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ABSTRACT

With the rapid development of online social media, online shop-

ping sites and cyber-physical systems, heterogeneous information

networks have become increasingly popular and content-rich over

time. In many cases, such networks contain multiple types of ob-

jects and links, as well as different kinds of attributes. The clus-

tering of these objects can provide useful insights in many applica-

tions. However, the clustering of such networks can be challenging

since (a) the attribute values of objects are often incomplete, which

implies that an object may carry only partial attributes or even no

attributes to correctly label itself; and (b) the links of different types

may carry different kinds of semantic meanings, and it is a difficult

task to determine the nature of their relative importance in helping

the clustering for a given purpose. In this paper, we address these

challenges by proposing a model-based clustering algorithm. We

design a probabilistic model which clusters the objects of differ-

ent types into a common hidden space, by using a user-specified

set of attributes, as well as the links from different relations. The

strengths of different types of links are automatically learned, and

are determined by the given purpose of clustering. An iterative al-

gorithm is designed for solving the clustering problem, in which

the strengths of different types of links and the quality of cluster-

ing results mutually enhance each other. Our experimental results

on real and synthetic data sets demonstrate the effectiveness and

efficiency of the algorithm.

1. INTRODUCTION
With the rapid emergence of online social media, online shop-

ping sites and cyber-physical systems, it has become possible to
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model many forms of interconnected networks as heterogeneous

information networks in which objects (i.e., nodes) are of different

types, and links among objects correspond to different relations,

denoting different interaction semantics. An object is usually asso-

ciated with some attributes. For example, in the case of the YouTube

social media network, the object types include videos, users, and

comments; links between objects correspond to different relations,

such as publish and like relations between users and videos, post

relation between users and comments, friendship and subscribe re-

lations between users, and so on; and attributes include user’s lo-

cation, video’s clip length and number of views, comments, and so

on.

Such kinds of heterogeneous information networks are ubiqui-

tous and the determination of their underlying clusters has many in-

teresting applications. For example, clustering objects (customers,

products, comments, etc.) in an online shopping network such as

eBay is helpful for customer segmentation in product marketing;

and clustering objects (people, groups, books, posts, etc.) in an on-

line social network such as Facebook is helpful for voter segmenta-

tion in political campaigns. Another example is the weather sensor

network, where different types of sensors may carry different nu-

merical attributes and be linked by k nearest neighbor relationships.

The clustering process may reveal useful regional weather patterns.

The clustering task brings two new challenges in such scenarios.

First, an object may contain only partial or even no observations for

a given attribute set that is critical to determine their cluster labels.

That is, a pure attribute-based clustering algorithm cannot correctly

detect these clusters. Second, although links have been frequently

used in networks to detect clusters [8, 17, 1, 23] in recent research,

we consider a much more challenging scenario in which the links

are of different types and interpretations, each of which may have

its own level of semantic importance in the clustering process. That

is, a pure link-based clustering without any guidance from attribute

specification could fail to meet user demands.

Figure 1: A Motivating Example on Clustering Political Inter-

ests in Social Information Networks



Fig. 1 shows a toy social information network extracted from

a political forum containing users, blogs written by users, books

liked by users, and friendship between users. Now suppose we

want to cluster users in the network according to their political in-

terests, using the text attributes in user profiles, blogs and books,

as well as the link information between objects. On one hand,

since not all the users listed their political interests in their profiles,

we cannot judge their political interests simply according to the

text information contained in their profiles directly. On the other

hand, without specifying the purpose of clustering, we cannot de-

cide which types of links to use for the clustering: Shall we use the

friendship links to detect the social communities, or the user-like-

book links to detect the reading groups, or a mix of them? Obvi-

ously, to solve such clustering tasks, we need to use both the incom-

plete attribute information as well as the link information of differ-

ent types with the awareness of their importance weights. In our

example, in order to discover a user’s political interests, we need to

learn which link types are more important for our purpose of clus-

tering, among the relationships between her and blogs, books, and

her friends.

Recently, there have been several studies [28, 18, 20, 25, 24, 16]

showing that the combination of attribute and link information in a

network can improve the clustering quality. However, none of these

studies has addressed the two challenges simultaneously. Many

of the studies [28, 20, 25] rely on a complete attribute space and

the clustering result is considered as a trade-off between attribute-

based measures and link-based measures. Moreover, none of the

current studies has examined the issue that different types of links

have different importance in determining a clustering with a certain

purpose.

In this study, we explore the interplay between different types of

links and the specified attribute set in clustering process, and design

a comprehensive and robust probabilistic clustering model for het-

erogeneous information networks. First, we model each attribute

attached with each object as a mixture model, with the mixing pro-

portion as the soft clustering probability for each object. As it is a

generative model, the incompleteness issue of the attributes is han-

dled properly. Second, the importance of different types of links

is modeled with different coefficients, which is determined by the

consistency of cluster membership vectors over all the linked ob-

jects. In other words, the cluster membership information of ob-

jects are propagating in the whole network, but different types of

links carry different capabilities in the propagation process. The

goal is to determine the optimal levels of importance of the dif-

ferent types of semantic links and the clustering results for objects

simultaneously. An iterative method is proposed to learn the pa-

rameters, where the clustering results and the importance weights

for different link types are optimized alternately and mutually en-

hance each other.

The primary contributions of this paper are as follows.

1. We propose a clustering problem for heterogeneous information

networks with incomplete attributes across objects and different

types of links, according to a user-specified attribute set that

may be from different types.

2. We design a novel probabilistic clustering model, which for the

first time directly models the varying importance of different

types of semantic links, for the above clustering problem.

3. We propose an efficient algorithm to compute this model, where

the clustering results and strengths for different typed links mu-

tually enhance each other.

4. We present experiments on both real and synthetic data sets to

demonstrate the effectiveness and efficiency of the method.

2. PROBLEM DEFINITION
In this section, we introduce the notations, definitions and con-

cepts relevant to the problem of clustering heterogeneous networks.

2.1 The Data Structure
A heterogeneous information network G = (V, E, W ) is

modeled as a directed graph, where each node v ∈ V in the net-

work corresponds to an object (or an event), and each link e ∈ E
corresponds to a relationship between the linked objects, with its

weight denoted by w(e). Different from the traditional network

definition, the objects and links in heterogeneous networks are as-

sociated with explicit type information to distinguish the semantic

meanings, namely, we have a mapping function from object to ob-

ject type, τ : V → A, and a mapping function from link to link

type, φ : E → R. A is the object type set, and R is the link

type set, or the relation set, which provides linkage guidance be-

tween nodes. Notice that, if a relation exists from type A to type

B, denoted as A R B, the inverse relation R−1 holds naturally for

B R−1 A. For most of the times, R and its inverse R−1 are not

equal, unless the two types are the same and R is symmetric.

Attributes are associated with objects, such as the location of a

user, the text description of a book, the text information of a blog,

and so on. In this setting, we consider attributes across all differ-

ent types of objects as a collection of attributes for the network,

denoted as X = {X1, . . . , XT }, in which we are interested only

in a subset for a certain clustering purpose. Each object v ∈ V
contains a subset of the attributes, with observations denoted as

v[X] = {xv,1, xv,2, . . . , xv,NX,v}, where NX,v is the total num-

ber of observations of attribute X attached with object v. Notice

that, some attributes can be shared by different types of objects,

such as the text and the location attribute; while some other at-

tributes are unique for a certain type of objects, such as the clip

time length for a video. We use VX to denote the object set that

contains attribute X.

2.2 The Clustering Problem
In this paper, we study the clustering problem that maps every

object in the network into a unified hidden space, i.e., a soft clus-

tering, according to the user-specified subset of attributes in the

network, with the help of links from different types.

There are several new challenges for clustering objects in this

new scenario. First, the attributes are usually incomplete for an

object: the attributes specified by a user may be only partially or

even not contained in an object type; and the values for these at-

tributes could be missing even if the attribute type is contained in

the object type. Moreover, the incompleteness of the data cannot be

easily handled by interpolation: the observations for each attribute

could be a set or a bag of values, and the neighbors for an object

are from different types of objects, which may not be helpful for

predicting the missing data. For example, it is impossible to get

a user’s blog via interpolating techniques. Therefore, none of the

existing clustering algorithms that purely based on attribute space

can solve the clustering problem in this scenario.

