics }
repeat
Receive the next stream graph Gr;
If less than k clusters currently exist, then
create micro-cluster statistics for singleton
graph Gr , and insert it into set of
micro-clustersM;
if k micro-clusters exist, then compute
edge structure similarity of
Gr to each micro-cluster
inM;
if graph Gr lies outside the structure spread of
closest micro-cluster then replace the
least recently updated cluster with new
singleton cluster containing only Gr ;
else add Gr to the
statistics of the closest micro-cluster;

until data stream ends;
end

Figure 1: The GMicro Algorithm

PROPERTY 2.2. The graph micro-clusters satisfy a limited
version of the subtractivity property.

We note that the size of graph micro-clusters may in-
crease over time. This is different from the multidimensional
case. This difference is because the number of edges in the
list L(C) will grow as more and more graphs are added to
the data stream. As the size of L(C) increases, the space-
requirements increase as well. Furthermore, the compu-
tational complexity of distance computations also depends
upon L(C). Since the number of possible distinct edges in
L(C) is large, this will result in unmanageable space- and
time-complexity with progression of the data stream. There-
fore, we need a technique to further reduce the size of the
micro-cluster representation. However, for simplicity, we
will first describe the technique without the use of the com-
pressed representation. This broad framework is retained
even when sketch based compression is used. Therefore, we
will first describe the use of the rawmicro-cluster statistics in
order to cluster the incoming graphs. Then, we will describe
how sketch methods are used in order to make changes to
specific portions of the micro-cluster representation and cor-
responding computations.

The micro-clustering algorithm uses the number of
micro-clusters as input. We refer to the the Graph MICRO-
clustering algorithm as the GMicro method. Initially, the
clustering algorithm starts off with the null set of micro-
clusters. As new graphs arrive from the data stream, they
are added to the data as singleton micro-clusters. Thus, the
first k graph records are created as singleton micro-clusters.
While this may not distinguish well between the records in

the initial clustering, the steady state behavior is impacted by
the subsequent steps of the clustering process. Subsequently,
when the next graph Gr arrives, the distance to each micro-
cluster centroid is computed. The distance measure that we
compute is constructed as a variant on the L2-distance mea-
sure for multi-dimensional data and can be computed with
the use of micro-cluster statistics. We assign the incoming
recordGr to the closest centroid based on this structural dis-
tance computation. However, in some cases, an incoming
data point in an evolving data stream may not fit well in any
cluster. In order to handle this case, we check if the struc-
tural spread of the picked micro-cluster is less than the dis-
tance of Gr to that micro-cluster. The structural spread is
defined as a factor1 of the mean-square radius S(C) of the
elements of micro-cluster C from its centroid. We also apply
the spread criterion to only clusters which contain at least
min init points. As in the case of the structural similarity
measure, we will see that the spread can also be computed
as a function of the micro-cluster statistics. If the structural
spread is less than the distance of Gr to the closest micro-
cluster, then we create a new singleton micro-cluster con-
taining only Gr. This micro-cluster replaces the most stale
(least recently updated) micro-cluster. The information on
the last update time of the micro-clusters is available from
the corresponding time stamps in the micro-cluster statistics.
The overall algorithm is illustrated in Figure 1.

2.1 Computing Edge Structural Similarity and Spread
Since we are dealing with the case of sparse structural data,
we need to normalize for the frequency of edges included in
both the incoming record and the centroid to which the sim-
ilarity is being computed. We note that a micro-cluster can
also be considered a pseudo-graph for which the frequencies
of the corresponding edges are defined as the sum of the cor-
responding frequencies of the edges from which the micro-
cluster was created. Therefore, we simply need to define a
distance (similarity) function between two graphs in order to
compute the similarity betweenmicro-clusters and centroids.
Let C be a given micro-cluster which contains the graphs
G1 . . . Gn. Let the implicit graph for the micro-cluster C
(corresponding to the summation of the graphsG 1 . . . Gn) be
denoted by H(C). Let the corresponding normalized graph
(by dividing each edge frequency of H(C) by n(C)) be de-
noted byH(C).) Thus,H(C) represents the centroid graph of
all the graphs in the micro-cluster. Let the edges in L(C) be
denoted by (X1, Y1) . . . (Xm, Ym). Let Gt be the incoming
graph. Then, the L2-distance L2Dist(Gt, H(C)) between
the graphsGt andH(C) is defined as follows:

L2Dist(Gt, H(C)) =
m∑
i=1

(
F (Xi, Yi, Gt)− F (Xi, Yi,H(C))

n(C)
)2

1We pick this factor to be 3 by normal distribution assumption.



