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ABSTRACT
In recent years, the problem of indexing mobile objects has
assumed great importance because of its relevance to a wide
variety of applications. Most previous results in this area
have proposed indexing schemes for objects with linear tra-
jectories in one or two dimensions. In this paper, we present
methods for indexing objects with nonlinear trajectories.
Specifically, we identify a useful condition called the con-
vex hull property and show that any trajectory satisfying
this condition can be indexed by storing a careful repre-
sentation of these objects in a traditional index structure.
Since a wide variety of relevant nonlinear trajectories satisfy
this condition, our result significantly expands the class of
trajectories for which nearest neighbor indexing schemes can
be devised. We also show that even though many non-linear
trajectories do not satisfy the convex hull condition, an ap-
proximate representation can often be found which satisfies
it. We discuss examples of techniques which can be utilized
to find representations that satisfy the convex hull property.
We present empirical results to demonstrate the effective-
ness of our indexing method.

1. INTRODUCTION
The problem of indexing mobile objects has recently at-

tracted the interest of the database community because of an
increasing number of applications involving spatio-temporal
data [1, 8, 12, 15]. In many applications such as radar track-
ing and geographical information system (GIS), the objects
in the database are entities whose location may vary with
time. Specifically, the trajectory of each object is defined as
a function of time f(t). An application may track a large
number of such objects in a database, and it is often desir-
able to query the database at specific instances in time with
questions such as:

• At a given instant in time t, find the k closest objects
to a given location q (Nearest Neighbor Query).

• At a given instant in time t, find the k closest objects
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to a given line l (Linear Optimization Query).

• At a given instant in time t, find all objects within a
user specified range R (Range Query).

We note that traditional database indexing structures [2,
3, 5, 6, 10, 17] cannot be used for such continuously chang-
ing data, since we would need to update the database at
each instant in time. In recent years, a number of index-
ing and query processing techniques have been proposed for
the problem of indexing mobile objects [1, 4, 7, 8, 11, 12,
13, 15, 16, 18, 19, 20]. Most of these techniques assume
that the objects have linear trajectories in one or two di-
mensions. In many real applications, these may turn out to
be rather restrictive assumptions. For example, radar track-
ing applications are inherently three dimensional. Similarly
many trajectories, such as those of objects moving under the
influence of gravity may be inherently nonlinear.

In general, the wide variation in the nature of nonlinear
trajectories makes the indexing problem quite difficult. In
many practical applications, an approximate solution can be
provided by using piecewise linear approximations of non-
linear trajectories. In this paper, we will provide an index-
ing scheme which can be utilized for indexing a large class
of nonlinear trajectories in arbitrary dimensions. We will
identify the class of trajectories amenable for indexing by a
simple property referred to here as the convex hull property.
We will show that many important classes of trajectories
can be either exactly or approximately represented in this
form. In order to illustrate the proposed technique, this pa-
per primarily analyzes the nearest-neighbor query problem,
but the results can be easily extended to queries of other
types. We will provide a brief description and justification
of how the nearest neighbor method discussed in this paper
can also be extended to the case of other kinds of queries
such as linear optimization queries.

This paper is organized as follows. In the next section,
we will discuss the convex hull property which describes the
class of indexable trajectories. In Section 3, we will discuss
the indexing scheme and query processing of objects whose
trajectories satisfy the convex hull property. In Section 4,
the empirical results are discussed. Finally, Section 5 con-
tains the conclusion and summary.

1.1 Contributions of this paper
This paper discusses the first indexing scheme for objects

with nonlinear trajectories in arbitrary dimensions. Previ-
ous results in this area are only applicable to indexing ob-
jects with linear trajectories in one or two dimensions. This
paper significantly extends the range and scope of indexable



mobile objects. Specifically, we define a convex hull prop-
erty and show that the technique proposed in this paper can
handle all objects whose trajectories satisfy this property.
We show that many important classes of nonlinear trajecto-
ries can be either exactly or approximately represented in a
form which satisfies the convex hull property. We also dis-
cuss ways in which such approximate representations could
be found. In addition, we show that the results of this paper
are also applicable to other kinds of queries such as linear
optimization queries.