Second, with the awareness that links play a very important role

to propagate the cluster information among objects, another chal-

lenge is that different link types have different semantic mean-

ings and therefore have different strengths in the process of passing

cluster information around. In other words, while it is clear that the

existence of links between nodes is indicative of clustering similar-

ity, it is also important to understand that different link types may

have a different level of importance in the clustering process. In

the example of clustering political interests illustrated in Fig. 1, we

expect a higher importance of the relation user-like-book than the



relation friendship in deciding the cluster membership of a user.

Thus, we need to design a clustering model which can learn the

importance of these link types automatically. This will enhance the

clustering quality because it marginalizes the impact of low quality

types of neighbors of an object during the clustering process.

We present examples of clustering tasks in two concrete hetero-

geneous information networks in the following.

EXAMPLE 1. Bibliographic information network. A biblio-

graphic network is a typical heterogeneous network, containing ob-

jects from three types of entities, namely papers, publication venues

(conferences or journals), and authors. Each paper has different

link types to its authors and publication venue. Each paper is as-

sociated with the text attribute as a bag of words. Each author and

venue links to a set of papers, but contains no attributes (in our

case). The application of a clustering process according to the text

attribute in such a scenario can help detect research areas, and

decide the research areas for authors, venues and papers.

:Paper

:TextAttributes

:Venue

:Author

Figure 2: Illustration of Bibliographic Information Network

Multiple types of objects and links in this network are illustrated

in Fig. 2. For objects of different types, their cluster memberships

may need to be determined by different kinds of information: for

authors and venues, the only available information is from the pa-

pers linked to them; for papers, both text attributes and links of

different types are provided. Note that, even for papers that are

associated with text attributes, using link information can further

help the clustering quality when the observations of the text data

is very limited (e.g., using text merely from titles). Also, we may

expect that the neighbors of an author type play a more important

role in deciding a paper’s cluster compared with the neighbor of a

venue type. This needs to be automatically learned in terms of the

underlying relation strengths.

EXAMPLE 2. Weather sensor network. Weather sensor net-

works typically contain different kinds of sensors for detecting dif-

ferent attributes, such as precipitation or temperature. Some sen-

sors may have incorrect or no readings because of the inaccuracy

or malfunctioning of the instruments. The links between sensors

are generated according to their k nearest neighbors under geo-

distances, in order to incorporate the importance of locality in

weather patterns. The clustering of such sensors according to both

precipitation and temperature attributes can be useful in determin-

ing regional weather patterns.

Fig. 3 illustrates a weather sensor network containing two types

of sensors: temperature and precipitation. A sensor may sometimes

register none or multiple observations. Although it is desirable to

use the complete observations on both temperature and precipita-

tion to determine the weather pattern of a location, in reality a sen-

sor object may contain only partial attribute (e.g., temperature val-

ues only for temperature sensors), and both the attribute and link

information are needed for correctly detecting the clusters. Still,

which type of links plays a more important role needs to be deter-

mined in the clustering process.
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Figure 3: Illustration of Weather Sensor Information Network

Formally, given a network G = (V, E, W ), a specified subset of

its associated attributes X ∈ X , the attribute observations {v[X]}
for all objects, and the number of clusters K, our goal is:

1. to learn a soft clustering for all the objects v ∈ V , denoted

by a membership probability matrix, Θ|V |×K = (θv)v∈V ,

where Θ(v, k) denotes the probability of object v in cluster k,

0 ≤ Θ(v, k) ≤ 1 and
∑K

k=1 Θ(v, k) = 1, and θv is the K
dimensional cluster membership vector for object v, and

2. to learn the strengths (importance weights) of different link

types in determining the cluster memberships of the objects,

γ |R|×1, where γ(r) is a real number and stands for the im-

portance weight for the link type r ∈ R.

Note that, in this paper we will not study the problem of how

to determine the best number of clusters K, which belongs to the

model selection problem and has been covered in a large number

of studies by using various criteria [19, 12], such as AIC and BIC

for probabilistic models.

3. THE CLUSTERING MODEL
We propose a novel probabilistic clustering model in this section

and introduce the algorithm that optimizes the model in Section 4.

3.1 Model Overview
Given a network G, with the observations of its links and the

observations {v[X]} for the specified attributes X ∈ X , a good

clustering configuration Θ, which can be viewed as hidden cluster

information for objects, should satisfy two properties:

1. Given the clustering configuration, the observed attributes

should be generated with a high probability. Especially, we

model each attribute for each object as a separate mixture

model, with each component representing a cluster.

2. The clustering configuration should be highly consistent with

the network structure. In other words, linked objects should

have similar cluster membership probabilities, and larger

strength of a link type requires more similarity between the

linked objects of this type.

Overall, we can define the likelihood of the observations of all

the attributes X ∈ X as well as the hidden continuous cluster con-

figuration Θ, given the underneath network G, the relation strength

vector γ , and the cluster component parameter β, which can be de-

composed into two parts, the generative probability of the observed

attributes given Θ and the probability of Θ given the network struc-

ture:
p({{v[X]}v∈VX

}X∈X , Θ|G, γ, β)

=
∏

X∈X

p({v[X]}v∈VX
|Θ, β)p(Θ|G, γ) (1)

From a generative point of view, this model explains how obser-

vations for attributes associated with objects are generated: first,



a hidden layer of variables Θ is generated according to the prob-

ability p(Θ|G, γ), given the network structure G and the strength

vector γ; second, the observed values of attributes associated with

each object are generated according to mixture models, given the

cluster membership of the object, as well as the cluster component

parameter β, with the probability
∏

X∈X p({v[X]}v∈VX |Θ, β).

The goal is then to find the best parameters γ and β, as well as

the best clustering configuration Θ that maximize the likelihood.

The detailed modeling of the two parts is introduced in the follow-

ing.

3.2 Modeling Attribute Generation
Given a configuration Θ for the network G, namely, the member-

ship probability vector θv for each object v, the attribute observa-

tions for each object v are conditionally independent with observa-

tions from other objects. Each attribute X associated with each ob-

ject v is then assumed following the same family of mixture models

that share the same cluster components, with the component mix-

ing proportion as the cluster membership vector θv . For simplicity,

we first assume that only one attribute X is specified for the clus-

tering purpose and then briefly discuss a straightforward extension

to the multi-attribute case.

3.2.1 Single Attribute

Let X be the only attribute we are interested in the network, and

let v[X] be the observed values for object v, which may contain

multiple observations. It is natural to consider that the attribute ob-

servation v[X] for each object v is generated from a mixture model,

where each component is a probabilistic model that stands for a

cluster, with the parameters to be learned, and component weights

denoted by θv . Formally, the probability of all the observations

{v[X]}v∈VX given the network configuration Θ is modeled as:

p({v[X]}v∈VX
|Θ, β) =

∏

v∈VX

∏

x∈v[X]

K
∑

k=1

θv,kp(x|βk) (2)

where K is the number of clusters, and βk is the parameter for

component k. In this paper, we consider two types of attributes,

one corresponding to text attributes with categorical distributions,

and the other numerical attributes with Gaussian distributions.

(1) Text attribute with categorical distribution: In this case, ob-

jects in the network contain text attributes in the form of a term list,

from the vocabulary l = 1 to m. Each cluster k has a different term

distribution following a categorical distribution, with the parame-

ter βk = (βk,1, . . . , βk,m), where βk,l is the probability of term

l appearing in cluster k, i.e., X|k ∼ discrete(βk,1, . . . , βk,m).

Following the frequently used topic modeling method PLSA [11],

each term in the term list for an object v is generated from the mix-

ture model, with each component as a categorical distribution over

terms described by βk, and the component coefficient is θv . For-

mally, the probability of observing all the current attribute values

is:

p({v[X]}v∈VX
|Θ, β) =

∏

v∈VX

m
∏

l=1

(
K

∑

k=1

θv,kβk,l)
cv,l (3)

where cv,l denotes the count of term l that object v contains.

