
Edge Classification in Networks

Charu Aggarwal
IBM Watson Research Center

Yorktown Heights, New York 10598
charu@us.ibm.com

Gewen He
Florida State University

Tallahassee, Florida 32306
he@cs.fsu.edu

Peixiang Zhao
Florida State University

Tallahassee, Florida 32306
zhao@cs.fsu.edu

Abstract—We consider in this paper the edge classification
problem in networks, which is defined as follows. Given a graph-
structured network G(N,A), where N is a set of vertices and
A ⊆ N ×N is a set of edges, in which a subset Al ⊆ A of edges
are properly labeled a priori, determine for those edges in Au =
A\Al the edge labels which are unknown. The edge classification
problem has numerous applications in graph mining and social
network analysis, such as relationship discovery, categorization,
and recommendation. Although the vertex classification problem
has been well known and extensively explored in networks, edge
classification is relatively unknown and in an urgent need for
careful studies. In this paper, we present a series of efficient,
neighborhood-based algorithms to perform edge classification in
networks. To make the proposed algorithms scalable in large-
scale networks, which can be either disk-resident or stream-
like, we further devise efficient, cost-effective probabilistic edge
classification methods without a significant compromise to the
classification accuracy. We carry out experimental studies in
a series of real-world networks, and the experimental results
demonstrate both the effectiveness and efficiency of the proposed
methods for edge classification in large networks.

I. INTRODUCTION

Graph and network mining algorithms have become increas-

ingly popular in recent years because of their relevance to

many applications in biological, communication, and social

network analysis [1], [2]. Due in particular to the relative

complexity of graph-shaped data, many graph and network

mining problems can be formulated in a larger number of

ways than other types of data. Likewise, most classical data

mining problems such as clustering, classification, and outlier

detection can be reformulated in the context of graphs and

networked data as well [3], [4], [5]. The primary reason is the

inherent complexity in the graph and network domains where

the structural relationships (edges) are introduced between

entities (vertices) [6], [7].

Consider the problem of graph classification as an example,

which is generally understood as that of labeling vertices of

graphs or networks. Specifically, given a graph G(N,A) in

which a subset N ′ ⊆ N of vertices have been labeled properly,

the labels of the remaining vertices in N \N ′ can be inferred

using a collective classification model [8]. Although much

work in the literature has been devoted to the problem of vertex

classification [4], [9], [10], [11], little effort has been taken on

the problem of edge classification in graphs and networks.

In the edge classification problem, a subset of the edges in

the graph have been affiliated with discrete labels, and it is

desired to use these labels in order to infer the labels of edges

where they are unspecified. In some cases, the class labels

may be even numeric or continuous values. This immediately

corresponds to the edge regression problem in networks. In

this paper, we will discuss both variants for edge labeling in

large-scale networked data.

The edge classification problem has numerous applications

in a wide array of network-centric scenarios:

1) A social network may contain relationships of various

types such as friends, families, or even rivals [12], [13],

[14]. A subset of the edges may be labeled with the

relevant relationships. It is desired to use the labeled

edges to determine the labels on the subset of edges

where they are unknown. The determination of such

relationships can be useful for making targeted recom-

mendations [15], [16];

2) An adversarial or terrorist network may contain un-

known relationships between its participants although

a subset of the relationships have been known al-

ready [17]. The relationships may correspond to various

types of organizational characteristics of the network.

The labeled relationships on the edges can thus be used

to infer the labels of the edges where they are unknown

in order to identify and circumvent large-scale outbreaks

of cyber-attacks and crime [18];

3) In some cases, the edges may have numerical quan-

tities associated with them corresponding to strengths

of relationships, specification of ratings, likes, or dis-

likes [19], [20]. They can be further used to infer the

numerical values on edges where such numeric strengths

are unknown a priori. This variation is closed related

to the regression modeling. Note that the problem of

collaborative filtering is a special case of this scenario in

which a user-item graph is constructed from the ratings

matrix [8], [21]. Our formulation of edge regression,

however, is even more general, where the relationship

between various vertices can be of any type, rather than

simply in the form of user-item relationships.

The problem of edge classification is generally harder

than that of vertex classification. This is because vertex

classification methods are primarily based on the notion of

homophily [6], [7], which models the fact that similar vertices

belonging to the same category tend to be connected within

networks. However, it is generally much more difficult to apply

the homophily principle and various implementations of the

structural similarity for structurally close edges. For example,

consider a network where edges may correspond to different

relationships, such as family, friends, and colleagues. Similar

vertices within the same category will have relationships of

different types and therefore, notions of structural similarity
need to be defined more carefully in this case. In this paper, we

reexamine the notion of structural similarity in order to learn a

neighborhood based model between structural characteristics

of the network and the labels of edges. We design exact,

k-nearest neighbor based edge classification methods with

both unweighted and weighted variations that can work in

either fully labeled or partially labeled networks. In order

to enable scalable edge classification in large-scale, dynamic

networks, We further design efficient and cost-effective prob-

abilistic classification methods that can be employed in disk-

resident graphs or graph streams [22], [23]. We benchmark

our edge classification methods in a series of real-world, fully

or partially labeled networks, and the experimental results

demonstrate that the proposed methods can achieve high-

quality edge labeling results without a compromise on the

efficiency and cost for edge classification, especially in large

networks that are either disk-resident or stream-like.

The main contributions of this paper is summarized as

follows,

1) We formulate the edge classification problem and the

edge regression problem in graph-structured networks.

To the best of our knowledge, this is the first work to

consider classifying edges of graphs in a general way;

2) We propose a structural similarity model for edge clas-

sification. A series of edge classification methods are

designed for fully labeled and partially labeled networks

with the weighted Jaccard coefficient as the underlying

structural proximity metric;

3) In order to support edge classification in large-scale

networks that are either disk-resident or stream-like, we

devise probabilistic, min-hash based edge classification

algorithms that are efficient and cost-effective without

comprising the classification accuracy significantly;

4) We carry out extensive experimental studies in different

real-world networks, and the experimental results verify

the efficiency and accuracy of our edge classification

techniques.

This paper is organized as follows. The remainder of this

section introduces the related work. Section II details the

edge classification model and a straightforward algorithm

to perform the edge classification. We also show how this

approach can be extended for the edge regression modeling.

In section III, we present how to make the edge classification

approach more efficient for large-scale networks. The exper-

imental studies and main results are reported and discussed

in section IV. Finally, the conclusions are summarized in

section V.

A. Related Work

The problem of vertex classification has been studied in

the social network and graph mining literature, and especially

for relational data in the context of label or belief propaga-
tion [24], [25], [26]. A detailed survey of such methods can be

found in [27]. These propagation based techniques can also be

used as a tool for semi-supervised learning with both labeled

and unlabeled examples [28]. A method that used link-based

similarity for vertex classification has been proposed [29].