2. FUNCTIONAL REPRESENTATIONS AND
THE CONVEX HULL PROPERTY

In order to develop the ideas in this paper further, we
will first introduce some notations and definitions. We as-
sume that the database has N mobile objects, each of which
has a trajectory with dimensionality d. We assume that the
position of the i–th object at time t is given by a function
F (Θi = (θi

1, . . . , θ
i
k), t) of k parameters. We refer to F (Θ, t)

as the functional representation of the trajectory and to Θ
as the parametric representation associated with the func-
tional representation F (·, t). It may happen that the trajec-
tory F (Θ, t) changes at particular instants of time, in which
case (Θ) may need to be updated. The instantiation of the
functional representation F (Θ, t) at time t = t0 is the snap-
shot of the object at time t0. The following example clarifies
these definitions:

Example 2.1. The trajectory (height) of a projectile thrown
up vertically from height y at velocity v is given by:

F (y, v,−g, t) = y + v · t + (−g) · t2

Here g is the gravitational acceleration. One functional rep-
resentation of the trajectory is given by F1(Θ = (θ1, θ2, θ3), t) =
θ1 + θ2t − θ3t

2, where the parametric representation associ-
ated with this functional representation is (y, v,−g). An al-
ternative functional representation of the trajectory is F2(Θ =
(θ1, θ2, θ3), t) = θ1 + θ2t − (θ3t)

2. The parametric represen-
tation associated with F2(·, t) is (y, v,

√
g).

As illustrated by the above example, a trajectory may ad-
mit many functional representations. The convex hull prop-
erty is defined as a property of the functional representation
and the associated parametric representation of a given tra-
jectory.

Definition 2.1. A functional representation F (Θ, t) and
its associated parametric representation Θ are said to satisfy
the convex hull property when for any set of N trajectories
with functional representations F (Θ1, t), . . . , F (ΘN , t) and
the corresponding parametric representations Θ1 = (θ1

1, . . . , θ
1
k),

. . . , ΘN = (θN
1 , . . . , θN

k ) the following holds true: If Θ′ lies
inside the convex hull of Θ1, . . . , ΘN then F (Θ′, t) lies inside
the convex hull of F (Θ1

1, t), . . . , F (ΘN
1 , t).

We note that the convex hull property is not a property
of the trajectory itself, but it is a property of a particular
parametric representation of it. It may often happen that
the associated parametric representation for one functional
representation may satisfy the convex hull property, whereas
another may not. In Example 1, it turns out that while
the first functional representation satisfies the convex hull
property, the second does not. For ease of exposition, we

will loosely say that a trajectory satisfies the convex hull
property if a functional representation could be found which
satisfies the convex hull property. The following observation
establishes the convex hull property for an important class
of trajectories:

Observation 2.1. A d-dimensional trajectory with con-
stant velocity satisfies the convex hull property.

A d-dimensional trajectory with constant velocity can be
represented by parameters (y, v), where y is the position
of the object at time t = 0 and v is the constant veloc-
ity. The corresponding functional representation is given by
F (y, v, t) = y + v · t.

It is easy to see that the above observation is true. Con-
sider N trajectories with parametric representations (y1, v1),
(y2, v2), . . . , (yN , vN ). The corresponding functional rep-
resentations at time t are given by y1 + v1 · t, y2 + v2 · t,
. . . , yN + vN · t. Consider a trajectory with parametric rep-
resentation (y′, v′) which lies in the convex hull of (y1, v1), . . . ,
(yN , vN ). From the definition of convexity, this means that
there exists a vector (λ1, . . . , λN) which satisfies the follow-
ing conditions:

(y′, v′) =

NX
i=1

λi · (yi, vi),

NX
i=1

λi = 1 (1)

Now, by scaling and addition of the various components of
the conditions discussed above, it is easy to see that the
following must be true as well:

y′ + v′ · t =
NX

i=1

λi · (yi + vi · t),
NX

i=1

λi = 1 (2)

This means that (y′+v′ ·t) lies in the convex hull of (y1+v1 ·
t), . . . , (yN + vN · t). Therefore, d-dimensional trajectories
with constant velocity satisfy the convex hull property. The
above observation can be generalized as follows:

Observation 2.2. The d-dimensional trajectory with poly-
nomial snapshot representation at time t given by

Pk−1
i=0 ai ·

ti, ai ∈ Rd, satisfies the convex hull property.