(2) Numerical attribute with Gaussian distribution: In this case,

objects in the network contain numerical observations in the form

of a value list, from the domain R. The kth cluster is a Gaussian dis-

tribution with parameters βk = (µk, σ2
k), i.e., X|k ∼ N (µk, σ2

k),

where µk and σk are mean and standard deviation of normal distri-

bution for component k. Each observation in the observation list for

an object v is generated from the Gaussian mixture model, where

each component is a Gaussian distribution with parameters µk, σ2
k,

and the component coefficient is θv . The probability density for all

the observations for all objects is then:

p({v[X]}v∈VX
|Θ, β) =

∏

v∈VX

∏

x∈v[X]

K
∑

k=1

θv,k

1
√

2πσ2
k

e
−

(x−µk)2

2σ2
k

(4)

3.2.2 Multiple Attributes

As in the weather sensor network example, we are interested in

multiple attributes, namely temperature and precipitation. Gener-

ally, if multiple attributes in the network are specified by users, say

X1, . . . , XT , the probability density of observed attribute values

{v[X1]}, . . . , {v[XT ]} for a given clustering configuration Θ is as

follows, by assuming the independence among these attributes:

p({v[X1]}v∈VX1
, . . . , {v[XT ]}v∈VXT

|Θ, β1, . . . , βT )

=
T

∏

t=1

p({v[Xt]}v∈VXt
|Θ,βt)

(5)

3.3 Modeling Structural Consistency
From the view of links, the more similar the two objects are in

terms of cluster membership, the more likely they are connected

by a link. In order to quantitatively measure the consistency of a

clustering result Θ with the network structure G, we define a novel

probability density function for observing Θ.

We assume that linked objects are more likely to be in the same

cluster, if the link type is of importance in determining the cluster-

ing process. That is, for two linked objects vi and vj , their mem-

bership probability vectors θi and θj should be similar. Within the

same type of links, the higher link weight (w(e)), the more similar

θi and θj should be. Further, a certain link type may be of greater

importance, and will influence the similarity to a greater extent.

The consistency of a configuration Θ with the network G, is eval-

uated with the use of a composite analysis with respect to all the

links in the network in the form of a probability density value. A

more consistent configuration of Θ will yield a higher probability

density value. In the following, we first introduce how the consis-

tency of two cluster membership vectors is defined with respect to a

single link, and then how this analysis can be applied over all links

in order to create a probability density value as a function of Θ.

For a link e = 〈vi, vj〉 ∈ E, with type r = φ(e) ∈ R, we

denote the importance of the link type to the clustering process by

a real number γ(r). This is different from the weight of the link

w(e), which is specified in the network as input, whereas the value

of γ(r) is defined on link types and needs to be learned. We denote

the consistency function of two cluster membership vectors θi and

θj with link e under strength weights for each link type γ by a fea-

ture function f(θi, θj , e, γ). Higher values of this function imply

greater consistency with the clustering results. In the following, we

list several desiderata for a good feature function:

1. The value of the feature function f should increase with greater

similarity of θi and θj .

2. The value of the feature function f should decrease with greater

importance of the link e, either in terms of its specified weight

w(e), or learned importance γ(r). In other words, for the larger

strength of a particular link type, two linked nodes are required

to be more similar to claim the same level of consistency.

3. The feature function should not be symmetric between its first

two arguments θi and θj , because the impact from node vi to

node vj could be different from that of vj to vi.



The last criterion requires some further explanation. For exam-

ple, in a citation network, a paper i may cite paper j, because i feels

that j is relevant to itself, while the reverse may not be necessarily

true. In the experimental section, we will show that asymmetric

feature functions produce higher accuracy in link prediction.

We then propose a cross entropy-based feature function, which

satisfies all of the desiderata listed above. For a link e = 〈vi, vj〉 ∈
E, with relation type r = φ(e) ∈ R, the feature function

f(θi, θj , e, γ) is defined as:

f(θi, θj , e, γ) = −γ(r)w(e)H(θj , θi) = γ(r)w(e)
K

∑

k=1

θj,k log θi,k

(6)

where H(θj , θi) = −
∑K

k=1 θj,k log θi,k, is the cross entropy

from θj to θi, which evaluates the deviation of vj from vi, in terms

of the average coding bits needed if using coding schema based

on the distribution of θi. For a fixed value of γ(r), the value of

H(θj , θi) is minimal and (therefore) f is maximal, when the two

vectors are identical. It is also evident from Eq. (6) that the value

of f decreases with increasing learned link type strength γ(r) or

input link weight w(e). We require γ ≥ 0, in the sense that we do

not consider links that connect dissimilar objects. The value of f
so defined is a non-positive function, with larger value indicating a

higher consistency of the link.

Other distance functions such as KL-divergence could replace

the cross entropy in the feature function. However, as cross entropy

favors distributions that concentrate on one cluster (H(θj , θi)
achieves the lowest distance, when θj = θi and θi,k = 1 for

some cluster k), which agrees with our clustering purpose, we pick

it over KL-divergence.
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Figure 4: Illustration of Feature Function

Fig. 4 illustrates a small example of a bibliographic network con-

taining 7 objects. For clarity, we only draw the out-links of two

objects corresponding to Paper 1 and Author 4. The weights of all

links are 1, and the given membership vector with respect to three

clusters is shown in the figure. Three link types are contained in the

network, corresponding to write(author, paper) with strength

weight γ1, published by(paper, venue) with weight γ2, and

written by(paper,author) with weight γ3. From the example,

we can see that:

1. Objects 1 and 3 are more likely to belong to the first cluster, Ob-

ject 4 is a neutral object, and Object 5 is more likely to belong to

the third cluster. With Eq. (6), we get f(〈1, 3〉) = −0.4701γ3;

f(〈1, 4〉) = −1.7174γ3; and f(〈1, 5〉) = −2.3410γ3 . In other

words, f(〈1, 3〉) ≥ f(〈1, 4〉) ≥ f(〈1, 5〉). This satisfies the

first desired criterion.

2. f(〈1, 2〉) = −0.4701γ2 and f(〈1, 3〉) = −0.4701γ3. If

γ2 < γ3, (or, the strength of link type published by is smaller

than written by), then f(〈1, 2〉) > f(〈1, 3〉). That is to say, in

order to obtain the same value for two feature functions defined

on two different link types, the link type with stronger strength

requires even greater similarity for the membership vectors. In

other words, stronger link types are likely to exist only between

objects that are very similar to each other, and indicate a better

quality of the link type.

3. f(〈1, 4〉) = −1.7174γ3, f(〈4, 1〉) = −1.0986γ1 , and in gen-

eral f(〈1, 4〉) 
= f(〈4, 1〉). Even if the two links belong to the

same type, i.e., γ3 == γ1, we still have f(〈1, 4〉) < f(〈4, 1〉).

The intuitive explanation is that it is less helpful for a neutral ob-

ject to decide an object’s expertise than for an expert object to

decide whether an object is neutral. Therefore, the asymmetric

criterion holds as well.

We then propose a log-linear model to model the probability of Θ
given the link type weights γ , where the probability of one config-

uration Θ is defined as the exponential of the summation of feature

functions of all the links in G:

p(Θ|G, γ) =
1

Z(γ)
exp{

∑

e=〈vi,vj〉∈E

f(θi, θj , e, γ)} (7)

where γ is the strength weight vector for all link types,

f(θi, θj , e,γ) is the feature function defined on links of

different types, and Z(γ) is the partition function that

makes the distribution function sum up to 1: Z(γ) =
∫

Θ
exp{

∑

e=〈vi,vj〉∈E f(θi, θj , e, γ)}dΘ. The partition function

Z(γ) is an integral over the space of all the configurations Θ, and

it is a function of γ .

3.4 The Unified Model
The overall goal of the network clustering problem is to deter-

mine the best clustering results Θ, the link type strengths γ and

the cluster component parameters β that maximize the generative

probability of attribute observations and the consistency with the

network structure, described by the likelihood function in Eq. (1).