Recently, similar techniques were used in the context of blogs

as well [30]. Another work [31] discussed the problem of

label acquisition in the context of collective classification. Note

that this is an important problem because such basic labels

are necessary information for vertex classification. A method

to perform collective classification for email speech acts has

been proposed in [32]. It has been shown that the analysis

of relational aspects of emails (such as emails in a particular

thread) significantly improves the classification accuracy. It has

also been shown in [33], [34] that the use of graph structures

during categorization can improve the classification accuracy

of web pages. It is worth noting that all these existing methods

are designed for the problem of vertex classification, whereas

our goal is to study the problem of edge classification, which is

significantly more difficult because the straightforward notion

of vertex-wise homophily cannot be directly applied for edge

classification in networks.

A number of recent methods have discussed the inference

of ties in different network applications by leveraging the

domain-specific characteristics of graph-structured data. In

social networks, link prediction methods for the signs of

edges, such as friends or enemies, trust or distrust, have

been proposed [35], [36], [37], [38]. These methods are

primarily based on the behavior relation interplay (BRI) model

that leverages behavioral evidence within social networks to

infer social interactions and exploits learned relations to tie

users’s behavior. The work in [39] has studied the problem of

mining advisor-advisee relationships in a research publication

network. However, this approach is completely unsupervised,

and relies primarily on the domain-specific characteristics

of the networks for inference. Similarly, the work in [40]

tried to infer relationships in an email network by using the

behavioral characteristics of the end-user interactions. Finally,

the work in [41] adopted a partially supervised approach

to inferring edge types, although it still relied on domain-

specific data available in the attributes and correlation factors

of networks. Note that these factors need to be instantiated in a

domain-specific way for a particular network, and they require

domain-specific insight of the network or relationships at hand.

As a result, these methods cannot exactly solve the edge

classification problem as discussed in this paper, since they are

designed under different, more specialized, assumptions. Our

edge classification model, however, is quite general, and thus

can work within any arbitrary network in a variety of settings

without specific assumptions about the problem domains or

characteristics of graphs.

II. THE EDGE CLASSIFICATION MODEL

In the following, we will provide a formal model for

edge classification in networks. We assume that we have an

undirected network G = (N,A), where N denotes the set of

vertices, A denotes the set of edges, and n = |N |, m = |A|. A

subset of edges in A, denoted by Al, are associated with edge

labels. The label of the edge (u, v) is denoted by luv . The re-

maining subset of unlabeled edges is denoted by Au = A\Al.

For ease in notation, we will assume binary edge labels drawn

from {−1, 1}, though our proposed model and algorithms can

be generalized in a straightforward way to address the k-

way edge classification problem by applying the standard one-

against-one or one-against-all procedures [42]. Furthermore,

while we consider the edge classification problem for the case

of undirected networks, the proposed approaches can easily be

generalized to directed networks as well.

To this end, the edge classification problem can be formally

defined as follows.

Definition 1 (Edge Classification). Given an undirected
network G = (N,A), and a set Al ⊆ A of labeled edges,
where each edge (u, v) ∈ Al has a binary label luv ∈ {−1, 1},
the edge classification problem is to determine the labels for
the edges in Au = A \Al.

In some scenarios, it is also possible for the edges in A to be

labeled with numeric quantities. As a result, edge classification

turns out to be the edge regression problem in networks,

defined as follows,

Definition 2 (Edge Regression). Consider an undirected
network G = (N,A), and a set Al ⊆ A of edges, each of
which is annotated by numerical labels, denoted by luv ∈ R.
The edge regression problem is to determine the numerical
labels for the edges in Au = A \Al.

In the sequel, we will discuss a neighborhood-based model

for edge classification with a series of exact solutions. Then,

we will extend the model and solutions for edge regression

in networks. We will also show how to make the edge

classification process more efficient and scalable on large-scale

networks with a use of a probabilistic approach.

A. Structural Similarity Model for Edge Classification

We will propose a structural similarity model for edge clas-

sification. This approach shares a number of similarities with

the nearest neighbor classification, except that the structural

similarity of one edge to another is much harder to define

in the context of a network. Consider an edge (u, v) ∈ Au,

which needs to be classified within the network G = (N,A).
In order to determine the edges which are similar to (u, v),
the following steps will be executed step-by-step:

1) The top-k most similar vertices to u, denoted by S(u) =
{u1 . . . uk}, are first determined based on a structural

similarity measure discussed slightly later. Note that u ∈
S(u) because u is considered the most similar vertex

to itself. This structural similarity measure will further

include the use of the class distribution of the top ranked

relevant vertices;

2) The top-k most similar vertices to v, denoted by S(v) =
{v1 . . . vk}, are determined based on the same structural

similarity measure as in the case of vertex u;

3) The set of edges in Al ∩ [S(u)×S(v)] are selected and

the dominant class label of these edges is assigned as

the relevant edge label for the edge (u, v).

Next, we describe how the most similar vertices to a given

vertex u ∈ N are determined in a network. Here the key step

is to define a pair-wise similarity function for vertices, and we

consider in this paper Jaccard coefficient for vertex-wise sim-

ilarity quantification. Jaccard coefficient (or Jaccard metric)

has been extensively used in many domains including natural

language processing [43] and web sciences [44]. In [45],

the authors introduced shingles and min-wise independent
permutations to sketch Jaccard coefficient for web documents.

[46] gave a way of sketching arbitrary non-negative vectors in

a way that preserves their weighted Jaccard metrics. In this

paper, we adopt the weighted Jaccard coefficient considering

the edges belonging only to the same edge label. Formally,

let I−(u) ⊆ N be the set of vertices incident on the vertex

u belonging to the edge label −1, and let I+(u) ⊆ N be the

set of vertices incident on u belonging to the edge label 1.

The Jaccard coefficient of vertices u and v, J+(u, v), on the

positive edges (bearing the edge label 1) is defined as follows:

J+(u, v) =
|I+(u) ∩ I+(v)|
|I+(u) ∪ I+(v)| (1)

The Jaccard coefficient always lies in the range (0, 1)
with higher values being more indicative of vertex similarity.

Furthermore, since the Jaccard coefficient J(u, u) of a vertex

u with itself is 1, the top-k most similar vertices to a given

vertex u always contain u itself. Note that if both u and v do

not have any positive edges, then the Jaccard coefficient is set

to 0 by default.

The Jaccard coefficient on the negative edges can be defined

in an analogous way, as follows:

J−(u, v) =
|I−(u) ∩ I−(v)|
|I−(u) ∪ I−(v)| (2)

As a result, the similarity between vertices u and v can be

defined by a weighted average of the values of J+(u, v) and

J−(u, v). What weights should be used for averaging these

two values? The most effective way to achieve this goal is

to use the fraction of vertices belonging to the two classes as

follows. The fraction of vertices incident on u belonging to the

edge label 1 is given by f+
u = |I+(u)|

|I+(u)|+|I−(u)| . Similarly, the

value of f−(u) is defined as (1−f+(u)). The average fraction

across both vertices is defined by f+(u, v) = (f+(u) +
f+(v))/2, and f−(u, v) = (f−(u) + f−(v))/2. It is easy

to verify that f+(u, v) + f−(u, v) = 1. Therefore, the overall

Jaccard similarity, J(u, v), of the vertices u and v is defined

by the weighted average between the corresponding similarity

values on the positive and negative edges, respectively:

J(u, v) = f+(u, v) · J+(u, v) + f−(u, v) · J−(u, v) (3)

This similarity function is the key to determining the classifi-

cation of unlabeled edges in networks.

