
On Abnormality Detection in Spuriously Populated Data Streams

Charu C. Aggarwal

IBM T. J. Watson Research Center

charu@us.ibm.com

Abstract

In recent years, advances in hardware technology have
made it increasingly easy to collect large amounts of
multidimensional data in an automated way. Such
databases continuously grow over time, and are referred
to as data streams. The behavior of such streams is sen-
sitive to the underlying events which create the stream.
In many applications, it is useful to predict abnormal
events in the stream in a fast and online fashion. This
is often a difficult goal in a fast data stream because
of the time criticality of the detection process. Fur-
thermore, the rare events may often be embedded with
other spurious abnormalities, which affect the stream
in similar ways. Therefore, it is necessary to be able
to distinguish between different kinds of events in or-
der to create a credible detection system. This paper
discusses a method for supervised abnormality detec-
tion from multi-dimensional data streams, so that high
specificity of abnormality detection is achieved. We
present empirical results illustrating the effectiveness of
our method.

1 Introduction

In recent years, the advances in hardware technology
have made it possible to collect large amounts of data
in many applications. Typically, such databases are
created by continuous activity over long periods of
time, and are therefore databases which grow without
limit. The volume of such transactions may easily range
in the millions on a daily basis. Examples of such
domains include supermarket data, multimedia data
and telecommunication applications. The volume of
such data is so large that it is often not possible to
store it on disk in order to apply standard algorithmic
techniques. Such data are referred to as data streams.
Algorithms which are designed on such data need to
take into account the fact that it is not possible to revisit
any part of the voluminous data. Thus, only a single
scan of the data is allowed during stream processing.

Considerable research has been done on the data
stream problem in recent years [7, 8, 9, 13, 18]. Many
traditional data mining problems such as clustering

and classification have recently been re-examined in
the context of the data stream environment [1, 10, 13].
In this paper, we discuss the problem of abnormality
detection in data streams. In particular, we will
consider the most difficult case, when such events are
embedded with other similar but spurious patterns of
abnormality. Some examples of applications of interest
are as follows:

• In a stock market monitoring application, one may
wish to find patterns in trading activity which are
indicative of a possible stock market crash in an
exchange. The stream of data available may cor-
respond to the real time data available on the ex-
change. While a stock sell-off may be a relatively
frequently occurring event which has similar effects
on the stream, one may wish to have the ability
to quickly distinguish the rare crash from a sim-
ple sell-off. Another example of a valuable event
detection application is that of detection of partic-
ular patterns of trading activity which result in the
sell-off of a particular stock, or a particular sector
of stocks. A quick detection of such events is of
great value to financial institutions.

• In a business activity monitoring application, it
may be desirable to find particular aspects of the
stream which are indicative of events of significance
to the business activity. For example, certain sets
of actions of competitor companies may point to
the probably occurrence of significant events in
the business. When such events do occur, it is
important to be able to detect them very quickly, as
they may be used to trigger other business-specific
actions in a time-critical manner.

• In a medical application, continuous streams of
data from hospitals or pharmacy stores can be used
to detect any abnormal disease outbreaks or bio-
logical attacks. Certain kinds of diseases caused by
biological attacks are often difficult to distinguish
from other background diseases. For example, an
anthrax infection has similar characteristics to the
common flu attack. However, it is essential to be

able to make such distinguishing judgements in real
time in order to create a credible event detection
system.

Many of the events discussed above are inherently
rare. For example, events such as disease outbreaks or
stock market crashes may happen rarely over long pe-
riods of time. On the other hand, the value of event
detection is highly dependent on the latency of the de-
tection process. This is because most event detection
systems are usually coupled with time-critical response
mechanisms. Furthermore, because of efficiency con-
siderations, it is possible to examine a data point only
once throughout the entire computation. This creates
an additional constraint on how abnormality detection
algorithms may be designed. While event detection and
anomaly detection are important problems in the data
mining community [4, 6, 15, 17], these models do not
address the problem in the context of predicting rare
anomalies in the presence of many spurious (but similar)
patterns. In order to achieve the specificities in abnor-
mality detection, we will utilize a supervised approach
in which the abnormality detection process learns from
the data stream. A considerable level of specificity may
be achieved by using the behavior of the combination of
multiple streams which are able to distinguish between
different kinds of seemingly similar anomalies.