The method for proving this observation is exactly anal-
ogous to the above proof. We note that the above ob-
servation includes multi-dimensional parabolic trajectories.
These trajectories are important because projectiles falling
under the effect of gravity fall in this class. Another impor-
tant observation is that a parabolic trajectory can be param-
eterized by either cartesian coordinates or by polar coordi-
nates. While the cartesian representation satisfies the con-
vex hull property, the polar representation does not. There-
fore, we note that it may often be a matter of skill, expe-
rience, and appropriate approximation to pick a functional
representation for a trajectory so that it satisfies the convex
hull property. In particular, the observation discussed above
for polynomial trajectories has significant implications for
approximate representation of many general classes of tra-
jectories.

This is because in many practical applications, even though
the exact position of an object may vary with time, the range
of time over which one needs to query is known in advance.
In such cases, it is often possible to provide an approxi-
mate Taylor Expansion of the trajectory. This expansion



can often approximate arbitrary functional trajectories in a
limited number of polynomial terms for restricted ranges of
the function. The polynomial nature of the expansion lends
immediate applicability of the convex hull property. The
Taylor Expansion is defined as follows:

Definition 2.2. If a function f(x) has continuous deriva-
tives up to the (n + 1)th order, then it can be expanded in
the following fashion:

f(x) = f(a) + f ′(a) · (x − a) + . . . +
f (n)(a) · (x − a)n

n!
+ Rn

(3)

where Rn, called the remainder after n + 1 terms is given
by:

Rn =

Z x

a

f (n+1)(u) · (x − u)n

n!
du (4)

When this expansion converges over a certain range of x,
that is limn⇒∞Rn = 0, then the expansion is called the
Taylor Series of f(x) expanded about a.

We note that by using a careful choice of a, it is possible
to approximate the function closely. In many cases, only a
small number of terms of the expansion are required in order
to closely approximate the function in restricted ranges. Ex-
amples of such functions include the exponential function,
and the logarithmic function among others. A detailed de-
scription of the characteristics and convergence properties
of the Taylor expansion may be found in [9].

Another example of an important trajectory which can
be made to satisfy the convex hull property with a careful
choice of parametric representation is a set of objects moving
in the following elliptical orbits:

Example 2.2. Consider a large set of objects, such that
the x-coordinate and y-coordinate of the ith object at time t
are defined as follows:

x = ai · cosine(t − ti) (5)

y = bi · sine(t − ti) (6)

We assume that ai, bi and ti are constants which are specific
to the object i.

Thus, the ith object moves along the elliptical orbit defined
by x2/a2

i + y2/b2
i = 1. The values of ai and bi are the minor

and major axes of the ellipse, whereas the constant ti deter-
mines the starting point of each of the objects at reference
time t = 0. We note that the natural parametric represen-
tation (ai, bi, ti) does not satisfy the convex hull property.
However, it is possible to find a representation which sat-
isfies the convex hull property by expanding the trajectory
terms as follows:

x = ai · cosine(t) · cosine(ti) + ai · sine(t) · sine(ti) (7)

y = bi · sine(t) · cosine(ti) − bi · cosine(t) · sine(ti) (8)

Next, we redefine the following parameters:

ci = ai · cosine(ti) (9)

di = ai · sine(ti) (10)

ei = bi · cosine(ti) (11)

fi = −bi · sine(ti) (12)

Now we note that the trajectory of object i can be expressed
in terms of the parameters ci, di, ei and fi as follows:

x = ci · cosine(t) + di · sine(t) (13)

y = ei · sine(t) + fi · cosine(t) (14)

For each object i, we choose (ci, di, ei, fi) as its parametric
representation. It can be shown in an analogous way to the
proof of convexity property of the linear trajectory, that the
above representation also satisfies the convex hull property.