Further, we add a Gaussian prior to γ as a regularization to avoid

overfitting, with the mean as 0, and the covariance matrix as σ2I ,

where σ is the standard deviation of each element in γ , and I is

the identity matrix. We set σ = 0.1 in our experiments, and more

complex strategy can be used to select σ according to labeled clus-

tering results, which will not be discussed here. The new objective

function is then:

g(Θ, β, γ) = log
∑

X∈X

p({v[X]}v∈VX
|Θ, β) + log p(Θ|G, γ) −

||γ||2

2σ2

(8)

In addition, we have the constraints that γ ≥ 0, and some con-

straints for β that are dependent on the attribute distribution type.

Also, p({v[X]}v∈VX |Θ, β) and p(Θ|G, γ) need to be replaced by

the specific formulas proposed above for concrete derivations.

4. THE CLUSTERING ALGORITHM
This section presents a clustering algorithm that computes the

proposed probabilistic clustering model. Intuitively, we begin with

the assumption that all the types of links play an equally important

role in the clustering process, then update the strength for each type

according to the average consistency of links of that type with the

current clustering results, and finally achieve a good clustering as

well as a reasonable strength vector for link types. It is an iter-

ative algorithm containing two steps in that clustering results and

strengths of link types mutually enhance each other, which maxi-

mizes the objective function of Eq. (8) alternatively.

In the first step, we fix the link type weights γ to the best value

γ∗, determined in the last iteration, then the problem becomes that



of determining the best clustering results Θ and the attribute pa-

rameters β for each cluster component. We refer to this step as the

cluster optimization step: [Θ∗, β∗] = arg max
Θ,β

g(Θ,β, γ∗).

In the second step, we fix the clustering configuration parameters

Θ = Θ∗ and β = β∗, corresponding to the values determined in

the last step, and use it to determine the best value of γ , which is

consistent with current clustering results. We refer to this step as

the link type strength learning step: γ∗ = arg max
γ≥0

g(Θ∗, β∗, γ).

The two steps are repeated until convergence is achieved.

4.1 Cluster Optimization
In the cluster optimization step, each object has the link informa-

tion from different types of neighbors, where the strength of each

type of link is given, as well as the possible attribute observations.

The goal is to utilize both link and attribute information to get the

best clustering for all the objects. Since γ is fixed in this step, the

partition function and regularizer term become constants, and can

be discarded for optimization purposes. Therefore, we can con-

struct a simplified objective function g1(·, ·), which depends only

on Θ and β:

g1(Θ, β) =
∑

e=〈vi,vj〉

f(θi, θj , e, γ) +
∑

v∈VX

∑

x∈v[X]

log

K
∑

k=1

θv,kp(x|βk)

(9)

We derived an EM-based algorithm [9, 4] to solve Eq. (9). In

the E-step, the probability of each observation x for each object v
and each attribute X belonging to each cluster, usually called the

hidden cluster label of the observation, zv,x, is derived according

to the current parameters Θ and β. In the M-step, the parameters

Θ and β are updated according to the new membership for all the

observations in the E-step. The iterative formulas for single text

attribute, single Gaussian attribute, and two Gaussian attributes are

provided below.

1. Single Categorical text attribute: Let zv,l denote the hidden

cluster label for the lth term in the vocabulary for object v, Θt−1

be the value of Θ at iteration t − 1, and βt−1 be the value of β at

iteration t − 1. 1{v∈VX} is the indicator function, which is 1 if v
contains this attribute, otherwise 0. Then, we have:

p(zt
v,l = k|Θt−1

, β
t−1) ∝ θ

t−1
v,k β

t−1
k,l

θ
t
v,k ∝

∑

e=〈v,u〉

γ(φ(e))w(e)θt−1
u,k + 1{v∈VX}

m
∑

l=1

cv,lp(zt
v,l = k|Θt−1

, β
t−1)

β
t
k,l ∝

∑

v∈VX

cv,lp(z
t
v,l = k|Θ

t−1
, β

t−1
)

(10)

2. Single Gaussian numerical attribute: Let zv,x denote the hid-

den cluster label for the observation x for object v, Θt be the value

of Θ at iteration t, and µt
k and σt

k be the values of mean and stan-

dard deviation for kth cluster at iteration t. 1{v∈VX} is the indicator

function, which is 1 if v contains this attribute, otherwise 0. Then,

we have:

p(zt
v,x = k|Θt−1

, β
t−1) ∝ θ

t−1
v,k

1
√

2π(σt−1
k

)2
e

−
(x−µ

t−1
k

)2

2(σ
t−1
k

)2

θ
t
v,k ∝

∑

e=〈v,u〉

γ(φ(e))w(e)θt−1
u,k + 1{v∈VX}

∑

x∈v[X]

p(zt
v,x = k|Θt−1

, β
t−1)

µ
t
k =

∑

v∈VX

∑

x∈v[X] xp(zt
v,x = k|Θt−1, βt−1)

∑

v∈VX

∑

x∈v[X] p(zt
v,x = k|Θt−1, βt−1)

(σ2
k)t =

∑

v∈VX

∑

x∈v[X](x − µt
k)2p(zt

v,x = k|Θt−1, βt−1)
∑

v∈VX

∑

x∈v[X] p(zt
v,x = k|Θt−1, βt−1)

(11)

3. Two Gaussian numerical attributes: Let X, Y be two at-

tributes following Gaussian distributions, zv,x, zv,y denote the hid-

den cluster labels of the observation x for attribute X and the ob-

servation y for attribute Y respectively for object v, Θt be the value

of Θ at iteration t, and µt
X,k, µt

Y,k and σt
X,k, σt

Y,k be the values of

mean and standard deviation for kth cluster of attribute X and Y
at iteration t. 1{v∈VX} and 1{v∈VY } are the indicator functions,

which are 1 if v contains X or Y , otherwise 0. Then, we have:

p(zt
v,x = k|Θt−1

, β
t−1) ∝ θ

t−1
v,k

1
√

2π(σt−1
X,k

)2
e

−
(x−µ

t−1
X,k

)2

2(σ
t−1
X,k

)2

p(zt
v,y = k|Θt−1

, β
t−1) ∝ θ

t−1
v,k

1
√

2π(σt−1
Y,k

)2
e

−
(y−µ

t−1
Y,k

)2

2(σ
t−1
Y,k

)2

θ
t
v,k ∝

∑

e=〈v,u〉

γ(φ(e))w(e)θt−1
u,k + 1{v∈VX}

∑

x∈v[X]

p(zt
v,x = k|Θt−1

,

β
t−1) + 1{v∈VY }

∑

y∈v[Y ]

p(zt
v,y = k|Θt−1

, β
t−1)

µ
t
X,k =

∑

v∈VX

∑

x∈v[X] xp(zt
v,x = k|Θt−1, βt−1)

∑

v∈VX

∑

x∈v[X] p(zt
v,x = k|Θt−1, βt−1)

(σ2
X,k)t =

∑

v∈VX

∑

x∈v[X](x − µt
X,k)2p(zt

v,x = k|Θt−1, βt−1)
∑

v∈VX

∑

x∈v[X] p(zt
v,x = k|Θt−1, βt−1)

µ
t
Y,k =

∑

v∈VY

∑

y∈v[Y ] yp(zt
v,y = k|Θt−1, βt−1)

∑

v∈VY

∑

y∈v[Y ] p(zt
v,y = k|Θt−1, βt−1)

(σ2
Y,k)t =

∑

v∈VY

∑

y∈v[Y ](y − µt
Y,k)2p(zt

v,y = k|Θt−1, βt−1)
∑

v∈VY

∑

y∈v[Y ] p(zt
v,y = k|Θt−1, βt−1)

(12)

A more detailed derivation of the EM algorithm is provided for

single text attribute in Appendix A, which is similar for single or

multiple Gaussian numerical attributes.

From the update rules, we can see that the value of the member-

ship probability for an object is dependent on its neighbors’ mem-

berships, the strength of the link types, the weight of the links, and

the attribute associated with it (if any). When an object contains

no attributes in the specified set, or contains no observations for the

specified attributes, the cluster membership is totally determined

by its linked objects, which is a weighted average of their cluster

memberships and the weight is determined by both the weight of

the link and the weight of the link type. When an object contains

some observations of the specified attributes, its cluster member-

ship is determined by both its neighbors and these observations for

each possible attribute.