Thus, the additional complexities of the generic
event detection problem may be summarized as follows:

• In most real-life situations, data streams may show
abnormal behavior for a wide variety of reasons.
It is important for an event detection model to be
specific in its ability to focus and learn a rare event
of a particular type. Furthermore, the spurious
events may be significantly more frequent than the
rare events of interest. Such a situation makes the
event detection problem even more difficult, since
it increases the probability of a false detection.

• In many cases, even though multiple kinds of
anomalous events may have similar effects on the
individual dimensions, the relevant event of interest
may only be distinguished by its relative effect on
these dimensions. Therefore, an event detection
model needs to be able to quantify such differences.

• Since the data stream is likely to change over time,
not all features remain equally important for the
event detection process. While some features may
be more valuable to the detection of an event in
a given time period, this characteristic may vary
with time. It is important to be able to modify
the event detection model appropriately with the
evolution of the stream.

• We note that a supervised abnormality detection
problem is very different from a data stream clas-
sification problem in which each record has a la-
bel attached to it. In an abnormality detection
problem, individual records are unlabeled, whereas
the abnormalities of importance are attached only
to particular moments in time. Since individual
records do not have class labels, the training of the
event detection process is more constrained from
the limited information availability. Furthermore,
the rarity of the abnormality adds an additional
level of complexity to the detection process.

• Unlike a traditional data source, a stream is a con-
tinuous process which requires simultaneous model
construction and event reporting. Therefore, it
is necessary for the supervision process to work
with whatever information is currently available,
and continue to update the abnormality detection
model as new events occur.

In this paper we will design an abnormality detection
algorithm which can handle the afore-mentioned com-
plexities. Furthermore, the algorithms discussed in this
paper do not require any re-scanning of the data, and
are therefore useful for very fast data streams.

This paper is organized as follows. In the remainder
of this section, we formalize the contributions of this
paper and discuss the notations. In the next section
we will discuss the algorithm for event detection. We
will discuss the empirical results in section 3. Finally,
section 4 contains the conclusions and summary.

1.1 Contributions of this paper This paper
presents an effective method for learning rare abnor-
malities from fast data streams. Since a data stream
may contain many different kinds of abnormalities, it is
necessary to be able to distinguish their characteristic
behavior. Therefore, we propose a technique which is
able to distinguish particular kinds of events by learn-
ing subtle differences in how different streams are af-
fected by different abnormalities. The algorithm per-
forms statistical analysis on multiple dimensions of the
data stream in order to perform the detection. Since
the technique is tailored for fast responses to contin-
uous monitoring of processes, the entire framework of
the algorithm is constructed to facilitate online event
monitoring of data streams. Therefore, the process can
detect the abnormalities with any amount of historical
data, but the accuracy is likely to improve with progres-
sion of the stream, as more data is received.

1.2 Notations and Definitions We discretize the
points in time at which the behavior of the stream

is monitored as ticks. The time stamps associated
with the ticks are denoted by t(1), t(2), . . . t(k). We
distinguish between the ticks and time stamps, since
the behavior may not necessarily be monitored at equal
time intervals. It is assumed that the data points arrive
only at one of these ticks or time stamps.

The total number of data streams is N , and the set
of data points associated with the ith stream at tick k is
denoted by Yi(k). The data points in the stream Yi(k)
are denoted by yi(1), yi(2), . . . yi(k). It is assumed that
for each stream i, the data point yi(j) arrives at the
time stamp t(j). The entire feed of N streams at tick k
is therefore denoted by Y(k) = {Y1(k) . . . YN (k)}.