The above analysis holds for the case when the major and
minor axis of each of the orbits is oriented along the X-axis
and Y -axis. In many cases, the major and minor axes of the
different orbits can be oriented differently. The functional
representation for such objects is defined as follows:

x = a1
i · cosine(t − ti) + a2

i · sine(t − ti) (15)

y = b1
i · sine(t − ti) + b2

i · cosine(t − ti) (16)

The argument for the convexity of axis-parallel elliptical tra-
jectories can be directly extended to such arbitrarily ori-
ented trajectories by expansion of the correponding terms
cosine(t− ti) and sine(t− ti) in the above expressions. The
constant coefficients of this expanded functional representa-
tion can be used as the indexed parameters.

In the next section, we will discuss how the carefully cho-
sen parametric representations can be utilized in order to
construct the index structures for effective nearest neighbor
indexing.

3. INDEXING AND QUERY PROCESSING
TECHNIQUES

The convex hull property relates the locality in parametric
space to the locality in the positions of mobile objects. This
fact can be exploited for efficient query processing of the
locations of mobile objects by indexing the parametric rep-
resentations of their trajectories. As an application of this
technique, we will demonstrate its use to resolve the nearest
neighbor query. In the following, we will first discuss the
details of a branch and bound query processing technique
on the index structure built on the parametric representa-
tions. Later, we will prove its correctness using the convex
hull property.

Assume that an application tracks N objects for which
the correponding trajectories satisfy the convex hull prop-
erty. For each object, we maintain a suitable parametric
representation of its trajectory in a multi-dimensional in-
dex structure such as [2]. Thus, for example, consider the
parabolic trajectory with parameters (y, v, a), and snapshot
representation at time t given by y+v·t+a·t2. Then, the pa-
rameter values for the different objects are maintained in a
multidimensional index tree structure. This index structure
is updated whenever the trajectory of an object changes.

The overall branch and bound technique for the nearest
neighbor query is illustrated in Figure 1. The input to the
algorithm is the query point q, the time t at which the
nearest object is to be found, and the root node RN of
the index structure. The branch and bound technique uti-
lizes a hierarchical traversal of the tree structure in order to
visit the nodes which are most closely related to the query
point. At each stage of the algorithm, we maintain a set of
nodes, denoted by LIST, which will be explored further by
the algorithm. The value of LIST is initialized to the root
node RN . At each stage of the algorithm, the branch and



Algorithm BranchAndBoundNN(TargetQueryLocation: q, TargetQueryTime: t, RootNode: RN)
begin
LIST = {RN};
PessimisticBound = ∞; optimistic(RN) = 0;
while LIST is non-null do

begin
Pick the next node N from LIST based on selection-condition;
if optimistic(N) ≥ PessimisticBound then prune node N ;
else if node N is a leaf node then
begin
L = All objects in N ;
Find position of each object in L at time t;
find closest object o ∈ L to query location q at t;
Compute distance D of o to query location q at t;
If D < PessimisticBound then

PessismisticBound = D; BestObject = o;
end
else begin { Internal Node }
Find all nodes pointed to by N and denote their pointers by N1 . . . Nr;
for each node N i optimistic(N i) = ComputeOptimisticBound(N i, q);
Add all node pointers N1 . . . Nr to LIST;
end

Delete node N from LIST;
end;

return(BestObject, PessimisticBound);
end;

Figure 1: The Branch and Bound Nearest Neighbor Algorithm
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bound method maintains a global pessimistic bound (de-
noted by PessimisticBound) which is the closest distance
to q of any point encountered so far. The algorithm starts
off with initializing PessimisticBound to ∞. The branch
and bound method also associates a local optimistic bound
optimistic(N) with each node N . The optimistic bound
optimistic(N) is a lower bound on the distances at time t
between q and the objects stored in the subtree rooted at
node N . The details of computing this optimistic bound will
we discussed in the next subsection.

In each iteration, a node N is picked from LIST in accor-
dance with some selection condition (denoted by selection-
condition). A variety of different selection criteria can lead
to either depth-first or breadth-first traversal of the indexing
structure. In this paper, we use the selection condition that
the node with the smallest optimistic bound is picked for
further exploration. After picking the node N , it is deter-
mined if the optimistic bound optimistic(N) of the node is
larger than the global pessimistic bound PessimisticBound.
If this is indeed the case, then it means that some data point
which has already been discovered is closer to q at time t
than any data point in the subtree rooted at the node N .
Therefore we do not need to further consider the subtree
rooted at the node N and the node N can be pruned from
the set LIST.