4.2 Link Type Strength Learning
The link type strength learning step is to find the best strength

weight for each type of links that makes the current clustering re-

sult to be generated with the highest probability. By doing so, the

low quality link types that connect objects not so similar will be

punished and assigned with low strength weights; while the high

quality link types will be assigned with high strength weights.

Since the values of Θ and β are fixed in this step, the only rel-

evant parts of the objective function (for optimization purposes)

are those which depend on γ . These are the structural consistency

modeling part and the regularizer over γ . Therefore, we can con-

struct the following simplified objective function g2(·) as a function

of γ:

g2(γ) =
∑

e=〈vi,vj〉

f(θi, θj , e, γ) − log Z(γ) −
||γ||2

2σ2
(13)

In addition, we have the linear constraints as γ ≥ 0.



However, g2 is difficult to be optimized directly, since the parti-

tion function Z(γ) is an integral over the entire space of valid val-

ues of Θ, which is intractable. Instead, we construct an alternate

approximate objective function g′2, which factorizes log p(Θ|G)
as the sum of log p(θi|θ−i, G), namely the pseudo-log-likelihood,

where p(θi|θ−i, G) is the conditional probability of θi given the

remaining objects’ clustering configurations, which turns out to be

dependent only on its neighbors. The intuition of using pseudo-

log-likelihood to approximate the real log-likelihood is that, if the

probability of generating the clustering configuration for each ob-

ject conditional on its neighbors is high, the probability of generat-

ing the whole clustering configuration should also be high. In other

words, if the local patches of a network are very consistent with the

clustering results, the consistency over the whole network should

also be high.

In particular, we choose each local patch of the network as an

object and all its out-link neighbors. In this case, every link is con-

sidered exactly once, and the newly designed objective function

g′
2(·) is as follows:

g
′
2(γ) =

|V |
∑

i=1

(

∑

e=〈vi,vj〉

f(θi, θj , e, γ) − log Zi(γ)
)

−
||γ||2

2σ2
(14)

where log Zi(γ) = log
∫

θi
e

∑

e=〈vi,vj〉 f(θi,θj ,e,γ)
dθi, the local

partition function for object vi, with the linear constraints γ ≥ 0.

As the joint distribution of Θ as well as the conditional distri-

bution of θi given its out-link neighbors are both belonging to ex-

ponential families, both g2 and g′
2 are concave functions of γ , and

the concavity of g′
2 is proved in Appendix B. Therefore, the maxi-

mum value is either achieved at the global maximum point or at the

boundary of constraints. The Newton-Raphson method is used to

solve the optimization problem. It needs to calculate the first and

second derivative of g′
2(γ) with respect to γ , which is non-trivial

in our case. We discuss the computation of these below.

By re-examining p(θi|{θj}∀e=〈vi,vj〉, G), the conditional prob-

ability for each object i given its out-link neighbors, we have:

p(θi|{θj}∀e=〈vi,vj〉, G) ∝

K
∏

k=1

θ

∑

e=〈vi,vj〉 γ(φ(e))w(e)θj,k

ik
(15)

It is easy to see that p(θi|{θj}∀e=〈vi,vj〉, G) is a Dirichlet distribu-

tion with parameters αik =
∑

e=〈vi,vj〉
γ(φ(e))w(e)θj,k + 1, for

k = 1 to K. Therefore, the local partition function for each object

i, Zi(γ), should be the constant B(αi) as in Dirichlet distribution,

where αi = (αi1, . . . , αiK) and B(αi) =
∏K

k=1 Γ(αik)

Γ(
∑

K
k=1

αik)
. Then the

first and second derivatives (∇g′
2 and Hg′

2) can be calculated now

as each Zi is a function of Gamma functions.

The first derivative (or gradient) of g′
2 is expressed as:

∇g
′
2(r) =

|V |
∑

i=1

(

∑

e=〈vi,vj〉

φ(e)=r

w(e)

K
∑

k=1

θjk log θik

−(
K

∑

k=1

ψ(αik)
∑

e=〈vi,vj〉

φ(e)=r

w(e)θjk − ψ(
K

∑

k=1

αik)
∑

e=〈vi,vj〉

φ(e)=r

w(e))
)

−
γ(r)

σ2

(16)

for every r ∈ R, where ψ(x) is the digamma function that is the

first derivative of log Γ(x), namely ψ(x) = Γ′(x)/Γ(x).

Input: Network G, Attribute X1, . . . , XT , cluster number K;
Output: Cluster membership Θ, Link type weights γ, attribute

component parameters β1, . . . , βT ;

Initialization for γ0;
repeat

%Step 1: Optimization of Θt given γt−1;
Initialize Θ′0, β′0;
repeat

1. for each object v, update p(zs
v,x = k|Θ′s−1, β′s−1) ;

2. for each object v, update θs
v,k ;

3. for each cluster k, update parameter for each attribute
Xi, β′

i,k
;

until reaches precision requirement for Θ′s;

Θt = Θ′s ;
βt = β′s

;
%Step 2: Optimization of γt given Θt;
γ′0 = γt−1 ;
repeat

1. γ′s = γ′s−1 − [Hg′2(γ
′s−1)]−1∇g′2(γ

′s−1);
2. ∀r ∈ R, if γ′(r)s < 0, set γ′(r)s = 0;

until reaches precision requirement for γ′s;

γt = γ′s
;

until reaches iteration number or precision requirement for γt;

Algorithm 1: The GenClus Algorithm.

The second derivative (or Hessian matrix) of g′2, can be ex-

pressed as:

Hg
′
2(r1, r2) =

n
∑

i=1

(

−

K
∑

k=1

ψ
′(αik)

∑

e=〈vi,vj〉

ψ(e)=r1

w(e)θjk

∑

e=〈vi,vj〉

ψ(e)=r2

w(e)θjk

+ψ
′
(

K
∑

k=1

αik)
∑

e=〈vi,vj〉

ψ(e)=r1

w(e)
∑

e=〈vi,vj〉

ψ(e)=r2

w(e)
)

−
1

σ2
1{r1=r2}

(17)

for every pair of relations r1, r2 ∈ R, where ψ′(x) is the first

derivative of ψ(x), and 1{r1=r2} is the indicator function, with the

value 1 if r1 = r2, and 0 otherwise.

Then, we can use the Newton-Raphson method to determine the

value of γ that maximizes g′
2 with the following iterative steps:

1. γt+1 = γt − [Hg′2(γ
t)]−1∇g′2(γ

t);

2. ∀r ∈ R, if γ(r)t+1 < 0, set γ(r)t+1 = 0.

4.3 Putting together: The GenClus Algorithm
We integrate the two steps discussed above to construct a

General Heterogeneous Network Clustering algorithm, GenClus,

as shown in Algorithm 1 in pseudo code.

The algorithm includes an outer iteration that updates Θ and γ

alternatively, and two inner iterations that optimize Θ using the

EM algorithm and optimize γ using the Newton-Raphson method

respectively. For the initialization of γ in the outer iteration, we

initialize it as an all-1 vector. This means that all the link types

in the network are initially considered equally important. For the

initialization of Θ′ in the inner iteration for optimizing Θ, we can

either (1) assign Θ′0 with random assignments, or (2) start with

several random seeds, run the EM algorithm for a few steps for

each random seed, and choose the one with the highest value of the

objective function g1 as the real starting point. The latter approach

will produce more stable results.

The time complexity for the EM algorithm in the first step is

O(t1(Kd1|V |+K|E|), where t1 is the number of iterations, d1 is

the average number of observations for each object, K is the num-

ber of clusters, |V | is the number of objects, and |E| is the number



of links in the network, which is linear to |V | for sparse networks.

The time complexity of the algorithm in the step of maximizing γ is

dependent on the time for calculating the first derivative and Hes-

sian matrix of g′
2(γ), and the matrix inversion involved Newton-

Raphson algorithm. This is O(K|E| + t2|R|2.376)), where K and

|E| are with the same meaning as before, t2 is the number of itera-

tions, and |R| is the number of relations in the network. In all, the

overall time complexity is O(t(t1(Kd1|V |+K|E|)+t2|R|2.376)),

where t is the number of outer iterations. In other words, for

each outer iteration, the time complexity is approximately linear in

the number of objects in the network when the network is sparse.