An important variation of the edge classification process is

that all edges are not given an equal weight in the process

of determining the dominant edge label. Consider the labeled

edge (ur, vq), where ur ∈ S(u), and vq ∈ S(v). The weight of

the label of the edge (ur, vq) can be set to J(u, ur)×J(v, vq)
in order to ensure greater importance of edges, which are more

similar to the target vertices u and v. It is also interesting to

note that the above approach can easily be extended to the

k-way case by defining a separate Jaccard coefficient on a

class-wise basis, and then aggregating in a similar way, as

discussed above.

B. Handling Sparse Labelings

In real-world cases, the edges are often labeled rather

sparsely, which makes it extremely difficult to compute simi-

larities with only the labeled edges. In such cases, a separate

component of the similarity, J0(u, v), between vertices u and

v is considered only with unlabeled edges, just like J+(u, v)
and J−(u, v) which are the Jaccard coefficients with positive

and negative edges, respectively. Instead of using Equation 3 to

compute the integrated similarity value, the following formula

is used to accommodate unlabeled edges:

J(u, v) = f+(u, v)·J+(u, v)+f−(u, v)·J−(u, v)+μJ0(u, v)
(4)

Here, μ is a discount factor less than 1, which is used

to prevent excessive impact of the unlabeled edges on the

similarity computation. This approach can be viewed as a

variation of a semi-supervised approach, which is inherently

designed to handle sparsely labeled data.

C. Numerical Class Variables

The case of numerical class variables in edge regression

is similar to that of binary or categorical class variables in

edge classification, except that the vertex similarities and

the class averaging steps are computed differently in order

to account for the numerical class variables. In this case,

a simplified approach is adopted to compute the similarity

between vertices. Let I+(u) be the set of all vertices incident

on a particular vertex u, such that for each v ∈ I+(u),
the edge (u, v) has a numerical label whose value is greater

than the average of the labeled edges incident on u. The

remaining vertices incident on u, whose labeled edge values

are below the average, are put in another set, I−(u). This way,

the similarity values J+(u, v), J−(u, v), and J(u, v) can be

defined in an analogous way according to the previous binary

edge classification case. We remark that the only difference

in the similarity computation between the classification and

regression cases is in terms of how I+(u) and I−(u) are

defined and quantified.

In order to determine the numeric label of an edge (u, v), a

similar procedure is employed as in the previous case. The first

step is to determine the closest k vertices S(u) = {u1 . . . uk}
to u, and the closest k vertices {v1 . . . vk} to v with the use

of the aforementioned Jaccard similarity function. Then, the

numeric labels of the edges in Al∩[S(u)×S(v)] are averaged.

As in the case of edge classification, different edges can be

given different weights in the regression process. Consider the

labeled edge (ur, vq), where ur ∈ S(u), and vq ∈ S(v). The

weight of the label of edge (ur, vq) can be set to J(u, ur)×
J(v, vq) in order to ensure greater importance of edges, which

are more similar to the target vertices u and v.

III. EFFICIENT PROBABILISTIC ALGORITHMS

The main problem with the exact approaches discussed in

the previous section is that they work most efficiently when

the entire graph is memory-resident. However, when the graph

is very large and disk-resident, the computation of par-wise

vertex similarity is likely to be computationally expensive

because all the adjacent edges of different vertices need to

be accessed, thus resulting in a lot of random accesses to hard

disks. In many real-world dynamic cases, the graph where

edge classification is performed is no long static but evolving

in a fast speed, which, without loss of generality, is typically

modeled in the form of a graph stream [22], [47], [23]. In such

cases, the graph cannot even be materialized on disks and

it is impossible to examine the entire graph multiple times.

Therefore, a natural question arises, “how can the proposed
edge classification methods be implemented with only succinct,
memory-resident data structures in support of efficient edge
classification in large-scale networks that are either disk-
resident or stream-like?”

In order to achieve this goal, we will consider a proba-

bilistic, min-hash based approach [45], which can be applied

effectively for both disk-resident graphs and graph streams. In

this min-hash approach, the core idea is to associate a succinct

data structure, termed min-hash index, with each vertex, which

keeps track of the set of adjacent vertices. Specifically, the

positive, negative, and unlabeled edges (and their incident

adjacent vertices) of a given vertex are handled separately in

different min-hash indexes. Note that the min-hash indexes

for the unlabeled edges need to be maintained only in the

case where they are used in the augmented similarity function

of Equation 4. Otherwise, it is sufficient to maintain the min-

hash indexes for only the positively and negatively labeled

edges. Henceforth, we will assume each edge is in the form

〈u, v, luv〉. For unlabeled edges, the value of luv is set to ‘?’.

As a result, in the binary class scenario, the value of luv can

be +1, −1, or ‘?’.

In this probabilistic approach, we use d mutually inde-

pendent min-wise hash functions f1(·), . . . fd(·), which are

to create the min-hash index at each vertex of the network.

As we will see later, the value of d regulates the trade-off

between accuracy and storage efficiency. Each hash function

fr(·) (1 ≤ r ≤ d) takes as its argument a vertex identifier

and maps the identifier to a random value in (0, 1). The basic

idea of this min-hash approach is to implicitly create a sort

order among the vertices with the use of each hash function.

Because these d hash functions are independent of one another,

this creates as a result d different and mutually independent

sort-orders.

Now, let us examine a pair of vertices (u, v) and consider all

the vertices incident on u and v, respectively. For the purpose

of argument, let us focus only on edges corresponding to

the positive label (For edges with the negative label, similar

conclusions can be made). What is the probability that the

top-ranked vertices incident on u are the same as the top-

ranked vertices incident on v? This is equal to the probability

that a vertex in I+(u) ∩ I+(v) is top ranked from the set

I+(u)∪I+(v). This probability is exactly
|I+(u)∩I+(v)|
|I+(u)∪I+(v)| , which

is the same as the Jaccard coefficient J+(u, v) on the positive

edges. Therefore, by examining d mutually independent sort

orders and estimating the fraction of them in which the top-

ranked vertices are the same, one can estimate the Jaccard

coefficient similarity efficiently.

How do we estimate the fraction of matching vertices? For

the vertex pair (u, v) and a hash function fr(1 ≤ r ≤ d), we

determine the vertex ur ∈ I+(u) for which fr(ur) is with the

least value among all vertices of I+(u). In other words, we

have:

ur = argminw∈I+(u)fr(w) ∀r ∈ {1 . . . d} (5)

Therefore, ur is the r-th min-hash index among all the vertices

incident on u with a positive edge. The corresponding min-
hash value is fr(ur). Note that a min-hash index and min-hash

value pair (ur, fr(ur)) exists for each value of r ∈ {1 . . . d}.