We assume that the time stamps at which the
rare events occur in the data stream are denoted by
T (1) . . . T (r). These events may either be the primary

events that we wish to detect, or they may be spurious
events in the stream. We will also refer to the spurious
events as the secondary events. Associated with each
event k at time T (k), we maintain flag(k) which is 1
only when this event is a primary event. In addition, we
also maintain Q(k), which is the time stamp of the last
reported occurrence of any event. The value of Q(k) is
typically larger than the true time of event occurrence
T (k). This is because the value of Q(k) refers to the
event report time, whereas the value of T (k) refers to
the occurrence time. The last report time is typically
larger than time of the actual event itself, since the ex-
ternal sources reporting the abnormality would need a
lag to verify it. These external sources may use a variety
of domain specific methods or simply personal observa-
tion to decide on the final verification of abnormality
occurrence. It is assumed that the report of an event is
an external input to the algorithm, and is available only
after a reasonable lag after the actual occurrence of the
event. Clearly, a detection algorithm is useful only if it
can report events and abnormalities before they are in-
dependently reported and verified by external sources.
Let us assume that k(r) events have occurred till tick
r. We denote the sequence {(Q(1), T (1), f lag(1)) . . .
(Q(k(r)), T (k(r)), f lag(k(r)))} until tick r by the event
vector E(r). We note that the length of this sequence
depends upon the number of events which have tran-
spired till tick r.

The abnormality detection algorithm outputs a set
of time stamps T ∗(1) . . . T ∗(n) at which it has predicted
the detection. A particular detection T ∗(i) is referred
to as a true detection, when for some lag threshold
maxlag, some time stamp T (j) exists, such that 0 ≤
T ∗(i) − T (j) ≤ maxlag. Otherwise, the detection
is referred to as a false positive. Clearly, there is a
tradeoff between being able to make a larger number of
true detections and the number of false alarms. If the

Algorithm StreamEvent(Initial Stream/Event History: (Yh, Eh),
Current Stream/Event Feeds: (Y(·), E(·)))

begin

{ Create the initial specificity model based on
initial stream history available }

M = LearnStream(Yh ,Eh)
r = 1;
for each tick r do

begin

SZ = ComputeStatisticalDeviations(Y(r + 1));
AL = PredictEvent(SZ, M);
if any event has occurred on tick k then

M = LearnStream(Y(k), E(k))
{ This updating of the model by LearnStream is

done as a (background) offline process }
end

end

Figure 1: The Abnormality Monitoring Algorithm

algorithm outputs a larger number of detection time
stamps in order to reduce the latency, it is likely to
report a greater number of false positives and vice-versa.
We will discuss more about this issue in a later section.

2 The Abnormality Detection Model

The supervised abnormality detection algorithm contin-
uously detects events utilizing the data from the history
of previous event occurrences. In addition, a learning
phase is triggered once after every reported occurrence
of a primary or secondary event in order to update the
model. As discussed earlier, the reporting of an abnor-
mality is an independent external process and is not
dependent upon the actual detection of an abnormal-
ity by the algorithm. In most practical applications,
abnormalities are eventually detected and reported be-
cause of a variety of factors such as the actual practical
consequences of the abnormality. These report times
are often too late to be of practical use for event re-
sponses. However, they can always be used to improve
the accuracy of the abnormality detection model when
required.

The model is initialized at the beginning of the
detection process. Both the process of initialization and
updating are performed by the subroutine LearnStream

of Figure 1. The learning phase is performed as a
background offline process, whereas the abnormality
detection phase is performed as an online process.
Therefore, the abnormality detection phase is performed
at each tick and it consists of two steps:

• Computation of abnormal statistical deviations at
a given instant. This is performed by the Com-

puteStatisticalDeviations procedure of Figure 1.

• Computation of specificity of statistical deviations

y(.)

Time

Line

Deviation
yf(r+1) - y(r+1)

Actual
signal

Regression

Figure 2: Deviations in data stream values

to occurrences of the primary event. This is
performed by the PredictEvent procedure of Figure
1.