A second possibility for the computation of the similar-
ity function is the dot product. Unlike, the L2-distance func-
tion, higher values imply greater similarity. The dot product
Dot(Gt, H(C)) between the graphsGt andH(C) is defined
as follows:

Dot(Gt,H(C)) =
m∑
i=1

F (Xi, Yi, Gt).
F (Xi, Yi, H(C))

n(C)

Next, we will define the structural spread of a given
cluster. Since the structural spread is defined as a function of
the mean-square radius, we will first define the mean square
radius of the micro-cluster C. Then, the mean-square radius
S(C) of C is defined as follows:

S(C) = 1

n

n∑
j=1

L2Dist(Gj ,H(C))

=
1

n
·

n∑
j=1

m∑
i=1

(
F (Xi, Yi, Gj)− F (Xi, Yi,H(C))

n(C)
)2

The spread is defined as a factor2 t multiplied with
S(C). Both the structural distance measure and the structural
spread can be computed as a function of the micro-cluster
statistics. This is because the value of F (Xq, Yq, H(C))
is directly available from the first-order statistics of micro-
cluster C. Similarly, the value of n(C) is included in
the micro-cluster statistics. Therefore, we summarize as
follows:

LEMMA 2.1. The structural similarity measures denoted by
L2dist(Gt, H(C)) and Dot(Gt, H(C)) between Gt and the
centroid graphH(C) for cluster C can be computed from the
micro-cluster statistics.

The spread S(C) can also be directly computed from the
micro-cluster statistics. The corresponding value can be
obtained by simplifying the expression for S(C).
LEMMA 2.2. The structural spread S(C) can be computed
from the micro-cluster statistics.

Proof. Let us denote F (Xi, Yi, H(C))/n(C) by pi. This
represents the average frequency of the edges for the centroid
of the micro-cluster. As discussed earlier, this can be
computed directly from the micro-cluster statistics. By
substituting in the expression for S(C), we get the following:

(2.1) S(C) = 1

n(C)
n∑

j=1

m∑

i=1

(F (Xi, Yi, Gj)− pi)
2

2We use t = 3 in accordance with the normal distribution assumption.

By expanding the expression for S(C), we can simplify as
follows:

S(C) =

=

∑m
i=1 J(Xi, Yi,H(C))

n(C) − 2
m∑
i=1

pi ·
∑n

j=1 F (Xi, Yi, Gj)

n(C) +

+
m∑
i=1

p2i

=

∑m
i=1 J(Xi, Yi,H(C))

n(C) − 2 ·
m∑
i=1

·pi · pi +
m∑
i=1

p2i

=

∑m
i=1 J(Xi, Yi, H(C))

n(C) −
m∑
i=1

p2i

We note that all the terms in the above definition are
drawn from the micro-cluster definition. Therefore, the
spreadS(C) can be computed directly from the micro-cluster
statistics.

3 Sketch Based Micro-cluster Compression
The storage and computational requirements for updating the
micro-clusters depend upon the number of edges in them.
The number of edges in the micro-clusters will typically
increase as new graphs arrive in the stream. As the size of
the micro-cluster increase, so does the time for computing
the distance functions of incoming data points from the
clusters. When the domain size is extremely large, the
number of distinct edges can be too large for the micro-
cluster statistics to be maintained explicitly. For example,
consider the case when the number of possible nodes is
107. This is often the case in many real applications such
as IP-network data. Since the number of possible edges may
be as large as 1013, the size of the micro-cluster statistics
may exceed the disk limitations, after a sufficient number of
graphs are received. This leads to challenges in storage and
computational efficiency.