Similarly, we can determine all the min-hash indices and min-

hash values for the vertex v:

vr = argminw∈I+(v)fr(w) ∀r ∈ {1 . . . d} (6)

Once the min-hash indices u1 . . . ud of the vertex u and

the min-hash indices v1 . . . vd of the vertex v have been

determined, the Jaccard coefficient J+(u, v) can be estimated

using the fraction of the d min-hash indexes for which ur and

vr are identical:

J+(u, v) ≈ Q+(u, v) =

∑d
r=1 δ(ur = vr)

d
(7)

Here δ(·) is an indicator function, which takes on the value of

1 when ur and vr are the same, and 0 otherwise. The values

of J−(u, v) and J0(u, v) can be computed in similar ways

using negative and unsupervised edges, respectively.

In the following description, we will assume edge classi-

fication is performed in the most challenging case where the

edges are received in the form of a graph stream, although

this probabilistic approach can also be applied to disk-resident

graphs. This is because the approach requires only one-pass

exploration of the graph, and thus can be used for either disk-

resident graphs or graphs streams. In either of these scenarios,

it is assumed that the edges of the graph are processed

sequentially, and the goal is to dynamically maintain the min-

hash structures for the incident vertices of positive, negative,

and unlabeled edges that stream in. Assume that the three

relevant min-hash data structures for the positive, negative

and unlabeled edges are denoted by M+, M−, and M0,

respectively. Each data structure contains a set of n · d pairs

of min-hash indexes and values, where n is the number of

vertices, and d is the number of min-wise hash functions.

Namely, there are d such pairs of min-hash indexes and values

maintained for each of the n vertices of the graph. In order

to dynamically maintain such min-hash data structures, the

updates are performed adaptively as edges stream in. For each

incoming edge of the form 〈u, v, luv〉, the following steps are

executed:

1) The label of the incoming edge is checked first. De-

pending on the incoming edge label, exactly one of

the min-hash structures corresponding to M+, M−,

or M0 is updated. For the purpose of description, we

consider the case where the incoming edge is a positive

edge (luv = +1). Namely, M+ needs be updated and

maintained dynamically, while updates for M− or M0

can be performed in an analogous way;

2) The values of f1(u) . . . fd(u) and f1(v) . . . fd(v) are

computed. For the r-th min-hash pair for the vertex

u, the min-hash value fr(v) at its incident vertex v is

retrieved. If fr(v) is less than any of the d min-hash

values stored for u, the pair (v, fr(v)) is inserted among

the top-d values of u. Similarly, if fr(u) is less than

any of the the d min-hash values stored for v, the pair

(u, fr(u)) is inserted among the top-d values of v;

3) The number of edges with each label are maintained

separately for each vertex. Therefore, depending on the

label luv of the incoming edge, the number of edges of

that type is incremented by 1 for each of the incident

vertices u and v. This meta-information is important to

facilitate the eventual computation of Equations 3 and 4.

Note that these operations are very simple and can be

executed in a straightforward way over the course of the graph

stream. Furthermore, for a graph with n vertices, this approach

requires O(n · d) space, where the parameter d is a constant

regulating the trade-off between accuracy and space-efficiency.

As we will see in Section IV, very accurate classification

results can be obtained with small values of d.
Next, we describe the process of classifying an unlabeled

edge (u, v) with the use of the min-hash index. The first

step is to determine the top-k closest vertices u1 . . . uk and

v1 . . . vk to u and v, respectively, with the use of the min-hash

index. The similarity over the positive edges is computed using

the portion M+ of the min-hash data structure according to

Equation 7. The similarity on the negative and unsupervised

edges can be computed using M0 and M−, respectively, in

an analogous way. The similarities over the various types of

edges can be combined using either Equation 3 or Equation 4,

depending on whether or not unlabeled links are used in the

similarity computation. After the vertices in S(u) and S(v)
have been determined, the dominant class labels of the edges

in Al ∩ [S(u) × S(v)] are identified accordingly. The main

technical problem here is that the edge set Al is no longer

explicitly maintained by the min-hash data structure. However,

for each vertex u, we do maintain the min-hash edges in M+,

M0 and M−, respectively. Among these labeled edges, we

determine the ones, which intersect with S(u)× S(v). In the

end, the dominant label among these edges is reported as the

relevant edge label of the edge (u, v). The main advantage

of the min-hash data structures is that they are compact,

space-efficient, and thus can be safely maintained in main

memory. As a result, both the updates to the min-hash data

structures and the whole edge classification process can be

performed efficiently based only on a series of memory-

resident operations.

The effectiveness of this probabilistic edge classification

approach is dependent on the accuracy of the similarity

computation, which are estimated with the use of the min-

hash data structures. Consider the similarity value J+(u, v),
which is computed using Equation 7. Note that this provides

only an approximate similarity computation between vertices.

Therefore, it is instructive to bound the accuracy of the

approximation in terms of the number d of min-wise hash

functions. Specifically, we can show and prove the following

bounds:

Lemma 1 (Lower Tail Bound). For any δ ∈ (0, 1), Equa-
tion 7 provides an approximate value Q+(u, v) of the Jaccard
coefficient, which lies outside a factor (1−δ) of the true value
J+(u, v) with the following probability:

Pr(Q+(u, v) < (1−δ) ·J+(u, v)) ≤ exp(−d ·J+(u, v) ·δ2/2) (8)

Proof: Equation 7 is replicated here as follows:

J+(u, v) ≈ Q+(u, v) =

∑d
r=1 δ(ur = vr)

d

d · J+(u, v) ≈ d ·Q+(u, v) =
d∑

r=1

δ(ur = vr)

The second summation is the sum of d i.i.d. Bernoulli vari-

ables. This particular form of the summation can be directly

used in conjunction with the Chernoff bound [48]. Note that

each element δ(ur = vr) in the aforementioned summation

is a Bernoulli random variable, which takes on the value of

1 with the probability J+(u, v). Therefore, we can directly

use the lower-tail Chernoff bound on the summation of these

elements. The application of the lower-tail Chernoff bound

results in the following condition:

Pr(d ·Q+(u, v) < (1− δ) · d · J+(u, v))

≤ exp(−d · J+(u, v) · δ2/2)
Namely,

Pr(Q+(u, v) < (1− δ) · J+(u, v)) ≤ exp(−d · J+(u, v) · δ2/2)

It is easy to see that this probabilistic lower bound tightens

with an increasing value of d. The probability of a given error

level reduces exponentially fast with an increasing number

of min-wise hash functions, d. Therefore, one can typically

obtain negligible probability values for a modest number of

hash functions. This reflects the trade-off between the space

requirement and the edge classification accuracy.

The aforementioned condition establishes the lower-tail

bound. One can obtain a similar upper-tail bound for small

values of δ, as follows.

Lemma 2 (Upper Tail Bound). For any δ ∈ (0, 2 · e − 1),
Equation 7 provides an approximate value Q+(u, v) of the
Jaccard coefficient, which lies outside a factor (1 + δ) of the
true value J+(u, v) with the following probability.

Pr(Q+(u, v) > (1+δ) ·J+(u, v)) ≤ exp(−d ·J+(u, v) ·δ2/4) (9)

Proof: The proof of this lemma is similar to that of

Lemma 1. As in the previous case, the expression d ·Q+(u, v)
can be expressed as a sum of d independent Bernoulli random

variables. In this case, the upper-tail Chernoff bound can be

used in order to obtain the desired result.