If the node N is not pruned, then it is checked whether
it is an internal node or a leaf node. If the node N is a
leaf node then we compute the distance of all objects in
the node N from the query point q at time t. We update
the PessimisticBound and the best object found so far if
necessary. On the other hand, if the node N is an internal
node, then we find pointers to all of its children and add
them to the set LIST while deleting the node N itself from
the LIST.

The algorithm terminates when the set LIST is null. At
this point, all nodes have been either explored or pruned
from further consideration. The final value of the variable
PessimisticBound reflects the true nearest neighbor value.

3.1 Finding Optimistic Bounds Efficiently
In this section, we discuss the details of finding a lower

bound on the distance between the query point q and the
positions of the objects in the subtree rooted at node N
at time t. In Figure 1, this is achieved by the function
ComputeOptimisticBound(·). The aim is to find an opti-
mistic bound to any parametric representation inside node
N at time t. Let Γ1 . . . Γm vertices of the node N . Then the
snapshot of the vertices of node N at time t are given by
F (Γi, t) for i ∈ {1, . . . m}. As discussed above, the pro-
cedure ComputeOptimisticBound returns a lower bound
on the distances between q and convex hull of F (Γi, t) for
i ∈ {1, . . . m}. We will denote the convex hull of the snap-
shot representation of node N by N(t). The technique for
finding the closest distance to the convex hull of a set of
points is well known [14]. However, even this technique can
turn out to be quite compute-intensive, especially for tra-
jectories in multiple dimensions. Consequently, we use the
following heuristic methodology which returns a looser lower
bound while requiring much less time.

Let CN (t) be the convex hull of F (Γi, t), i ∈ {1, . . . m}.
Our heuristic method relies on the following fact: if we can
locate a separator hyperplane so that the point q and CN(t)
lie on the different sides of this hyperplane, then the distance

between q and the separator hyperplane is a lower bound
on the distance between N(t) and q. Given a direction in
the space, among all separator hyperplanes which are per-
pendicular to this direction, the tightest lower bound will be
provided by the separator hyperplane which touches at least
one corner of the convex hull CN(t). The key in obtaining a
good lower bound is to choose the direction judiciously.

To choose the direction, we first perform a linear scan of
all vertices of N(t) to find the vertex closest to q. Denote the
closest vertex by F (Γc, t). Our heuristic method relies on the
intuition that the point of N(t) closest to q will also be very
likely to be close to F (Γc, t). Therefore a good direction for
separator hyperplanes would be the line l(q, F (Γc, t)) joining
q and F (Γc, t).

To find the tightest lower bound along l(q, F (Γc, t)) we
perform a second scan of the vertices of N(t). For each ver-
tex, we consider the hyperplane which passes through this
vertex and is perpendicular to the line l(q, F (Γc, t)). If the
point q and N(t) lie on the different side of this hyperplane,
then the distance between it and the point q is a candidate
for the lower bound. After the linear scan of the vertices,
we choose the largest candidate as the tightest lower bound
returned by the procedure ComputeOptimisticBound(·).

At first sight, the procedure for computing the optimistic
bound might seem a bit expensive. However, this is a main
memory operation, whereas the access of the data is achieved
from disk. Since disk accesses are orders of magnitude slower
than main memory operations, the relative overhead of this
computation is small, especially in lower dimensionalities.
In order to reduce the overhead further, the best design for
the index structure is one in which a flat design of the index
is used. In a flat design, each node may contain a multiple
pages, and therefore a larger number of records. The overall
design of the branch and bound process is simplified fur-
ther, when a flat design is used. In this case, the nodes are
sorted in increasing of the optimistic bounds. The nodes
are examined in this order. The procedure is terminated
whenever the optimistic bound for a node exceeds the global
pessimistic bound.

3.2 Correctness
We note that in order to prove that the branch and bound

algorithm finds the nearest neighbors accurately, we need to
prove that the optimistic bound returned by the algorithm
is indeed a lower bound. This ensures that no nodes are
pruned falsely, and therefore the final objects found by the
algorithm are indeed the nearest neighbors. The key issue
is to show that the optimistic distance as computed above
to the convex hull N(t) is a lower bound on the distance to
any data point contained inside N at time t.