Sketch based approaches [5, 9] were designed for enu-
meration of different kinds of frequency statistics of data
sets. A commonly-used sketch is the count-min method [9].
In this sketch, we use w = �ln(1/δ)� pairwise independent
hash functions, each of which map onto uniformly random
integers in the range h = [0, e/ε], where e is the base of
the natural logarithm. The data structure itself consists of
a two dimensional array with w · h cells with a length of
h and width of w. Each hash function corresponds to one
of w 1-dimensional arrays with h cells each. In standard
applications of the count-min sketch, the hash functions are
used in order to update the counts of the different cells in
this 2-dimensional data structure. For example, consider a
1-dimensional data stream with elements drawn from a mas-
sive set of domain values. When a new element of the data
stream is received, we apply each of the w hash functions to



map onto a number in [0 . . . h− 1]. The count of each of the
set of w cells is incremented by 1. In the event that each item
is associated with a frequency, the count of the correspond-
ing cell is incremented by the corresponding frequency. In
order to estimate the count of an item, we determine the
set of w cells to which each of the w hash-functions map,
and determine the minimum value among all these cells. Let
ct be the true value of the count being estimated. We note
that the estimated count is at least equal to ct, since we are
dealing with non-negative counts only, and there may be an
over-estimation because of collisions among hash cells. As
it turns out, a probabilistic upper bound to the estimate may
also be determined. It has been shown in [9], that for a data
stream with T arrivals, the estimate is at most ct + ε · T with
probability at least 1 − δ. The sketch can also be used in
order to estimate the frequencies of groups of items by using
these same approach. The count-min sketch can be used in
order to estimate the frequency behavior of individual edges
by treating each edge as an item with a unique string value.
We note that each edge (Xi, Yi) can be treated as the string
Xi ⊕ Yi where ⊕ is the concatenation operator on the node
label stringsXi and Yi. This string can be hashed into the ta-
ble in order to maintain the statistics of different edges. The
corresponding entry in incremented by the frequency of the
corresponding edge.

We can use the sketch based approach in order to con-
struct the sketched micro-cluster. The idea is that the por-
tions of the micro-cluster whose size is proportional to the
number of edges are not stored explicitly, but implicitly in
the form of sketch table counts. We will then see how well
the individual components of the micro-cluster representa-
tion are approximated. Since all clustering computations can
be performed in terms of micro-cluster statistics, it follows
that the clustering computations can be effectively performed
as long as the underlying micro-cluster statistics can be ap-
proximated. The compressed micro-clusters are defined as
follows:

DEFINITION 2. Themicro-clusterGCF (C) is defined as the
set (GSketch(C), R(C), n(C), T (C)) of size (e/ε)·ln(1/δ)+
3. The individual components of GCF (C) are defined as
follows:

• The data structure GSketch(C), contains a sketch-
table of all the frequency-weighted graphs which are
included in the micro-cluster. This requires a table with
size (e/ε) · ln(1/δ). The actual micro-cluster update is
performed as follows. For each edge (Xi, Yi) for an
incoming graph, we compute the concatenation string
Xi ⊕ Yi, and hash it into the table with the use of w
hash functions. We add the frequency of the incoming
edge to the corresponding w entries.

• We maintain R(C) = ∑m
i=1 J(Xi, Yi, H(C)) explicitly.

This is done by adding the square of the frequency of

the incoming edge to R(C).
• The number of graphs in the micro-cluster C is denoted
by n(C).

• The time stamp is of the last graph which was added to
the cluster C is denoted by T (C).

The above definition implies that a separate sketch-table is
maintained with each micro-cluster. It is important to note
that we use the same set of corresponding hash functions
for each sketch table. This is important in order to compute
important statistics about the micro-clusters such as the dot-
product.

The GMicro algorithms can be used with this new def-
inition of micro-clusters except that the intermediate com-
putations may need to be performed as sketch-based esti-
mates. In the remaining portion of this section, we will dis-
cuss how these estimates are computed, and the accuracy as-
sociated with such computation. We note that the first-order
and second-order statistics are implicitly coded in the sketch
table. LetW (C) be the sum of the edge frequencies inH(C).
The sketch encodes implicit information about the micro-
clusters. The first-order and second-order statistics can be
estimated as follows:

• F (Xi, Yi, H(C)) can be estimated by hashing Xi ⊕ Yi

into the hash table with the use of the w hash func-
tions, and computing the minimum of the correspond-
ing entries. It can be directly shown [9] that the cor-
responding estimate F̂ (Xi, Yi, H(C)) lies in the range
[F (Xi, Yi, H(C)), F (Xi, Yi, H(C)) + ε · W (C)] with
probability at least 1− δ.

• We note that J(Xi, Yi, H(C)) cannot be estimated ef-
fectively. One possibility is to compute an estimate
on J(Xi, Yi, H(C)) by computing the minimum of the
square of the corresponding entries for X i ⊕ Yi in the
sketch table. The bound on this estimate is quite loose,
and therefore we will not use the approach of esti-
mating J(Xi, Yi, H(C)). The additional information
R(C) =

∑m
i=1 J(Xi, Yi, C) (maintained in the sketch

statistics) is sufficient to perform the intermediate com-
putations for clustering.