These theoretical results also hold for the value of J−(u, v).
As a result, the overall probabilistic similarity computation is

robust. This approach can be extended to numerical labels as

well. However, in the case of numerical labels, a simplification

is that similarities between vertices are computed using the

Jaccard coefficient on all the edges rather than separately

computing the Jaccard coefficient on the positive, negative,

and unlabeled edges, and then combining them. Such an

approach can provide a reasonable approximation in many

settings where numeric values are assigned upon edges of the

networks.

IV. EXPERIMENTAL RESULTS

In this section, we report our experimental studies to

demonstrate the effectiveness and efficiency of our proposed

edge classification methods in real-world networks. We will

consider a variety of effectiveness and efficiency metrics on

diverse networked data sets to show the broad applicability

of our methods. All our experiments were carried out on a

desktop PC with Intel Quad Core 3.20GHz CPU and 8GB

memory running Windows 7 operating system. All the meth-

ods, including both exact and their probabilistic counterparts,

were implemented in C++.

A. Datasets

We consider in our experimental studies four large-scale

online social networks where each edge of networks has

been properly labeled. The first three networks contain binary

edge labels1, while the fourth network contains multiple edge

labels2. The details of these networks are as follows,

1Datasets are available at http://snap.stanford.edu
2The dataset is available at http://socialcomputing.asu.edu/datasets/YouTube

1) Epinions is a popular product review website consisting

of users as vertices and user interactions, such as review

ratings, as edges. The binary label trust (represented as

1) or distrust (represented as 0) is attached to each edge

denoting if a user u trusts another user v or not. This

network comprises 119, 217 vertices and 841, 000 edges,

of which 85% have the edge label 1, and 80, 668 vertices

have at least one incident edges;

2) Slashdot is a news website with users as vertices and

friendship relations as edges. A user u may like another

user v’s comments so that there is an edge label 1 on

the edge (u, v). Otherwise, the edge label is 0. There

are 82, 144 vertices and 549, 202 edges in this graph.

There are 77.4% edges with the edge label 1, and 70, 284
vertices have at least one incident edges;

3) Wikipedia includes 7, 118 users and an labeled edge

indicates that a user votes positively (labeled as 1)

or negatively (labeled as 0) for another user toward a

promotion as Wikipedia administrators. There are 7, 118
vertices and 103, 747 edges in this graph, while 78.7%
edge labels are positive, and 2, 794 vertices have at least

one incident edges;

4) Youtube contains a set of 15, 088 users as vertices and

7, 595, 273 user interactions as edges in the Youtube

website. The user interactions are first categorized into

5 different types, such as contact, co-contact, co-
subscription, co-subscribed, and favorite, and for each

different interaction type, there exists a series of inten-
sity values denoting the strengths of interactions, thus

resulting in 107 edge labels in total.

In order to evaluate our edge classification methods on

partially labeled networks, for each of the aforementioned

datasets, we randomly select a percent t of all its edges (t =
50% by default) and eliminate the edge labels, thus generating

a corresponding graph whose edges are sparsely labeled. These

data sets are drawn from fairly diverse settings in order to show

the generality of our approach across various problem settings.

We will demonstrate that our edge classification techniques can

still be applied in such sparsely labeled networks.

B. Evaluation Methods

In this paper, we devise edge classification methods with

a series of variations: exact algorithms compute the Jaccard

coefficient similarity between vertices exactly (Equation 3 and

Equation 4), while probabilistic algorithms estimate the simi-

larity based on min-hash structures (Equation 7). Furthermore,

when selecting the dominant class label from within the edge

set Al∩(S(u)×S(v)) as the edge label for the edge (u, v), we

have two options for the existing edge labels that can be either

weighted or unweighted. Meanwhile, the graph where edge

classification is performed can be either fully labeled if each

edge has an explicit edge label, or partially labeled otherwise

(the exact computation is thus based on Equation 4). As a

result, we consider six different edge classification algorithms

in the experimental studies,

1) ExtUF: this is an exact edge classification method

(Equation 3) on a fully labeled graph, where edge

classification is based on an unweighted selection of the

dominant label in the vertex neighborhood;

2) ProbUF: this is a probabilistic algorithm based on min-

hash indexes in a fully labeled graph. The option of

unweighted selection for the dominant edge label is

enabled;

3) ExtWF: this is an exact edge classification method on

a fully labeled graph, where edge classification is based

on weighted selection of the dominant label in the vertex

neighborhood;

4) ProbWF: this is a probabilistic algorithm based on min-

hash indexes in a fully labeled graph. The option of

weighted selection for dominant edge label is enabled;

5) ExtWP: this is an exact edge classification method

(Equation 4) on a partially labeled graph, where edge

classification is based on weighted selection of the

dominant label in the vertex neighborhood;

6) ProbWP: this is a probabilistic algorithm based on min-

hash in a partially labeled graph. The option of weighted

selection for dominant edge label is enabled.

C. Evaluation Metrics

In order to evaluate different edge classification methods

in real-world networks, we consider the following evaluation

metrics in our experimental studies:

• Accuracy: we randomly select 1, 500 edges from each

network dataset and examine the average accuracy of

classification for these edges w.r.t. the true labels provided

in the network;

• Time: we gauge the average time consumed for edge

classification for the 1, 500 edges selected randomly from

within the networks;

• Space: as opposed to the exact methods that need ex-

plicitly materialize the whole networks for edge classi-

fication, the probabilistic methods build space-efficient

min-hash indexes, which are supposed to be succinct in

size and memory-resident. We record the total space cost

(in megabytes) of min-hash structures in the probabilistic

methods, which need not store the entire graphs for edge

classification.

Note that these metrics are often in trade-off with one another.

Therefore, exploring all of them provides an understanding of

our edge classification approaches in a comprehensive way.

D. Parameter Settings

There also exist a series of algorithmic parameters for our

edge classification methods. In the following, we report their

default values (unless otherwise stated in the experimental

section): (1) k: the number of most similar incident vertices,

|S(u)|, of a vertex u, and the default value of k is 100; (2)
μ: the discount factor for the unlabeled edges in Equation 4,

and the default value of μ is 0.5; (3) d: the number of min-

wise hash functions adopted in the min-hash structures, and

the default value of d is 20; (4) t: the percentage of unlabeled

 50

 60

 70

 80

 90

 100

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
cc

ur
ac

y
(%

)

Edge Classification Methods

(a) Epinions

 50

 60

 70

 80

 90

 100

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
cc

ur
ac

y
(%

)

Edge Classification Methods

(b) Slashdot

 50

 60

 70

 80

 90

 100

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
cc

ur
ac

y
(%

)

Edge Classification Methods

(c) Wikipedia

 0

 10

 20

 30

 40

 50

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
cc

ur
ac

y
(%

)

Edge Classification Methods

(d) Youtube

Fig. 1: Edge classification accuracy of six different methods

on four real-world networks.

edges in a partially labeled graph, and the default value is

50%. In our experimental studies, we will also examine the

performance of the proposed edge classification methods w.r.t.
different parameter settings.