Therefore, the GenClus algorithm is quite scalable.

5. EXPERIMENTAL RESULTS
In this section, we examine the effectiveness and efficiency of

the clustering algorithm on several real and synthetic data sets.

5.1 Data Sets
Two real networks and one synthetic network are used in this

study. From the DBLP Four-area data set [23] [10], we extracted

two networks where the network structures are represented by dif-

ferent subsets of entities and their corresponding links. This data

set was extracted from 20 major conferences from the four areas

corresponding to database, data mining, machine learning, and in-

formation retrieval. It contains 14376 papers and 14475 authors,

corresponding to publications before 2008. Labels were associated

with a subset of the nodes, and specifically with 20 conferences,

100 papers, and 4236 authors into 4 areas. Besides the real net-

works, we also generated a synthetic weather sensor network. We

describe these networks below:

(a) DBLP Four-area AC Network. This network contains

two types of objects, authors (A) and conferences (C); and

three types of links depending upon publication behavior, namely

publish in(A, C) (abbr. as 〈A, C〉), published by(C,A) (abbr.

as 〈C,A〉), and coauthor(A, A) (abbr. as 〈A, A〉). The links are

associated with a weight corresponding to the number of papers

that an author has published in a conference, a conference is con-

tributed by an author, and the two authors have coauthored, respec-

tively. The author nodes and conference nodes contain text corre-

sponding to the text from the titles of all the papers they have ever

written or published.

(b) DBLP Four-area ACP Network. This network contains ob-

jects corresponding to authors (A), conferences (C) and papers

(P); and four types of links depending upon the publication be-

havior, namely write(A, P ) (abbr. as 〈A, P 〉), written by(P,A)
(abbr. as 〈P, A〉), publish(C, P ) (abbr. as 〈C, P 〉), and

published by(P,C) (abbr. as 〈P, C〉). In this case, the links have

binary weights, corresponding to presence or absence of the link.

Only papers contain text attributes, extracted from their titles.

(c) Weather Sensor Network. This network is synthetically gen-

erated, containing two types of objects: temperature (T) and pre-

cipitation (P) sensors, and four link types between any two types of

sensors denoting the kNN relationship: 〈T, T 〉, 〈T, P 〉, 〈P, T 〉, and

〈P, P 〉. The links are binary weighted according to their k-nearest

neighbors. The attributes associated with a sensor correspond to

either temperature or precipitation, depending on the type of the

sensor.

The weather sensor network is generated by assuming there are

K weather patterns, each of which is defined as a Gaussian distri-

bution over temperature and precipitation attributes with different

parameters. The links are built according to the k-nearest neighbors

relationship. The temperature and precipitation observations are

generated by sampling. The details of the sensor network generator

is introduced in Appendix C. We use the weather network genera-

tor to generate two sets of synthetic climate sensor networks, each

containing 4 clusters, and each sensor is linked to 5 nearest neigh-

bors for each type (10 in total). The first set of networks have at-

tribute means as (1, 1), (2, 2), (3, 3), (4, 4) for each cluster, and the

standard deviation for both attributes is set to 0.2. The correlation

between temperature and precipitation is 0. The second set of net-

works have attribute means as (1, 1), (−1, 1), (−1,−1), (1,−1)
for each cluster, with the same covariance matrix as the first set-

ting. Notice that Setting 2 is more difficult than Setting 1, in the

sense that the weather pattern can only be determined when we

know both the temperature and precipitation observations for each

location. The temperature sensors have soft cluster membership in

two neighboring clusters (less noisy); while precipitation sensors

have soft membership in three neighboring clusters (more noisy).

In each setting, we vary the number of sensors, by fixing the num-

ber of temperature sensors as 1000, and precipitation sensors as

250, 500, and 1000. For each setting, the number of observations

for each object may be 1, 5 or 20. In all, for each weather pattern

setting, we have 9 networks with different configurations.

5.2 Effectiveness Study
We use two measures for our effectiveness study. First, the la-

bels associated with the nodes in the data sets provide a natural

guidance in examining the coherence of the clusters. We use Nor-

malized Mutual Information (NMI) [21] to compare our clustering

result with the ground truth, which evaluates the similarity between

two partitions of the objects. Second, we use link prediction accu-

racy to test the clustering accuracy. The similarity between two

objects can be calculated by a similarity function defined on their

two membership vectors, such as cosine similarity. Clearly, a bet-

ter clustering quality leads to better computation of similarity (and

therefore the better accuracy of link prediction). For a certain type

of relation 〈A,B〉, we calculate the similarity scores between each

vA ∈ A and all the objects vB ∈ B, and compare the similarity-

based ranked list with the true ranked list determined by the link

weights between them. We use the measure Mean Average Preci-

sion (MAP) [27] to compare the two ranked links.

5.2.1 Clustering Accuracy Test

We choose clustering methods that can deal with both links and

attributes as our baselines. None of these baselines is capable of

leveraging different link types in terms of their differential im-

pact to the clustering process. Therefore, we set each link type

strength as 1 for these baselines. Second, we choose different base-

lines for clustering networks with text attributes and clustering net-

works with numerical attributes, since there is no unified clustering

method (other than our presented GenClus) that can address both

situations in the same framework.

For DBLP Four-area AC Network and DBLP Four-area ACP

Network that are with text attributes, we use NetPLSA [18] and

iTopicModel [22] as baselines, which aim at improving topic quali-

ties by using link information in homogeneous networks. We com-

pare GenClus with these baselines by assuming homogeneity of

links for the latter two algorithms. The number of iterations of Gen-

Clus is set to 10. Each algorithm is run for 20 times with random

initial settings. The mean and standard deviation of NMI of the

20 running results are shown for the DBLP AC Network and DBLP

ACP Network in Figs. 5 and 6 respectively. From the results, we

can see that GenClus is much more effective than iTopicModel and

NetPLSA in both networks, due to the ability of GenClus to learn

and leverage the strengths of different link types in the clustering

process. Furthermore, the standard deviation of NMI over differ-



ent runs is much lower for GenClus, which suggests that the algo-

rithm is more robust to the initial settings with the learned strength

weights for different link types.
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Figure 5: Clustering Accuracy Comparisons for AC Network
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Figure 6: Clustering Accuracy Comparisons for ACP Network

The AC Network is the easiest case among the three networks,

since it only contains one type of attribute (the text attribute), and

all object types contain this attribute, namely, the attribute is com-

plete for every object. The ACP network is a more difficult case,

because not every type of objects contains the text attributes. This

requires the clustering algorithm to be more robust to deal with ob-

jects with no attributes. From the results, we can see that GenClus

is more robust than NetPLSA, which outputs almost random pre-

dictions for authors for the ACP network. Although iTopicModel

performs better for objects of type C for the ACP network (see Fig.

6), GenClus still has an overall better performance. This is because

our objective function is defined over all the object types rather than

on a particular type.

We also examined the actual clusters obtained by the algorithm

on the DBLP AC network, and list the corresponding cluster mem-

berships for several well-known conferences and authors in Table

1, where the research area names are given afterwards according

to the clustering results. We can see that the clustering results of

GenClus are consistent with human intuition.