Theorem 3.1. Let S be the set of data points in the sub-
tree rooted at the node N . Then, consider an index structure
built on a parametric representation which satisfies the con-
vex hull property. Then, the optimistic distance of the query
point q to the snapshot representation of the convex hull N(t)
of N is lower bound to the distance of the query point q to
any data point in S.

Proof. Let the parametric representations of the corners
of N be denoted by (θ1

1 . . . θ1
k) . . . (θm

1 . . . θm
k ). Let (θ′

1 . . . θ′
k)

be any data point in the subtree rooted at the node N . We
will show that the distance of F (θ′

1 . . . θ′
k, t) to q is lower

than the minimum distance of q to the convex hull of N(t).



We know that since (θ′
1 . . . θ′

k) lies in the subtree rooted at
node N , it must lie inside the convex hull of (θ1

1 . . . θ1
k) . . .

(θm
1 . . . θm

k ). Since the parametric representation satisfies the
convex hull property, this means that F (θ′

1 . . . θ′
k, t) lies in-

side the convex hull of F (θ1
1 . . . θ1

k, t) . . . F (θm
1 . . . θm

k , t). Since
the euclidean function ||·|| is quasi-convex, if the query point
q lies outside this convex hull, then the optimistic bound of
q to the convex hull is lower then any point inside it. There-
fore, it follows that no node is falsely pruned, and the final
object returned is the true nearest neighbor.

3.3 Extension to other kinds of queries
The technique discussed in this paper can be easily ex-

tended to resolving queries such as:
• At a given instant in time t, find all objects which are
within a distance d of the query point q.
The query processing technique for this case is similar to
that of the nearest neighbor query with a different pruning
criterion. In this case, we prune a node N when the opti-
mistic distance of its snapshot representation N(t) to q is
larger than d.
• At a given instant in time t, find all objects closest to a
hyperplane l.
We refer to this query as a linear optimization query. In
this case, instead of determining the optimistic distance to
a point, we calculate the optimistic bound to the hyperplane
l. However, the process of finding the optimistic bound is
slightly different. In this case, it is guaranteed that the clos-
est point is one of the corners of the convex hull. Therefore,
only a linear scan through the vertices suffices in order to
find the optimistic bound to the hyperplane. We note that
such a query can be extended to objects with contours of
convex shapes, since the pruning procedure would continue
to maintain correctness in that case.
• At a given instant in time t, find all the objects in the user
specified range R.
The methodology to solve the range query problem uses a
similar kind of hierarchical traversal as used for the nearest
neighbor query. The difference is that in this case a node
N is considered relevant only if its convex hull N(t) at time
t intersects with the user specified range R. We note that
if a given node N does not intersect with the user-specified
ranges, then the convex hull property ensures than none of
the (enclosed) descendent nodes also intersect this range.
Therefore, the descendents of a node are explored only if
the bounding rectangle of the snapshot representation of the
node intersects with the user-specified range R. The proof
of correctness of this method is similar to that of the case
of nearest neighbor queries.

4. EMPIRICAL RESULTS
Since there are no known index structures for non-linear

objects in arbitrary dimensionality, we do not have a refer-
ence point to compare our results with. At the same time,
it would be useful to provide some results on the pruning ef-
ficiency of the indexing structure resulting from the scheme.
In this section, we will discuss some experimental results
which illustrate the quality of our indexing scheme. We
tested the standard nearest neighbor query, wherein the tar-
get point was an object from the same distribution as the
remaining data points. We will test the scheme with differ-
ent kinds of trajectories so as to illustrate its robustness in
pruning efficiency.
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Figure 3: Pruning Performance (Variation with
Database Size for 3-dimensional linear trajectory)
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• Linear Trajectory: We will first test the scheme
with linear trajectories. In each case, we will assume
that the parameters of the position and velocity along
the kth dimension are given by (yk, vk). Therefore, the
position along the kth dimension at time t is given by
yk + vk · t. The corresponding parametric representa-
tion indexed was (yk, vk).