It is assumed that at the beginning of the stream
monitoring process, some amount of historical data is
available in order to construct an initial model of event
behavior. This historical data consists of the stream
and the events in the past time window at the beginning
of the event monitoring process. The initial stream is
denoted by Yh, and the initial set of events is denoted
by Eh. Once the event detector has been initialized, it
then moves to an iterative phase of continuous online
monitoring together with occasional offline updating.

Because of the speed of a data stream and the time-
criticality of the event reporting process, it is essential
that each of the above computations can be performed
rapidly during real time. In the remainder of this
section, we will describe each of these steps in some
detail.

2.1 Detection of Rare Events in the Stream
The first step is to find deviations in the streams from
the expected values based on the historical trends. The
computation of the level of statistical deviations at a
given instant is needed both for the alarm prediction
phase as well as learning model. This process is denoted
by ComputeStatisticalDeviations of Figure 1. For this
purpose, we use a polynomial regression technique
which can compute the statistically expected value of
the data stream at a given moment in time.

Consider the tick r at which the points yi(1) . . . yi(r)
have already arrived for stream i. For each l ∈ {1, . . . r},
the technique approximates the data point yi(l) by a
polynomial in t(l) or order k. In other words, we
approximate the data point yi(l), by the polynomial

Algorithm ComputeStatisticalDeviations(Stream: Y(r + 1))
begin

Determine the set of points in the past window ht

together with their weights;
for each stream i ∈ {1, . . .N} do

begin

Compute coefficients ai0 . . . aik ;
Compute Erri(r) and yfi(r + 1) using polynomial

function f(·, ·);

Compute zi(r + 1) = (yfi(r + 1) − yi(r + 1))/Erri(r);
end

return(z1(r + 1) . . . zN (r + 1));
end

Figure 3: Computation of Statistical Deviations in the
Data Stream

function fi(k, l), where:

fi(k, l) =

k
∑

j=0

al
ij · t(l)

j(2.1)

Here, the coefficients of the polynomial function are
al

i1 . . . a
l
ik. The values of al

ij need to be computed
using the actual data points in order to find the best
fit. Specifically, the data points within a maximum
window history of ht are used in order to compute the
coefficients of this polynomial function. While these
coefficients can be estimated quite simply by using a
polynomial fitting technique technique, we note that
not all points are equally important in characterizing
this function. Those points which have arrived recently
should be given greater importance in the computation.
For this purpose, we use the exponential fading function
K · eλt(r) in order to compute the importance of each
data point. Here K and λ are constants which are
specific to that particular time window. Thus, for each

data point arriving at time t, it is replaced by bK ·eλt(r)c
data points while computing the polynomial function.
Then a polynomial fitting technique is used in order to
compute the coefficients. The value of λ is chosen such
that the ratio of the weight of the data point at t(r)−ht

to the data point arriving at t(r) is given by maxratio.
Therefore, we have:

K · eλt(r)/(K · eλ(t(r)−ht)) = eλ·ht = maxratio(2.2)

The value of K is automatically chosen that the value
of the fading function is equal to 1 at the time stamp
t(r) − ht. Therefore, once the value of λ has been set,
the value of K is chosen using the following relationship:

K · eλ(t(r)−ht) = 1(2.3)

The two intuitive parameters which are chosen by the
user are the maximum window ht and the maximum
ratio maxratio. The choice of ht depends upon the
amount of memory buffer available. This is because all
the data points in the past window of ht need to be
held in the memory buffer while processing the stream
at a given tick. It is necessary to keep such a buffer
because of the large volume of data points arriving in
each unit of time. At each tick, when new data points
enter the system, the set of points outside the window
of ht are discarded, and the new set of points arriving at
the current tick are included. We also note that while
the computation of the coefficients of the polynomial
function requires a matrix inversion operation [14], the
order of the matrix inverted is given by the maximum
order of the polynomial function. For polynomials of
small order up to 2 or 3, this computation can be
performed in a small constant number of operations at
each tick. This is a very small overhead compared to
the processing of the points in the data stream.