Object DB DM IR ML

SIGMOD 0.8577 0.0492 0.0482 0.0449
KDD 0.0786 0.6976 0.1212 0.1026
CIKM 0.2831 0.1370 0.4827 0.0971

Jennifer Widom 0.7396 0.0830 0.1061 0.0713
Jim Gray 0.8359 0.0656 0.0536 0.0449

Christos Faloutsos 0.4268 0.3055 0.1380 0.1296

Table 1: Case Studies of Cluster Membership Results

The synthetic weather sensor network is the most difficult case

among the three networks, as it has two types of attributes cor-

responding to different types of sensors. Furthermore, all sensor

nodes contain incomplete attributes. Existing algorithms cannot ad-

dress these issues well. We compare the clustering results of Gen-

Clus with two baselines, by comparing the cluster labels with max-

imum probabilities with the ground truth. In this case, we choose

the initial seed for GenClus as one of the tentative running results

with the highest objective function, and the iteration number is set
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Figure 7: Clustering Accuracy Comparisons for Setting 1
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Figure 8: Clustering Accuracy Comparisons for Setting 2

to 5. The first baseline is the k-means algorithm, and the second

is a spectral clustering method that combines the network struc-

ture and attribute similarity as a new similarity matrix. We use the

framework given in [20], which utilizes modularity objective func-

tion in the network part, but we replace the cosine similarity by

Euclidean distance in the attribute part as in [26] for better cluster-

ing results. As neither methods can handle the problem of incom-

plete attributes, we use interpolation to make each sensor have a

regular 2-dimensional attribute, by using the mean of all the obser-

vations of its neighbors and itself. For the spectral clustering-based

framework, we centralize the data by extracting the mean and then

normalize them by the standard deviation, in order to make the at-

tribute part comparable with the modularity part in the objective

function. Both parts are set to have equal weights.

The results are summarized in Figs. 7 and 8. It is evident that

GenClus exhibits superior performance over the two baselines in

most of the data sets (17 out of 18 cases). Furthermore, GenClus

can produce more stable clustering results compared with k-means,

which is very sensitive to the number of observations for each ob-

ject, especially for Setting 2. GenClus is also highly adaptive: no

need of any weight specification for combining the network and

attribute-contributions to the clustering process. This results in

greater stability for the GenClus algorithm. Another major ad-

vantage of GenClus (which is not immediately evident from the

presented results) is that we can directly utilize every observation

instead of the mean, whereas the baselines can only use a biased

mean value because of the interpolation process.

5.2.2 Link Prediction Accuracy Test

Next, the link prediction accuracy measured by MAP is com-

pared between GenClus and the baselines. For the AC network,

we select the link type 〈A,C〉 for prediction, namely, we want to

predict which conferences that an author is likely to publish in.

For the APC network, we select the link type 〈P, C〉 for predic-

tion, namely, we want to predict which conference that a paper is

published in. As the prediction is based on the similarity between

the two objects, say query object vi with clustering membership

θi and candidate object vj with clustering membership θj , three

similarity functions are used here: (1) cosine similarity denoted

as cos(θi, θj); (2) the negative of Euclidean distance denoted as

−||θi − θj ||; and (3) the negative of cross entropy denoted as

−H(θj , θi). The results are summarized in Tables 2 and 3.



NetPLSA iTopicModel GenClus

cos(θi, θj) 0.4351 0.5117 0.7627

−||θi − θj || 0.4312 0.5010 0.7539

−H(θj , θi) 0.4323 0.5088 0.7753

Table 2: Prediction Accuracy for A-C Relation in AC Network

NetPLSA iTopicModel GenClus

cos(θi, θj) 0.2762 0.4609 0.5170

−||θi − θj || 0.2759 0.4600 0.5142

−H(θj , θi) 0.2760 0.4683 0.5183

Table 3: Prediction Accuracy for P-C Relation in ACP Network

For the weather sensor network, we select the link type 〈T, P 〉,
namely, we want to predict the P-typed neighbors for the T-typed

sensors. We test the link prediction in the network with configura-

tion as in Setting 1, with #T = 1000 and #P = 250. We only

output the link prediction results for the GenClus algorithm, since

the other two baselines can only output hard clusters (exact cluster

memberships rather than probabilities). The results are shown in

Table 4.

cos(θi, θj) −||θi − θj || −H(θj , θi)

MAP 0.7285 0.7690 0.8073

Table 4: Prediction Accuracy for 〈T, P 〉 in Weather Network

From the results, it is evident that GenClus has the best link pre-

diction accuracy in terms of different similarity functions. Also, the

results show that the asymmetric function −H(θj , θi) provides the

best link prediction accuracy, especially for better clustering results

such as those obtained by GenClus and in the weather sensor net-

work where the out-link neighbors are different from the in-link

neighbors.

5.2.3 Analysis of Link Type Strength

Since the process of learning the semantic importance of re-

lations is important in a heterogeneous clustering approach, we

present the learned relation strengths in Fig. 9 for the two DBLP

four-area networks. From the figure, it is evident that in the AC

Network, the link type 〈A,C〉 has greater importance to the clus-

tering process than the link type 〈A,A〉, and thus is more important

in deciding an author’s membership. This is because the spectrum

of co-authors may often be quite broad, whereas their publication

frequency in each conference can be a more reliable predictor of

clustering behavior. For the ACP Network, we can see that the link

type 〈P, C〉 has the weight 3.13, whereas the link type 〈P, A〉 has a

much higher weight 13.30. This suggests that the latter link type is

more reliable in deciding the cluster for papers, since a conference

usually covers a broader spectrum than an author. For example, it

is difficult to judge the cluster for a paper if we only know that it is

published in the CIKM conference. The ability of our algorithm to

learn such important characteristics of different link types is one of

the reasons that it is superior to other competing methods.

For the weather sensor network, we summarize the link type

strengths for the three networks with different network sizes that

contain 5 observations for each sensor using the configuration of

Setting 1, in Table 5. It is evident that GenClus correctly detects:

(1) the P-typed sensors cannot be trusted as much as the other ones

when P-typed sensors are very sparse, due to their farther distance

and less similarity to other objects (the strengths of 〈T, P 〉 and

〈P, P 〉 relations decrease as #P decreases); and (2) for both types
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Figure 9: Strength for Link Types in Two Four-area Networks

of sensors, T-typed neighbors are more trustable than P-typed ones,

due to the higher quality of T-typed data in the network setting.

〈T, T 〉 〈T, P 〉 〈P, T 〉 〈P, P 〉

T:1000; P: 250 3.14 2.88 1.60 1.32
T:1000; P: 500 3.16 3.05 2.38 1.98
T:1000; P: 1000 3.14 3.03 3.34 2.78

Table 5: Link Type Strength for Weather Sensor Network in Setting 1

5.3 A Typical Running Case
One of the core ideas of this paper is to enable a mutual learning

process between the importance of link types for clustering and the

actual clustering results. In this section, we provide some detailed

results at different iterations of the algorithm, which suggests that

such a mutual learning process does occur. In particular, a typical

running case for the AC Network is illustrated in Fig. 10. Fig.

10(a) shows how the clustering accuracy progresses along with the

changes in the importance of different link types. Fig. 10(b) shows

how the strength weights change along with the clustering results at

different iterations and finally converge to the correct values. Note

that, we plotted the initial value γ at iteration 0 in Fig. 10(b), which

is an all-one value.
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Figure 10: A Running Case on AC Network: Iterations 1 to 10

5.4 Efficiency Study
To examine the efficiency of our algorithm, we illustrate the ex-

ecution time of each inner iteration for the EM algorithm, which

is the bottleneck component for the overall time complexity. The

results are presented for the weather sensor network with different

sizes and different numbers of observations for both pattern genera-

tor settings. The results are illustrated in Fig. 11, and are consistent

with our observations in the complexity section about the scalabil-

ity with the number of objects.

One observation is that the EM approach is very easy to par-

allelize, which is the major component for GenClus. We tested

the parallel version of the EM algorithm with the use of 4 paral-

lel threads (each running on a 2.13 GHz processor), and it turned

out that the execution time is improved by a factor of 3.19. This

suggests that the approach is highly parallelizable.
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6. RELATED WORK
Clustering is a classical problem in data analysis, and has been

studied extensively in the context of multi-dimensional data [13].

Most of these algorithms are attribute based, in which the data cor-

responds to a multi-dimensional format, and does not contain links.

A number of clustering methods [5, 14, 6, 7] have been proposed

on the basis of network structure only, mainly in the context of the

community detection problem [2, 15, 8]. A recent piece of work

extends the network clustering problem to the heterogeneous sce-

nario [23]. However, this latter method [23] is designed for a spe-

cific kind of network structure, referred as the star network schema,

and is not applicable to networks of general structure. Furthermore,

it cannot be easily integrated with attribute information.