The above observations emphasize that intermediate in-
formation on the micro-cluster statistics can be constructed
approximately with the sketch technique. This is useful,
since all the important properties of the clusters are encoded
in the micro-cluster statistics. For example, if the behavior
of the different portions of the graph (or specific edges) need
to be examined in the context of different clusters, the cor-
responding micro-cluster statistics need to be derived. Next,
we will discuss the estimation of important quantitative com-
putations which are performed during the clustering process.



3.1 Distance estimations We will expand the expression
for L2Dist in order to express it in terms of sketch-based
micro-cluster statistics:

L2Dist(Gt, H(C)) =
m∑
i=1

(
F (Xi, Yi, Gt)− F (Xi, Yi,H(C))

n(C)
)2

=
m∑
i=1

F (Xi, Yi, Gt)
2 − 2

m∑
i=1

F (Xi, Yi, Gt) · F (Xi, Yi,H(C))
n(C) +

+
m∑
i=1

F (Xi, Yi, H(C))2
n(C)2

All of the three expressions in the above expansion
are dot products. Of these dot products, the value of the
expression

∑m
i=1 F (Xi, Yi, Gt)

2 can be computed exactly,
by using the statistics of the incoming graph Gt. The other
two dot products are estimated using the technique discussed
for [9]. Specifically, in the second term, F (X i, Yi, Gt)
can be computed exactly, while F (Xi, Yi, H(C)) can be
computed directly from the sketch table GSketch(C). We
perform a pairwise multiplication for each edge appeared
in the incoming graph Gt, and use the sum to estimate∑m

i=1 F (Xi, Yi, Gt) · F (Xi, Yi, H(C)) in the second term.
The value of the third term (

∑m
i=1 F (Xi, Yi, H(C))2) can be

estimated by performing the dot product between two copies
of GSketch(C). There is a one-to-one correspondence
among the cells of both copies. We perform pairwise dot
products for the w different rows in the sketch table, and
pick the minimum of these values as the estimate.

Next, we will bound the quality of the distance estima-
tion. Since the distance estimation is expressed as a func-
tion of individual dot-products (which can themselves be
bounded), this also helps in bounding the overall quality of
the estimation. Let V (Gt) be the sum of the frequencies of
the edges in Gt. Then, we can show the following:

LEMMA 3.1. With probability at least (1 − 2 · δ), the esti-
mate of L2Dist(Gt, H(C)) with the use of the sketch-based
approach lies in the range [L2Dist(Gt, H(C))−2·ε·V (Gt)·
W (C)/n(C), L2Dist(Gt, H(C)) + ε ·W (C)2/n(C)2].

Proof. We note that the computation of L2Dist requires the
estimation of two terms, which have opposite effects on the
overall estimate. Each extreme case is when one of the terms
is estimated as exactly as possible, and the other is overesti-
mated as much as possible. We deal with these cases below:
Extreme Case I:

∑m
i=1 F (Xi, Yi, H(C))2 is exactly es-

timated, but F (Xi, Yi, H(C)) · F (Xi, Yi, Gt) is over-
estimated: This forms the lower bound for the range, since
the over-estimated term has a negative sign attached before
it. We know from [9], that the over-estimation of this dot
product is no more than ε · V (Gt) · W (C) with probability
at least (1 − δ). Scaling by the constant 2/n(C) to account
for the constant factor in front of the term, we derive that the
lower bound is at least L2Dist(Gt, H(C)) − 2 · ε · V (Gt) ·

W (C)/n(C) with probability at least 1− δ.
ExtremeCase II: F (Xi, Yi, H(C))·F (Xi, Yi, Gt) is exactly
estimated, but

∑m
i=1 F (Xi, Yi, H(C))2 is over-estimated:

This forms the upper bound for the range. As in the pre-
vious case, we can show that the level of over-estimation is
at most ε · W (C)2 with probability at least 1 − δ. Scaling
by the factor 1/n(C)2 to account for the constant factor in
front of the term, we derive that the upper bound is at most
L2Dist(Gt, H(C)) + ε · W (C)2/n(C)2 with probability at
least 1− δ.