Once the coefficients of the polynomial function
fi(k, r) has been computed, we calculate the fitted
values yfi(r − ht) . . . yfi(r) of the points in the data
stream. (The value of yfi(r) is simply the instantiation
of the function fi(k, r) at the tick r.) The average
standard error of fitting is given by:

Erri(r) =

√

∑r

q=r−ht
eλ(q)(yi(q) − yfi(q))2

∑r

q=r−ht
eλ(q)

(2.4)

The predicted value of the data point from stream i at
the tick (r+1) is given by yfi(r+1). Since, the predicted
value yfi(r + 1) is based on the behavior of the stream
i up to tick r, the true value may vary considerably
from the prediction when a rare event occurs. An
example of such an occurrence is illustrated in Figure
2. We quantify this deviation at tick (r + 1) by the

corresponding z-number of the stream:

zi(r + 1) = (yfi(r + 1) − yi(r + 1))/Erri(r)(2.5)

The z-number is equal to the number of standard devi-
ations by which the true value of the stream i at tick
(r+1) is greater than the expected value. A high abso-
lute magnitude of the z-number indicates significant sta-
tistical deviation from expected behavior of the stream.
The process ComputeStatisticalDeviations of Figure 1
outputs SZ = (z1(r + 1) . . . zN(r + 1)) which are the
statistical deviations from the predicted values in each
data stream. A high absolute value of these statistical
deviations is indicative of the occurrence of a rare event
in the streams. However, such an event could either cor-
respond to the primary event or a secondary event. The
event detector needs to distinguish between the two sit-
uations using the property that different kinds of events
have a different signature as to the amount by which
the events affect the different streams. The exact sig-
nature of a particular kind of event needs to be learned
from the previous history of event occurrences. We will
discuss this issue in the next subsection.

2.2 Learning Specific Events from the Data
Stream We note that a given data stream may have
different kinds of events which have different effects
on the various components. For example, consider a
biological attack application in which we are tracking
the number of people admitted to emergency rooms
with flu like symptoms. Let us also assume that we
have different data streams corresponding to adults and
children. While the early phase of a large anthrax attack
may be indistinguishable from a flu epidemic, the data
stream corresponding to children and adults admitted is
likely to be different. For both anthrax attacks and flu
epidemics, the z-numbers of both streams are likely to
rise. However, the z-number of the stream for children
admitted is likely to be affected to a greater extent in
the case of a flu epidemic, while both streams are likely
to be almost equally affected in the case of an anthrax
attack. How do we magnify these subtle differences in
the extent to which the different curves are affected?

In order to achieve this we use the data from previ-
ous event occurrences in order to create a distinguish-
ing model for the particular kind of event which is being
tracked. This model for distinguishing different kinds of
events needs modeling which is done offline. However,
this modeling needs to be done only in the following
cases: (1) At the very beginning of the stream moni-
toring process as an initialization step. It is assumed
that an initial amount of event history Eh and Yh is
available for this purpose. (2) At the occurrence of each
kind of primary event as an updating step. In this case,

symptoms
(adult)

z-number
z2

Flu like

(z2-z1)

symptoms
Flu like

(child)
z-number

z1

symptoms
Flu like

(child)
z-number

z1

Flu like
symptoms
(adult)

z-number
z2

Flu Epidemic Anthrax Attack

(z2-z1)

Figure 4: Distinguishing between Primary and Secondary Abnormalities

Algorithm LearnStream(Stream History: Y(·), Event History: E(·))
begin

{ Let T (1) . . . T (s)} be the time-stamps at
which the primary events have occurred }
for each time stamp T (j) ∈ {T (1) . . . T (s)}
and stream i find the largest value maxij for the
z-number of stream i in the interval (T (j), T (j) + maxlag)