Recently, some studies [3, 20, 18, 25] have shown that by con-

sidering the link constraints in addition to the attributes, the cluster-

ing accuracy can be enhanced. However, most of these algorithms

require that the network links, objects and their attributes are all

homogeneous. A recent clustering method [28] integrates the net-

work clustering process with categorical attributes by considering

the latter as augmented objects, but the same methodology cannot

be applied to numerical values. Some other algorithms [20] can

cluster objects with numerical attributes by combining the network

clustering objective function with a numerical clustering objective

function, but it is difficult to decide the weight to combine them,

and cannot deal with the incomplete attributes properly. [16] pro-

vides a framework for clustering objects in relational networks with

attributes. However, they studied a different clustering problem by

clustering objects from different types separately, and did not study

the interplay of importance of different link types and the clustering

results. Probabilistic relational models, such as [24], provide a way

to model a rational database containing both attributes and links,

but do not consider the scenario studied in this paper that cluster-

ing purposes could be different according to the specified attributes.

Also, they cannot handle the problem of incomplete attributes due

to the discriminative nature of their methods.

There are several different philosophies on using the link infor-

mation in addition to attributes to help the clustering in networks.

First, in [20, 28], links are viewed to provide another angle of sim-

ilarity measure between objects besides the attribute-based similar-

ity measure, and the final clustering results are generated by com-

bining the two angles. Second, In relational clustering [16] and

probabilistic relational models [24], every link is treated as equally

important and the probability of a link appearance is modeled ex-

plicitly according to the cluster memberships of the two objects of

the link, in a way of building mixture of block models [1]. Third,

in [18, 22], links are considered to provide additional information

about the similarity between objects that are consistent with the at-

tributes, and the final clustering result is a more smoothing version

compared with the one merely using attributes. However, none of

these views is able to model the fact that different relations should

have different importance in determining the clustering process for

a certain purpose. Our philosophy in modeling link consistency is

more similar to the third line, that is, two objects linking together

indicates a higher chance that they have similar cluster member-

ships. Moreover, we further associate each type of links with a

different importance weight in measuring the consistency under

a given clustering purpose, and thus each type of relation carries

different strengths in passing the cluster membership between the

linked objects.

7. CONCLUSIONS
We propose GenClus, the first approach to cluster general hetero-

geneous information networks with different link types and differ-

ent attribute types, such as numerical or text attributes, with guid-

ance from a specified subset of the attributes. Our algorithm is

designed to seamlessly work in the case when some of the nodes

may not have the complete attribute information. One key observa-

tion of the work is that heterogeneous network clustering provides a

tremendous challenge because different types of links may present

different levels of semantic importance to the clustering process.

The importance of different semantic link types is learned in order

to enable an effective clustering algorithm that meets a user’s de-

mand. We present experimental results which show the advantages

of the approach over competing methods, including a number of

interesting case studies and a study of the algorithm efficiency.
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APPENDIX

A. EM ALGORITHM PROOF
In the E-step of tth iteration, the Q function, namely, the ex-

pected value of g1 under the conditional distribution of hidden vari-

ables Zt with the meaning of cluster labels, given the observations

{v[X]} and current parameters Θt−1, βt−1, is:

Q =E
Zt|{v[X]}v∈VX

,Θt−1,βt−1 (g1(Θ, β, Z
t))

=
∑

Zt

p(Zt|{v[X]}v∈VX
, Θt−1

, β
t−1)g1(Θ, β, Z

t)

where the link feature function f and mixture model function in

g1(Θ,β, Zt), the complete likelihood function of g1(Θ, β), can

be expanded by substituting with Eqs. (6) and (3) in Eq. (9):

g1(Θ, β, Z
t)

=
∑

e=〈v,u〉

γ(φ(e))w(e)

K
∑

k=1

θu,k log θv,k +
∑

v∈VX

m
∑

l=1

cv,l(log θv,zβz,l)

Since the feature function f (contained in the first part of g1) does

not involve the observations of attributes and thus contains no hid-

den cluster label for each observation, the conditional expectation

under Zt of f is just f itself. Therefore, the Q function is then:

Q =
∑

e=〈v,u〉

γ(φ(e))w(e)

K
∑

k=1

θu,k log θv,k

+
∑

v∈VX

K
∑

k=1

m
∑

l=1

cv,l(log θv,kβk,l)p(z
t
v,l = k|Θ

t−1
, β

t−1
)

where the conditional probability for the hidden cluster label for

object v can be evaluated by: p(zt
v,l = k|Θt−1, βt−1) ∝ θt−1

v,k
βt−1

k,l
.

In the M-step, new values for parameters Θt and βt are achieved

by maximizing the Q function, with the help of introducing La-

grangian multipliers. First, the parameter θt
v for each object v is

maximized, by fixing the value of other parameters evaluated at

step t − 1, namely, {θ(t−1)
u }u 	=v and βt−1, with the following up-

dating rule for k = 1 to K:

θ
t
v,k ∝

∑

e=〈v,u〉

γ(φ(e))w(e)θt−1
u,k + 1{v∈VX}

m
∑

l=1

cv,lp(zt
v,l = k|Θt−1

, β
t−1)

where 1{v∈VX} is the indicator function, which equals to 1 if v
contains the attribute X, otherwise 0.

Then the parameter βt
k is evaluated by fixing Θ = Θt for

each cluster k, using the following updating rule for l = 1 to m:

βt
k,l ∝

∑

v∈VX
cv,lp(zt

v,l = k|Θt−1, βt−1).

B. CONCAVITY PROOF

THEOREM 1. g′
2(γ) defined in Eq. (14) is a concave function.

PROOF. To show g′
2 is a concave function, we only need to show

Hg′
2(γ) is a negative definite matrix, the (i, j) element of which is

∂g′
2(γ)

∂γ(ri)∂γ(rj)
=

|V |
∑

v=1

−
1

Zv(γ)

∂Zv(γ)

∂γ(ri)∂γ(rj)
−

1

σ2
1{ri=rj}

where Zv(γ) is the normalization function for p(θv|θ−v). Since

each conditional distribution for θv belongs to the exponential fam-

ily with parameters γ , then
∂Zv(γ)

∂γ(ri)∂γ(rj)
= covv(γ(ri), γ(rj)),

which is the covariance between γ(ri) and γ(rj). In all,

H(g′
2)((γ)) =

∑|V |
v=1 −

1
Zv(γ)

covv − 1
σ2 I. Since for each object

v, the corresponding covariance matrix covv is positive semidef-

inite, and the diagonal matrix denoted by 1
σ2 I is positive definite,

then their linear combination with negative weights are negative

definite.

C. SYNTHETIC WEATHER NETWORK

GENERATOR
We now describe the weather sensor network generator. Assum-

ing there are K weather patterns, each of which is defined as a

Gaussian distribution over temperature and precipitation attributes

with different parameters. A weather sensor network is built by

considering the sensors as the objects in the network, links denot-

ing the k-nearest neighbors relationship, and temperature and pre-

cipitation as attributes. Each sensor is a mixture model of different

weather patterns, and nearby sensors have similar pattern coeffi-

cients. Each sensor may have multiple observations, obtained at

different times. The following specific steps and input parameters

are required to enable the generation of the weather sensor network:

• Network size. The number of temperature sensors is denoted

by #T , the number of precipitation sensors by #P , and the

number of nearest neighbors required for link construction by

k. These are input parameters to the generation process.

• Network structure. For each sensor, we randomly assign its

location within a unit circle from the central point. An out-

link exists between sensors i and j, if j is one of the k nearest

neighbors (of the particular type corresponding to j) from i.

• Weather pattern. Let K be the number of clusters (weather

patterns). Each such pattern is specified with a mean and co-

variance matrix over temperature and precipitation. The cir-

cle is then partitioned equally into K rings, on the basis of

distance from the central point.

• Cluster membership. The cluster membership for each sensor

is determined by their reciprocal of the distance to the center

for each weather region.

• Attribute observations. The number of observations is reg-

ulated by the user-specified input parameter #obs. The at-

tribute values at each sensor are generated according to the

mixture model with the coefficients specified in its cluster

membership.