Since the bounds for either of the two cases are violated
with probability at most δ, the probability of neither bound
being violated is at least 1− 2 · δ. This proves the result.

The above result can also be used for dot-product estimation.

LEMMA 3.2. With probability at least (1 − δ), the estimate
ofDot(Gt, H(C)) with the use of the sketch-based approach
lies in the range [Dot(Gt, H(C), Dot(Gt, H(C))+ε·V (Gt)·
W (C)/n(C)].

Proof. This follows directly from the dot product results in
[9].

3.2 Estimation of Spread In this section, we will discuss
the estimation of the spread S(C) with the sketch-based
approach. It was shown earlier that the value of S(C) is
estimated as follows:

S(C) =
∑m

i=1 J(Xi, Yi, H(C))
n(C) −

m∑

i=1

p2i

=
R(C)
n(C) −

m∑

i=1

p2i

The above expression can be estimated directly from the
sketch statistics. BothR(C) and n(C) are maintained directly
in the sketched micro-cluster statistics. Next, we discuss the
computation of the second term. The value of

∑m
i=1 p

2
i can

be estimated as the sum of the squares of the sketch compo-
nents in each row. We compute the minimum value across
w rows, and denote this value by Pmin. The correspond-
ing term is estimated as Pmin/n(C)2. Next, we will bound
the quality of the estimation with the use of the sketch-based
approach.

LEMMA 3.3. With probability at least 1−δ, the sketch based
estimation of S(C) lies in the range [S(C) − ε · ∑m

i=1 p
2
i ,

S(C)].

Proof. We note that S(C) is expressed using two terms, the
first of which is known exactly. The only source of inaccu-
racy is in the estimation of

∑n
i=1 p

2
i , which is computed as

a self dot-product, and therefore over-estimated. Since this
term adds negatively to the overall estimation, it follows that



the overall computation is always under-estimated. There-
fore, the upper bound on the estimation is the true value of
S(C).

In order to compute the lower bound, we consider the
case when the second term

∑m
i=1 p

2
i is over-estimated as

much as possible. In order to estimate this value, we consider
a hypothetical graph Q(C) in which all edges of H(C) are
received exactly once, and the frequency of the ith edge
is F (Xi, Yi, H(C)). We note that the sketch of this graph
is exactly the same as that of H(C), since the aggregate
frequencies are the same. Therefore, the dot product of
Q(C) with itself will estimate ∑m

i=1 F (Xi, Yi, H(C))2 =
n(C)2 · ∑n

i=1 p
2
i . The dot-product estimation for the graph

Q(C) is exactly equal to Pmin. Therefore, the value of
Pmin/n(C)2 is an estimate of

∑m
i=1 p

2
i . By using the bounds

discussed in [9], it can be shown that this over-estimate is
at most ε · ∑m

i=1 p
2
i with probability at least 1 − δ. This

establishes the lower bound.

4 Experimental Results
In this section, we will present the experimental results from
the use of this approach. We will test the techniques for
both efficiency and effectiveness. We will test both the exact
clustering approach and the compression-based clustering
approach. We will show that the two techniques are almost
equally good in terms of quality, but the compression-based
technique is significantly superior in terms of efficiency. This
is because the size of the underlying micro-clusters in the
disk-based technique increases with progression of the data
stream. This results in a slow down of the exact clustering
technique with progression of the data stream.

4.1 Data Sets We used a combination of real and syn-
thetic data sets in order to test our approach. The real data
sets used were as follows:

(1) DBLP Data Set: The DBLP data set contains sci-
entific publications in the computer science domain. We
further processed the data set in order to compose author-
pair streams from it. All conference papers ranging from
1956 to March 15th, 2008 were used for this purpose. There
are 595, 406 authors and 602, 684 papers in total. We note
that the authors are listed in a particular order for each paper.
Let us denote the author-order by a1, a2, . . . , aq . An author
pair 〈ai, aj〉 is generated if i < j, where 1 ≤ i, j ≤ q. There
are 1, 954, 776 author pairs in total. Each conference paper
along with its edges was considered a graph. We used a
clustering input parameter of k = 2000 clusters.