Let S be the set of streams such that maxij is greater
than a pre-defined threshold zmin for each j ∈ {1 . . . s};
{ Assume that the ticks at which primary events
have occurred are denoted by j1 . . . js and the
time stamps of secondary events are i1 . . . il; }
for each tick jk in {j1 . . . js} and stream i
find the tick tp∗

i
(k) such that tp∗

i
(k) ∈ {t(jk), t(jk) + maxlag}

and zi(·) attains its maximum value in this time interval;
Tp∗(k) =

∑

i∈S
tp∗

i
(k)/|S|;

for each tick ik in {i1 . . . il} and stream j
find the tick ts∗

j
(k) such that ts∗

j
(k) ∈ {t(ik), t(ik) + maxlag}

and zj(·) attains its maximum value in this time interval;
Ts∗(k) =

∑

i∈S
ts∗

j
(k)/|S|;

Define the algebraic expression Zs(α) =
∑l

k=1

∑

i∈S
αi · zi(Ts∗(k))/l

Define the algebraic expression Zp(α) =
∑s

k=1

∑

i∈S
αi · zi(Tp∗(k))/s

Find the value of the vector α which maximizes
Zp(α) − Zs(α) subject to the constraints
||α|| = 1 and αi = 0 for i 6∈ S

{ The gradient descent method is used for the maximization }
return(α);
end

Figure 5: Learning Specific Events from the Data Stream

the model uses the effects of the event on the stream in
order to update the current model.

While the LearnStream procedure is triggered by
the occurrence of a primary event, the iterative event
monitoring process continues in the foreground. There-
fore, if another primary event occurs before the Learn-

Stream procedure has finished execution, the slightly
stale model is always available for the detection process.

We note that in many cases, even when streams
are similarly affected by different kinds of events, the
relative magnitudes of different streams could vary
considerably. Our aim is to create a function of the z-
numbers of the different streams which is a “signature”
of that particular kind of event. In order to achieve
this goal, we create a new signal at each tick which is
a linear combination of the signals from the different
streams. Let α1 . . . αN be N real coefficients. We define
the following new signal Z(r) in terms of the original
signal and the α values:

Z(r) =

N
∑

i=1

αi · zi(r)(2.6)

For example, in the case illustrated in Figure 4, the
signals for the two streams corresponding to adult and
children admission to hospitals are illustrated. The
signal for the adult stream is denoted by z2 and the
signal for the child stream is denoted by z1. A choice of
(α1, α2) = (−1, 1) creates the composite signal z2− z1.
In Figure 4(a), the different signals for the case of a flu
epidemic are illustrated, whereas in the case of Figure
4(b) the signals for an anthrax attack are illustrated. It
is clear that even though both streams are affected in
a similar way by either a flu epidemic or an anthrax
attack, the proportional effects are different. These
effects can be magnified by the use of the composite
signal z2 − z1, which is affected in a clearly different
way in the two cases.

We note that many of the data streams may be
noisy and will not have any correlation with the pri-
mary event. Such streams need to be discarded from
the event distinguishing process. In other words, the
corresponding values of αi need to be set to zero. The
first step is to identify such streams. For each of the time
stamps T (j) ∈ {T (1) . . . T (s)} at which an event of in-
terest has occurred, we find the largest value1 maxij of
zi(r) for each r such that T (j) ≤ t(r) ≤ T (j)+maxlag.

1Strictly speaking, the value of maxij should be based on the
absolute value of the z-numbers. However, the above definition
does not lose generality. For those streams in which events of
interest correspond to highly negative z-numbers, the sign of the
stream is flipped.

A stream i is said to be interesting to the event detec-
tor, when for each j ∈ {1 . . . s} the value of maxij is
larger than a pre-defined threshold zmin.2 We denote
this subset of streams {i1 . . . iw} ∈ {1, . . .N} by S.