E. Performance Results

In this section, we report the main results and findings in

our experimental studies for edge classification in real-world

networks. We consider six different edge classification algo-

rithms on four real-world networks, and examine the accuracy

for edge classification, together with time and space cost of

different algorithms. We also report how our proposed methods

can be fine tuned by regulating the algorithmic parameters.

First of all, we examine the classification accuracy by

applying different edge classification methods in four net-

works, and the results are illustrated in Figure 1. We notice

that the proposed k-nearest neighbor based edge classification

method can offer high-accuracy classification results in real-

world networks. In binary-label networks including Epinion,

Slashdot, and Wikipedia, the classification accuracy is at least

74% for all methods. In the multi-label network, Youtube, the

classification accuracy is in the range of [14%, 35%], which

is still high considering there exist 107 edge labels to be

classified in the network.

We then compare the relative performance of different

edge classification algorithms, and recognize the following

interesting findings. (1) In all the four networks, the weighted

methods (ExtWF and ProbWF) have higher classification ac-

curacy than the unweighed counterparts (ExtUF and ProbUF),

indicating that the consideration of edge weights for the

assignment of edge labels is beneficial during edge classifi-

cation. Meanwhile, the classification methods in fully labeled

graphs have higher accuracy than the corresponding methods

in partially labeled graphs (ExtWP and ProbWP), because

more edge label information within the neighborhood of

vertices can be employed for similarity computation and edge

classification, while unlabeled edges are less indicative in edge

classification. (2) The exact methods (ExtUF, ExtWF, and

ExtWP) are consistently more accurate than their probabilistic

counterparts (ProbUF, ProbWF, and ProbWP). However, the

gaps of classification accuracy are not significant, which are

within 8% across all four networks, and on the Slashdot

network, this accuracy gap is only within 2%. It indicates

that the probabilistic methods can provide edge classification

results with very close accuracy to the exact methods in real-

world networks. However, probabilistic methods are signifi-

cantly faster and more space-efficient, making themselves as

practical and feasible edge classification solutions in large-

scale, dynamic networks, as will be demonstrated in the

following experimental studies. The fact that the accuracy of

probabilistic methods does not deteriorate significantly is im-

portant because it implies that these probabilistic approaches

can be used in a variety of network settings.

We then consider the runtime cost of different edge classi-

fication methods in real-world networks, and the experimental

results are illustrated in Figure 2. It can be witnessed that, for

exact edge classification methods (ExtUF, ExtWF, ExtWP),

the average time of classifying an edge is in several seconds,

except for the Wikipedia network, where exact methods can

accomplish the classification of one edge within 0.12 seconds

because that dataset is fairly small. However, in the largest

Youtube network, it takes more than 10 seconds to classify an

edge by average, which is very time-consuming. It indicates

that, the exact methods cannot be used as efficient, realtime

edge classification solutions, especially in large networks. This

can be a significant problem in real-world, large-scale settings.

On the other hand, all the probabilistic methods (ProbUF,

ProbWF, ProbWP) can successfully classify every edge al-

most in real time (within 0.5 seconds even in the largest

 0

 1

 2

 3

 4

 5

 6

 7

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
ve

ra
ge

 R
un

tim
e

(s
ec

.)

Edge Classification Methods

(a) Epinion

 0

 1

 2

 3

 4

 5

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
ve

ra
ge

 R
un

tim
e

(s
ec

.)

Edge Classification Methods

(b) Slashdot

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
ve

ra
ge

 R
un

tim
e

(s
ec

.)

Edge Classification Methods

(c) Wikipedia

 0

 2

 4

 6

 8

 10

ExtUF
ProbUF

ExtWF
ProbWF

ExtWP
ProbWP

A
ve

ra
ge

 R
un

tim
e

(s
ec

.)

Edge Classification Methods

(d) Youtube

Fig. 2: Average runtime cost of six different methods on four

real-world networks.

Youtube network). In comparison with their exact counterparts,

the probabilistic edge classification methods have achieved

between 4 and 34 times speedup across all four real-world

networks. This is mainly because the probabilistic methods

take advantage of min-hash structures for Jaccard coefficient

estimation, which can be achieved efficiently (in O(d) time,

where d is the number of min-wise hash functions).

An important observation is that relatively small values of

d suffice to achieve robust classification results, and there

is often little need for selecting large values of d. Another

interesting observation is that, the runtime cost for different

probabilistic methods are very close. That is, in the ProbWF

method, the consideration of edge weights in edge classifi-

cation does not take up significant time, and the time for

TABLE I: The overall memory consumption of the probabilis-

tic edge classification method, ProbUF, in the four real-world

networks.

Networks Epinion Slashdot Wikipedia Youtube

Space (MB) 30.17 18.80 1.63 2.01

ProbWP to build min-hash structures for unlabeled edges is

also marginal, compared with the majority time consumed for

min-hash based computation in probabilistic methods. This

implies that one can often use the best probabilistic methods

in different networked settings with little additional expense

in terms of the running time for edge classification.

We further examine the space cost of the min-hash based

probabilistic methods in real-world networks, as shown in

Table I. This is particularly useful in investigating the effec-

tiveness of the probabilistic approaches in space-constrained

settings, such as graph streams. Note that the reported results

are the overall memory consumption for min-hash structures

in the probabilistic method, ProbUF, in the four real-world

networks (we recorded very similar space cost for the other

two probabilistic methods, ProbWF and ProbWP, and thus

omit these results in the table). It can be witnessed that

probabilistic methods only take very small memory footprints

even in large networks, because the space cost for min-hash

structures is O(d|V |), which is only related to the number

of vertices of networks. So the min-hash based probabilis-

tic methods are also scalable in classifying edges for large

networks. In comparison to the exact methods that require

an explicit materialization of the whole networks before edge

classification is performed, the probabilistic methods only need

succinct, memory-resident min-hash structures. As a result,

these probabilistic methods can even be applied in extremely

large, disk-resident graphs or fast evolving graph streams

where an explicit storage of the underlying graphs becomes

impossible [22].

In the final set of experiments, we examine the performance

of our edge classification methods by tuning important algo-

rithmic parameters. First of all, we consider the parameter

k, the number of top similar neighboring vertices selected

during edge classification, and examine how k affects the edge

classification accuracy, and the results are demonstrated in

Figure 3 for all the four networks. It is clear to note that a

larger value of k can often lead to higher accuracy for different

edge classification methods. This is mainly because the edge

label is determined by the dominant label of edges within

the vicinity of vertex pairs, and a larger set of top similar

vertices (regulated by k) can enhance the accuracy for this

majority voting strategy. However, when k is increased to a

large value, this accuracy improvement becomes insignificant.

This is especially true for probabilistic methods.