(2) IBM Sensor Data Set: This data contained infor-
mation about local traffic on a sensor network which issued
a set of intrusion attack types. Each graph constituted a
local pattern of traffic in the sensor network. The nodes

correspond to the IP-addresses, and the edges correspond
to local patterns of traffic. We note that each intrusion
typically caused a characteristic local pattern of traffic, in
which there were some variations, but also considerable
correlations. We used two different data sets with the
following characteristics:
Igraph0103-07: The data set Igraph0103-07 contained a
stream of intrusion graphs from June 1, 2007 to June 3,
2007. The data stream contained more than 1.57 ∗ 106 edges
in the aggregate, which were distributed over approximately
2250 graphs. We note that this graph was much denser
compared to the DBLP data set, since each individual
graph was much larger. Thus, even though the number of
graphs do not seem very large, the size of the underlying
edge streams were huge, since each graph occupies a large
amount of space. We intentionally chose a graph structure
which was very different from the DBLP data set, since
this helps in evaluating our algorithm on different kinds of
graphs.
Igraph0406-07: The data set Igraph0406-07 contained a
stream of intrusion graphs from June 4, 2007 to June 6,
2007. The data stream contained more than 1.54 ∗ 106 edges
in the aggregate, which were distributed over approximately
2760 graphs. We used a clustering input parameter of
k = 120 clusters.

(3) Synthetic Data Set: We used the R-Mat data gen-
erator in order to generate a base template for the edges from
which all the graphs are drawn. The input parameters for
the R-Mat data generator were a = 0.5, b = 0.2, c = 0.2,
S = 17, and E = 508960 (using the CMU NetMine
notations). If an edge is not present between two nodes,
then the edge will also not be present in any graph in the
data set. Next, we generate the base clusters. Suppose that
we want to generate κ base clusters. We generate κ different
zipf distributions with distribution function 1/iθ. These zipf
distributions will be used to define the probabilities for the
different nodes. The base probability for an edge (which
is present on the base graph) is equal to the product of the
probabilities of the corresponding nodes. However, we need
to adjust these base probabilities in order to add further
correlations between different graphs.

Next, we determine the number of edges in each graph.
The number of edges in each of the generated graph is de-
rived from a normal distribution with mean μ = 100 and
standard deviation σ = 10. The proportional number of
points in each cluster is generated using a uniform distri-
bution in [α, β]. We used α = 1, and β = 2. In order to
generate a graph, we first determine which cluster it belongs
to by using a biased die, and then use the probability distri-
butions to generate the edges. The key here is that the differ-
ent node distributions be made to correlate with one another.
One way of doing so is as follows. Let Z1 . . .Zκ be the κ



different Zipf distributions. In this case, we used k − 20 in
order to generate the data set. In order to add correlations,
we systematically add the probabilities for some of the other
distributions to the ith distribution. In other words, we pick
r other distributions and add them to the ith distribution after
adding a randomly picked scale factor. We define the distri-
bution Si from the original distribution Zi as follows:

Si = Zi + α1 · (randomly picked Zj)+ . . .

. . .+ αr · (randomly picked Zq)

α1...αr are small values generated from a uniform dis-
tribution in [0, 0.1]. The value of r is picked to be 2 or
3 with equal probability. We use S1 . . . Sr to define the
node probabilities. We used a clustering input parameter of
k = 20.

For all data sets (unless otherwise mentioned), the de-
fault length of the hash table was 500, and the default
number of hash functions was 15.

4.2 Evaluation Metrics We used a variety of metrics for
the purposes of evaluation. For the case of the synthetic data
sets, we used the cluster purity measure. For each generated
cluster, we determined the dominant cluster id (based on
the synthetic generation identifier), and reported the average
cluster purity over the different clusters. The higher the
cluster purity, the better the quality of the clustering. On
the other hand, this is not an effective metric for the case
of real data sets. This is because the “correct” definition
of an unsupervised cluster is unknown in real data sets.
Thereforewe rely on two criteria to test the effectiveness: (1)
We explicitly examine the clusters anecdotally to illustrate
their coherence and interpretability. (2) A possible source
of error can be the use of the sketch-based approximation.
Therefore, we test the percentage of time that the sketch-
based approximation results in a different assignment than
one which is achieved by using the exact representation of
the micro-clusters.

Therefore, for the purposes of evaluation only, we also
retain the exact representations of the micro-clusters which
are constructed on the clusters maintained with the approxi-
mate sketch-based approach. We note that this option is for
effectiveness evaluation purposes only and is disabled dur-
ing efficiency measurements. Then, we compute the assign-
ment using the exact as well as sketch-based computation.
We compute the fraction of time that the two assignments
are the same. A perfect situation would be one in which the
value of this fraction is 1.