Once we have selected a small number of streams
which are meaningful for the event detection process,
we need to find the value of the discrimination vector α
which distinguishes the primary events from other simi-
lar events. The main idea is to choose α in such a way so
that the value of Z(r) peaks just after the occurrence of
each primary event to a much greater extent that any
other event. Let us assume that the time stamps at
which all secondary events which have happened within
the previous history of ht, are given by t(i1) . . . t(il),
whereas the time stamps of the primary event are given
by {T (1) . . . T (s)} = {t(j1) . . . t(js)}. For each sec-
ondary event ik and each stream j, we compute the
maximum value of zj(r) for each value of r, such that
t(r) ∈ (t(ik), t(ik) + maxlag). Let the corresponding
time stamp be given by ts∗j (k) for each k ∈ {1 . . . l}.
This time stamp is then averaged over all streams which
lie in S. Therefore, for each secondary event k, we com-
pute Ts∗(k) =

∑

i∈S
ts∗j (k)/|S|. Similarly, for each oc-

currence of the primary event, we can compute the aver-
age time stamp Tp∗(k) for each k ∈ {1, . . . s}. In order
for the discrimination between primary and secondary
events to be as high as possible, the difference in the av-
erage value of the composite signal at the time stamps of
the true and spurious events must be maximized. The
average composite signal Zs(α) at the time of occur-
rences of the true events is given by the following:

Zs(α) =

l
∑

k=1

∑

i∈S

αi · zi(Ts
∗(k))/l(2.7)

Similarly, the average composite signal at the time
of occurrence of the primary events is given by the
following expression:

Zp(α) =

s
∑

k=1

∑

i∈S

αi · zi(Tp
∗(k))/s(2.8)

For maximum discrimination between true and spu-
rious occurrences of primary events, we must choose
α in such a way that the difference Zp(α) − Zs(α) is
maximized. Therefore, we have:

Maximize Zp(α) − Zs(α)
subject to:
αj = 0 j ∈ {i1 . . . iw}
||α|| = 1

2For a normal distribution, more than 99.9% of the points are
located within 3 standard deviations from the mean.

Algorithm PredictEvent(Statistical Deviations: SZ,
Learned Data:M)

begin

{ The learned data M consists of the
vector α. The deviations SZ
consist of the statistical deviations at tick (r + 1) }

ZP (r + 1) =
∑N

i=1
αi · zi(r + 1)

Output event detection signature ZP (r + 1);
end

Figure 6: Rare Event Prediction

Latency 2
Latency 1

(no detection)

False
Positive

Time

Event
Detection
Signature

Threshold=a

Threshold=b

primary event
Occurrence of

Detection time
using threshold=b Detection time using

threshold=a
Threshold=c

Figure 7: Illustrating the trade-off between Latency and
False Positives

The first set of constraints corresponds to the fact that
only the subset of streams which were determined to
be significant to the event detection process are used
for detection. The second constraint on α is required
simply for the purpose of scaling as a boundary
condition to the maximization problem. (Without the
boundary condition, the maximization problem has an
infinite solution.) We note that the objective function
is linear in α, and all constraints are either linear or
convex. Therefore, the optimum value of α can be
found using a simple iterative gradient descent method
which is discussed in [3].

2.3 Rare Event Prediction Process The event
prediction is done by the procedure PredictEvent using
the statistical information collected by the other proce-
dures. The event prediction process uses the statistical
deviations calculated by ComputeStatisticalDeviations,
and the combination vector α computed by the Learn-

Stream procedure. Let SZ = (z1(r + 1) . . . zN (r + 1))
be the statistical deviations returned by ComputeStatis-

ticalDeviations and α be the combination vector com-

puted by LearnStream. The PredictEvent procedure
then computes the value ZP (r + 1) which is defined
as follows:

ZP (r + 1) =
∑

i∈S

αi · zi(r + 1)(2.9)