We then examine another important parameter, d, the num-

ber of min-wise hash functions in our probabilistic edge clas-

sification method, ProbUF (Experimental results and trends

for ProbWF and ProbWP have been found similar to those of

 65

 70

 75

 80

 85

 90

 95

 100

40 60 80 100

A
cc

ur
ac

y
(%

)

The Number of Top Similar Neighbors (k)

ExtUF
ExtWF

ExtWP
ProbUF

ProbWF
ProbWP

(a) Epinion

 50

 60

 70

 80

 90

 100

40 60 80 100

A
cc

ur
ac

y
(%

)

The Number of Top Similar Neighbors (k)

ExtUF
ExtWF

ExtWP
ProbUF

ProbWF
ProbWP

(b) Slashdot

 60

 65

 70

 75

 80

 85

 90

 95

 100

40 60 80 100

A
cc

ur
ac

y
(%

)

The Number of Top Similar Neighbors (k)

ExtUF
ExtWF

ExtWP
ProbUF

ProbWF
ProbWP

(c) Wikipedia

 10

 15

 20

 25

 30

 35

 40

 45

 50

40 60 80 100

A
cc

ur
ac

y
(%

)

The Number of Top Similar Neighbors (k)

ExtUF
ExtWF

ExtWP
ProbUF

ProbWF
ProbWP

(d) Youtube

Fig. 3: Edge classification accuracy of six different methods in

the four real-world networks when the number of top similar

neighbors, k, varies.

ProbUF, and thus are omitted for the interest of brevity), and

the experimental results are shown in Figure 4. By varying

the number of min-wise hash functions, d, in the min-hash

structures from 20 up to 50, we recognize that the edge clas-

sification accuracy of ProbUF in the four different networks

is improved slightly (Figure 4(a)), while both the time and

space costs grow proportionally (Figure 4(b) and Figure 4(c)),

because more min-wise hash functions and corresponding min-

hash indexes are created and updated during the course of edge

classification. This indicates that a moderate value of d, say

20, is typically good enough to support effective probabilistic

edge classification in real-world networks. In the meantime,

the resultant min-hash structures are both cost-effective and

 20

 30

 40

 50

 60

 70

 80

 90

 100

Epinion Slashdot Wikipedia Youtube

A
cc

ur
ac

y
(%

)

Networks

20
30
40
50

(a) Accuracy

 0

 0.2

 0.4

 0.6

 0.8

 1

Epinion Slashdot Wikipedia Youtube

A
ve

ra
ge

 R
un

tim
e

(s
ec

.)

Networks

20
30
40
50

(b) Runtime

 0

 10

 20

 30

 40

 50

 60

 70

 80

Epinion Slashdot Wikipedia Youtube

Sp
ac

e
C

os
t (

M
B

)

Networks

20
30
40
50

(c) Space

Fig. 4: Edge classification performance of the probabilistic

method, ProbUF, in the four real-world networks when the

number of min-wise hash functions, d, varies.

efficient to support Jaccard coefficient estimation during edge

classification.

Our final experiment is to examine the edge classification

accuracy of two algorithms, ExtWP and ProbWP, in partially

labeled graphs in terms of the percentage t of unlabeled edges

within networks. This type of experiments provides an idea of

how the edge sparsity affects the classification effectiveness.

The experimental results are illustrated in Figure 5. In all

four real-world networks, it can be clearly seen that, when

the percentage of unlabeled edges, t, grows from 10% up

to 70%, the edge classification accuracy drops significantly.

This is mainly because much fewer labeled edges exist within

the neighborhood of vertex pairs for edge label prediction.

However, the gap of edge classification accuracy between the

exact method, ExtWP, and the probabilistic method, ProbWP,

is still close, indicating that even in very sparsely labeled

networks, the probabilistic edge classification methods are still

good surrogates for their corresponding exact methods.

 60

 65

 70

 75

 80

 85

 90

 95

 100

10% 30% 50% 70%

A
cc

ur
ac

y
(%

)

The Percentage of Unlabeled Edges (t)

ExtWP
ProbWP

(a) Epinion

 60

 65

 70

 75

 80

 85

 90

 95

 100

10% 30% 50% 70%

A
cc

ur
ac

y
(%

)

The Percentage of Unlabeled Edges (t)

ExtWP
ProbWP

(b) Slashdot

 60

 65

 70

 75

 80

 85

 90

 95

 100

10% 30% 50% 70%

A
cc

ur
ac

y
(%

)

The Percentage of Unlabeled Edges (t)

ExtWP
ProbWP

(c) Wikipedia

 0

 10

 20

 30

 40

 50

10% 30% 50% 70%

A
cc

ur
ac

y
(%

)

The Percentage of Unlabeled Edges (t)

ExtWP
ProbWP

(d) Youtube

Fig. 5: Edge classification accuracy of ExtWP and ProbWP on

partially labeled networks when the percentage of unlabeled

edges, t, varies.

V. CONCLUSIONS

In this paper, we designed an edge classification model

in the network setting. The edge classification problem is

particularly challenging because of the complexity associated

with structural relationships between the incident vertices of

an edge to be classified. We designed neighborhood-based

methods to perform edge classification in large networks.

The main challenge of these exact approaches stems from

their high computational complexity. We further proposed

probabilistic, min-hash based data structures to infer the re-

lationships among the edges in an efficient and cost-effective

way. Such probabilistic edge classification methods are scal-

able in networks, and can be applied successfully in disk-

resident graphs or graph streams for edge classification. Our

experimental results have demonstrated that our approaches

are able to infer edge labels accurately without compromising

on classification efficiency in large networks that can be either

disk-resident or stream-like.

VI. ACKNOWLEDGEMENT

Research of the first author was sponsored by the Army

Research Laboratory and was accomplished under Coopera-

tive Agreement Number W911NF-09-2-0053. The views and

conclusions contained in this document are those of the authors

and should not be interpreted as representing the official

policies, either expressed or implied, of the Army Research

Laboratory or the U.S. Government. The U.S. Government is

authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation here on.

REFERENCES

[1] C. C. Aggarwal and H. Wang, Managing and Mining Graph Data.
Springer Publishing Company, Incorporated, 2010.

[2] D. J. Cook and L. B. Holder, Mining Graph Data. John Wiley & Sons,
2006.

[3] S. E. Schaeffer, “Survey: Graph clustering,” Comput. Sci. Rev., vol. 1,
no. 1, pp. 27–64, 2007.

[4] P. Yang and P. Zhao, “A min-max optimization framework for online
graph classification,” in Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management (CIKM’15),
2015, pp. 643–652.

[5] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection
and description: A survey,” Data Min. Knowl. Discov., vol. 29, no. 3,
pp. 626–688, 2015.

[6] E. David and K. Jon, Networks, Crowds, and Markets: Reasoning About
a Highly Connected World. Cambridge University Press, 2010.

[7] M. Newman, Networks: An Introduction. Oxford University Press, Inc.,
2010.

[8] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad, “Collective classification in network data,” AI Magazine, vol. 29,
no. 3, pp. 93–106, 2008.

[9] H. Fei and J. Huan, “Structured sparse boosting for graph classification,”
ACM Trans. Knowl. Discov. Data, vol. 9, no. 1, pp. 4:1–4:22, 2014.

[10] X. Kong and P. S. Yu, “gmlc: a multi-label feature selection framework
for graph classification.” Knowl. Inf. Syst., vol. 31, no. 2, pp. 281–305,
2012.