4.3 Clustering Evaluation We first present results on ef-
fectiveness. For the case of real data sets, no realistic
“ground-truth” can be inferred for an unsupervised problem.
Therefore, we will intuitively examine some anecdotal evi-
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Figure 2: Performance on Synthetic Data Set
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Figure 3: Performance on IGRAPH0103-07 Data Set
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Figure 4: Performance on IGRAPH0406-07 Data Set
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Figure 5: Performance on DBLP Data Set

dence about the clusters in order to explore their natural co-
herence. Then, we will examine the accuracy of the sketch-
based approximation with quantitative comparisons of the
sketch based assignments with those that use the original
data.

We will first present some summary results for a group
of clusters obtained by the algorithm in the case of the DBLP
data set. The most frequently occurring authors in these clus-
ters are as follows:
Cluster A: Frequent Authors: Jiawei Han, Umeshwar Dayal, Jian Pei, Ke
Wang
Cluster A: Description: Sequential Pattern Mining Papers Published be-
tween 2000 and 2004
Cluster B: Frequent Authors: Herbert Edelsbrunner, Bernard Chazelle,
Leonidas J. Guibas, John Hershberger, Micha Sharir, Jack Snoeyink, Emo
Welzl
Cluster B: Description: The cluster contains a group of papers on compu-
tational geometry.
Cluster C: Frequent Authors: Mahmut T. Kandemir, Alok N. Choudhary,
J. Ramanujam, Prithviraj Banerjee
Cluster C: Description: The cluster contains papers on parallel computing
written between 1999 and 2003.
It is clear that in each case, the clusters contain a coherent set
of authors together with papers on the same subject matter.
This was generally the case across all the clusters. The aim
of the above examples is to simply provide an intuitive idea
of the meaningfulness of the underlying clusters. We will
provide some quantitative measures slightly later.

Next, we will compare the effectiveness of the exact
clustering approach with one that uses hash-compressed
micro-clusters. The effectiveness for both the exact and
compression-based clustering approach for the different data
sets are illustrated in Figures 2(a), 3(a), 4(a) and 5(a). In
the case of the synthetic data set, we use cluster purity
as the measure, whereas in the case of the real data sets,
we used the fraction of time that the same assignment was
performed by both the two approaches. In the case of
real data sets, we computed the assignment with the use
of both exact and sketch-based statistics, and we checked
if they were the same. For the synthetic data set, we note
that the quality of the two approaches is almost identical.
The purity of the compression-based clustering approach is
only slightly lower than the purity of the exact clustering
approach. For the real data sets, the percentage of time
that the two approaches result in the same assignment of
an incoming data point to a given cluster was typically
over 90%. Some cases in which the distance differences
were small between the first and second choices resulted
in a different ordering of assignments. However, such
differences do not typically result in qualitative differences
in the underlying clustering process. This suggests that the
sketch-based approximation of the micro-clusters maintains
the accuracy of the clustering process.



We also tested the efficiency of the two methods. All
results were tested on a Debian GNU/Linux server (dou-
ble dual-core 2.4 GHz Opteron processors, 4GB RAM). In
Figures 2(b), 3(b), 4(b) and 5(b) we have illustrated the
efficiency of the clustering method on different data sets.
The progression of the stream is illustrated on the X-axis,
whereas the stream processing rate (the number of edges pro-
cessed per second) is illustrated on the Y -axis. Since the ex-
act clustering approach uses a disk-based scheme to handle
the large space requirements of data sets, its processing rate
is significantly lower than the sketch-based approach. Fur-
thermore, the size of the micro-clusters increases with pro-
gression of the stream, since the number of edges tracked by
eachmicro-cluster increases with stream progression. There-
fore, the technique slows down further with stream progres-
sion. On the other hand, the processing rate of the sketch-
based approach is significantly faster than the exact cluster-
ing approach, and it is not affected by the progression of the
stream. This is because the size and update of the memory-
resident sketch table remains unaffected with the progres-
sion of the data stream. On the other hand, the number of
distinct edges increases with progression of the data stream.
This slows down the disk-based approach significantly. The
efficiency results with stream progression are illustrated in
Figures 3(b) and 4(b). It is evident that the processing rate
of the disk-based approach is heavily influenced by the dis-
tribution of the incoming graphs, while the sketch-based ap-
proach maintains a relatively stable performance with time
progression. The low variability of the processing rate of the
sketch-based method is a clear advantage from the perspec-
tive of practical applications.