• Nonlinear Trajectory: We will test a parabolic tra-
jectory in 2-dimensions. We assume that the initial
position, velocity, and acceleration along the kth di-
mension are given by (yk, vk, ak). Therefore, the posi-
tion along the kth dimensional at the time t is given
by yk +vk · t+ak · t2/2. The corresponding parametric
representation was (yk, vk, ak).

In addition, we will also test the results from an el-
liptical trajectory in 2-dimensions. In this case, the
functional representation of the trajectory was given
by the following:

x = ci · cosine(t) + di · sine(t) (17)

y = ei · sine(t) + fi · cosine(t) (18)

The corresponding parametric representation indexed
was (ci, di, ei, fi).

The actual generation of the parameters of the trajectory
was done using a uniform distribution, such that each of
the parameters was independently distributed in the range
(−b, b). The value of b used was 1. We note that uniformly
distributed data is the worst-case behavior for an indexing
structure. This is because the data points are not very well
clustered in the uniformly distributed case. In such a case,
the pruning is not very efficient. Thus, the results of this pa-
per provide a good understanding of the worst-case quality
of indexing of such a method.

In Figure 3, we have illustrated the results on the 3-
dimensional linear trajectory by varying the number of points
from N = 10, 000 to N = 200, 000. The query target was
chosen to be a mobile object from the same distribution as
the original set of objects and the target time t was chosen
to be equal to 1 in order to determine the query point q.
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Figure 6: Pruning Performance (Variation with
Database Size for 2-dimensional elliptical trajec-
tory)

Thus, the position of the target object at time t = 1 was
used. We have illustrated the average pruning performance
over a set of ten queries. The same ten queries were used in
each case for consistency. The X-axis represents the number
of points in the database, whereas the Y -axis represents the
percentage of data accessed. It is clear that in each case,
only a small percentage of the data is accessed by the algo-
rithm. The other interesting observation is that in each case,
the percentage of database accessed reduced with increasing
database size. This is a very desirable property, since the
indexing problem is most relevant for large databases. The
reason for the improvement of the pruning percentage of the
branch and bound technique with increasing database size is
that for larger databases, the pessimistic bounds are much
tighter when the same percentage of the data has been ac-
cessed. Thus, nodes are more likely to be pruned at a given
stage of the algorithm when larger database sizes are used.

We also tested how the pruning performance varied by
varying the query target time. The results are illustrated in
Figure 4. The target time was varied from 0.1 to 10. The
aim of making this variation was to test how the approach
performed for both queries in the near future and queries in
the distant future. It is clear from the results of Figure 4,
that there was not much variation in the performance of the
system for queries of either type. In each case, the prun-
ing performance of the nearest neighbor indexing algorithm
continued to be effective.

In Figure 5, we have illustrated the performance of the sys-
tem on a 2-dimensional parabolic trajectory. The method-
ology for generating the target query points was the same
as in the previous case. We note that at the leftmost end
of the graph, only about 0.7% of the database is accessed,
whereas at the rightmost end about 0.38% of the database is
accessed. Thus, the system shows excellent pruning perfor-
mance which improves with increasing database size. Simi-
lar results were obtained with the use of an elliptical trajec-
tory. The results are illustrated in Figure 6. The amount of
data accessed in this case varied between 0.79% and 0.9% of
the database size. We note that the results on all of the tra-
jectories show that the nearest neighbor indexing procedure
has a performance improves with increasing database size.



This is a very desirable property for developing a practical
indexing scheme in a wide variety of large scale applications.

5. CONCLUSIONS AND SUMMARY
In this paper we discussed a nearest neighbor indexing

scheme for a class of objects with non-linear trajectories
in arbitrary dimensionality. We identified a property of
non-linear trajectories called the convex hull property and
showed that a number of natural trajectories satisfy this
property. We showed that this property can be utilized to
index a careful representation of the objects so that tradi-
tional branch and bound techniques can be applied to the in-
dex structure. We also illustrated examples and techniques
by which approximate and exact representations satisfying
the convex hull property can be found for many important
closed-form trajectories. This paper presents the first re-
sults for nearest neighbor indexing of non-linear trajectories
and thus significantly extends the class of nearest neighbor
indexing structures for mobile objects.
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