[11] X. Kong, W. Fan, and P. S. Yu, “Dual active feature and sample selection
for graph classification,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD’11), 2011, pp. 654–662.

[12] Y. Anava, N. Avigdor-Elgrabli, and I. Gamzu, “Improved theoretical and
practical guarantees for chromatic correlation clustering,” in Proceedings
of the 24th International Conference on World Wide Web (WWW’15),
2015, pp. 55–65.

[13] F. Bonchi, A. Gionis, F. Gullo, and A. Ukkonen, “Chromatic correlation
clustering,” in Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’12), 2012,
pp. 1321–1329.

[14] M. Rocklin and A. Pinar, “Latent clustering on graphs with multiple edge
types,” in Proceedings of the 8th International Conference on Algorithms
and Models for the Web Graph (WAW’11), 2011, pp. 38–49.

[15] P. Gupta, V. Satuluri, A. Grewal, S. Gurumurthy, V. Zhabiuk, Q. Li, and
J. Lin, “Real-time twitter recommendation: Online motif detection in
large dynamic graphs,” Proc. VLDB Endow., vol. 7, no. 13, pp. 1379–
1380, 2014.

[16] O. Küçüktunç, E. Saule, K. Kaya, and U. V. Çatalyürek, “Diversified
recommendation on graphs: Pitfalls, measures, and algorithms,” in
Proceedings of the 22Nd International Conference on World Wide Web
(WWW’13), 2013, pp. 715–726.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems (NIPS’14), 2014,
pp. 2672–2680.

[18] W. Yu, C. C. Aggarwal, S. Ma, and H. Wang, “On anomalous hotspot
discovery in graph streams,” in 2013 IEEE 13th International Confer-
ence on Data Mining (ICDM’13), 2013, pp. 1271–1276.

[19] D. E. Difallah, G. Demartini, and P. Cudré-Mauroux, “Pick-a-crowd:
Tell me what you like, and i’ll tell you what to do,” in Proceedings
of the 22Nd International Conference on World Wide Web (WWW’13),
2013, pp. 367–374.

[20] S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha,
“Like like alike: Joint friendship and interest propagation in social
networks,” in Proceedings of the 20th International Conference on World
Wide Web (WWW’11), 2011, pp. 537–546.

[21] F. Cacheda, V. Carneiro, D. Fernández, and V. Formoso, “Comparison of
collaborative filtering algorithms: Limitations of current techniques and
proposals for scalable, high-performance recommender systems,” ACM
Trans. Web, vol. 5, no. 1, pp. 2:1–2:33, 2011.

[22] A. McGregor, “Graph stream algorithms: A survey,” SIGMOD Rec.,
vol. 43, no. 1, pp. 9–20, 2014.

[23] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A survey,”
ACM Comput. Surv., vol. 47, no. 1, pp. 1–36, 2014.

[24] C. C. Aggarwal, Social Network Data Analytics. Springer Publishing
Company, Incorporated, 2011.

[25] D. Zhou, J. Huang, and B. Schölkopf, “Learning from labeled and
unlabeled data on a directed graph,” in Proceedings of the 22Nd
International Conference on Machine Learning (ICML’05), 2005, pp.
1036–1043.

[26] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in Advances in Neural Information
Processing Systems (NIPS’04), 2004, pp. 321–328.

[27] S. Bhagat, I. Rozenbaum, and G. Cormode, “Applying link-based
classification to label blogs,” in Proceedings of the 9th WebKDD and 1st
SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis
(WebKDD/SNA-KDD ’07), 2007, pp. 92–101.

[28] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using
gaussian fields and harmonic functions,” in Proceedings of the 22Nd
International Conference on Machine Learning (ICML’03), 2003, pp.
912–919.

[29] Q. Lu and L. Getoor, “Link-based classification,” in Proceedings of the
22Nd International Conference on Machine Learning (ICML’03), 2003,
pp. 496–503.

[30] S. Bhagat, I. Rozenbaum, and G. Cormode, “Applying link-based
classification to label blogs,” in Proceedings of the 9th WebKDD and 1st
SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis
(WebKDD/SNA-KDD ’07), 2007, pp. 92–101.

[31] M. Bilgic and L. Getoor, “Effective label acquisition for collective
classification,” in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’08), 2008,
pp. 43–51.

[32] V. R. Carvalho and W. W. Cohen, “On the collective classification of
email “speech acts”,” in Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’05), 2005, pp. 345–352.

[33] T. Zhang, A. Popescul, and B. Dom, “Linear prediction models with
graph regularization for web-page categorization,” in Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’06), 2006, pp. 821–826.

[34] S. Chakrabarti, B. Dom, and P. Indyk, “Enhanced hypertext catego-
rization using hyperlinks,” in Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data (SIGMOD’98), 1998,
pp. 307–318.

[35] P. Agrawal, V. K. Garg, and R. Narayanam, “Link label prediction in
signed social networks,” in Proceedings of the Twenty-Third Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’13), 2013, pp.
2591–2597.

[36] S.-H. Yang, A. J. Smola, B. Long, H. Zha, and Y. Chang, “Friend or
frenemy?: Predicting signed ties in social networks,” in Proceedings
of the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’12), 2012, pp. 555–564.

[37] G. Bachi, M. Coscia, A. Monreale, and F. Giannotti, “Classifying
trust/distrust relationships in online social networks,” in 2012 Interna-

tional Conference on Privacy, Security, Risk and Trust (PASSAT’12),
2012, pp. 552–557.

[38] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” in Proceedings of the 19th
International Conference on World Wide Web (WWW’10), 2010, pp.
641–650.

[39] C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, “Mining
advisor-advisee relationships from research publication networks,” in
Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’10), 2010, pp. 203–212.

[40] C. Diehl, G. M. Namata, and L. Getoor, “Relationship identification
for social network discovery,” in Proceedings of the 22nd National
Conference on Artificial Intelligence (AAAI ’07), 2007, pp. 546–552.

[41] W. Tang, H. Zhuang, and J. Tang, “Learning to infer social ties in large
networks,” in Proceedings of the 2011 European Conference on Machine
Learning and Knowledge Discovery in Databases (PKDD’11), 2011, pp.
381–397.

[42] C. C. Aggarwal, Data Classification: Algorithms and Applications.
Chapman & Hall/CRC, 2014.

[43] D. Jurafsky and J. H. Martin, Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Prentice Hall, 2009.

[44] S. Pandey, A. Broder, F. Chierichetti, V. Josifovski, R. Kumar, and
S. Vassilvitskii, “Nearest-neighbor caching for content-match applica-
tions,” in Proceedings of the 18th International Conference on World
Wide Web (WWW’09), 2009, pp. 441–450.

[45] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” in Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing (STOP’98), 1998, pp. 327–
336.

[46] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proceedings of the Thiry-fourth Annual ACM Symposium on
Theory of Computing (STOC’02), 2002, pp. 380–388.

[47] S. Guha and A. McGregor, “Graph synopses, sketches, and streams: A
survey,” Proc. VLDB Endow., vol. 5, no. 12, pp. 2030–2031, 2012.

[48] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
University Press, 1995.