We also tested the sensitivity of the clustering approach
with sketch-table parameters. From the estimation analysis
in section 3, it is evident that we can obtain better quality
results by increasing the number of hash functions w and
the range h. On the other hand, it is also not advantageous
to increase the sketch table size unnecessarily, since this
results in inefficiency on account of poor cache locality. It is
desirable that a high quality clustering can be obtained with
the use of a reasonably small sketch table. In this section,
we will conduct sensitivity analysis of the effectiveness and
efficiency with sketch table size.

The effectiveness and efficiency results of the two meth-
ods on the DBLP data set are illustrated in Figures 5(a) and
(b). It is evident that the two approaches resulted in a very
similar assignment, and the processing rate of the sketch-
based approach is significantly higher than the disk-based
approach. Since the disk-based approach requires too much
time to process the whole DBLP data set, we will use only
the first 5,000 graphs for sensitivity analysis.

Figures 2(c) and (d) illustrate the impact of sketch ta-
ble length on effectiveness and efficiency of the cluster-
ing process. We use the results of the exact clustering ap-

proach as the baseline. These results are constant across the
range of sketch-table parameters, because the exact cluster-
ing approach does not use the sketch table. We can see that
the clustering quality improves with increasing sketch table
length. This is because collisions are more likely to occur in
smaller hash tables. On the other hand, the efficiency is not
affected much by the sketch table length due to the constant
lookup time of hash tables. We also reported the sensitivity
analysis of sketch table length on the real data sets in Fig-
ures 3(c), (d), 4(c), (d) and 5(c), (d). As the case of synthetic
data sets, when the length of the sketch table is larger than
500, the similarity of assignment between the two methods is
more than 90%. Thus, for modestly large sketch-table sizes,
the approach is able to closely mimic the behavior of the ex-
act clustering approach.

We also tested the sensitivity of the approach to the
number of hash functions. The number of hash functions
was varied from 10 to 20. The results for the synthetic data
sets are illustrated in Figures 2(e), and (f), and those for
the real data sets are illustrated in 3(e), (f), 4(e), (f) and
5(e), (f). As in the previous case, we present the results
of the exact clustering approach as the baseline in each
figure. The processing time increases linearly when the
number of hash functions increases. That is because the
process of determining the minimum value among all the
cells requires us to look up each hash function once. We
also note that the quality is not affected very significantly by
the number of hash functions. While increasing the number
of hash functions improves the robustness, its effect on the
absolute quality is relatively small. This implies that we can
use a small number of hash-functions in order to maintain
efficiency, while retaining effectiveness.

It is also valuable to test the efficiency of the proposed
approach over varying numbers of clusters. The results for
synthetic and real data sets are illustrated in Figures 6 (a),
(b), (c) and (d), respectively. As a comparison, we present
the results of the exact clustering approach for each data set.
In all figures, the X-axis illustrates the number of clusters,
and the Y -axis represents the running time in seconds. The
DBLP data set contains many authors and papers which
tend to have numerous underlying clusters. Because of this
characteristic of the DBLP data set, we vary the number
of clusters from 2000 to 3000. We vary the number of
clusters from 30 to 130 for the synthetic data set, and vary
the number from 120 to 220 for the two sensor data sets.
Other settings are the same as the previous figures. From
Figures 6, it is evident that our approach scales linearly
with increasing number of clusters for all data sets. This
is because the number of sketch tables and the distance
function computations scale linearly with increasing number
of clusters.
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Figure 6: Sensitivity Analysis to the Number of Clusters

5 Conclusions and Summary
In this paper, we presented a new algorithm for cluster-
ing massive graph streams. While the problem of cluster-
ing graph data has been discussed in the literature, the cur-
rently available techniques are not designed for fast data
streams. Furthermore, available methods are not designed
for the case of massive graphs. In such cases, the number
of distinct edges is too large to manage effectively. This
case leads to unique challenges because it is no longer pos-
sible to efficiently hold even summary information. In this
paper, we address these challenges with the use of a novel
hash-compressed micro-cluster technique. The goal of this
technique is to use a summarized micro-cluster representa-
tion which can be efficiently maintained in limited space
(and therefore in main memory). This technique continues
to maintain the effectiveness of the method without losing
efficiency. We present experimental results illustrating the
effectiveness and efficiency of the method.
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