This value is the signal which is specific to the primary
event. The greater this value, the higher the likelihood
that a primary event has indeed occurred in the stream.
A primary event is predicted by using a minimum
threshold on the value of ZP (r + 1). Whenever the
value of ZP (r + 1) exceeds this threshold, a discrete
signal is output which indicates that the event has
indeed occurred. The use of higher thresholds on
the event detection signature results in lower number
of false positives, but lower detection rates as well
as higher lags. For example, in Figure 7, we have
illustrated the variation in latency level with time. We
have illustrated two different thresholds on the event
detection signature. It is clear that with the use of the
lower threshold value of a, at least one false positive
is created, which does not appear with the use of the
higher threshold value of b. On the other hand, when
the event does occur, it is detected much later with the
use of the higher threshold. Therefore, the latency of
detection is also much higher, when the threshold value
of b is used. If the threshold level were increased even
further to a value of c as indicated in Figure 7, then the
algorithm misses detection completely. We will explore
the effects of these trade-offs on a number of data sets in
the empirical section. For the purpose of the algorithmic
description of Figure 6, we output the value of ZP (r+1)
as the event detection indicator.

3 Empirical Results

In this section, we will illustrate the effectiveness of the
event detection system. Since many of the application-
specific methods such as those in [15] were designed with
the assumption of a single channel (stream) of data for
classification purposes, it is difficult to make a direct
comparison with any previous algorithm. Furthermore,
in many cases, the algorithms were not designed to han-
dle the computational issues arising in the context of
handling the massive volumes of a fast, spuriously popu-
lated data stream. We found however, that the anomaly
detection method of [15] could be adapted to the data
stream environment in a relatively straightforward way.
The algorithm in [15] uses a nearest neighbor classifi-
cation on the previous event history in order to output
the detection of an event. By calculating the distance
using multiple features, the technique could be applied
to the more general data stream problem discussed in
this paper. We will refer to this technique as the CL

detector in the empirical results.
In order to test the algorithm, we used a num-

ber of data sets. The synthetic data sets were cre-
ated by first generating each base stream j from a nor-
mal distribution with mean µj and standard deviation
σj = (1/3) · µj . The value of µj for each stream is gen-
erated from a uniform distribution in the range [0, 1].
The events of significance are assumed to occur at w
randomly distributed times t1 . . . tw throughout the dis-
tribution of the data stream. We assume that there are
f different types of events. Only one of these f differ-
ent types of events corresponds to the primary event
and the remaining events correspond to the secondary
event. It is assumed that the occurrence of any event is
equally likely to be of any type. Let us now consider a
particular event at time tr ∈ {t1 . . . tw} which is of type
l ∈ {1 . . . f}. The event of type l results in addition of
a further signal to each data stream j. This signal is
normally distributed with a mean of φlj(t − tr) and a
standard deviation of ψlj(t − tr). The value of φlj(s)
was chosen to be quadratic function of s with a maxima
at s = θlj and a maximum value of blj . The values of
θlj and blj are chosen depending upon the event type
and data stream. For each event type l and stream
j, the value of θlj and blj are chosen from a uniform
data distribution with ranges [5, 50] and [0, 1] respec-
tively. The value of ψlj(s) at each point was chosen to
be (1/3) · φlj(s). A value of f = 5 was used in each
case. Two 10-dimensional synthetic data sets (for dif-
ferent random seeds) were generated using this method-
ology and are referred to as SStream-A and SStream-B
respectively. In addition, two 20-dimensional data sets
were generated with the same methodology. These are
referred to as SStream-C and SStream-D respectively.

An interesting question which arises in the context
of an empirical evaluation is that of choice of appro-
priate metrics. This is because a trade-off exists be-
tween the latency time and the number of false posi-
tives. Therefore, if the latency time of two algorithms
is compared, it needs to be evaluated for the same num-
ber of false positives, and vice-versa. For this purpose,
we need to provide a measure of the benefit that a true
detection provides for a given level of detection latency.
A more precise way of defining this would be with the
use of a benefit function. While the exact function de-
pends heavily on the application at hand, we designed a
function which seems to be a reasonably intuitive metric
for a variety of applications. We designated a maximum
period of time latency δz after which detection provided
no benefit. This is because anomalies of importance are
often discovered in most applications through external
factors such as simple human observation. There is no
benefit to a detection, when the detection latency is

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

False Positives

B
en

ef
its

StreamEvent
CL Detector

Figure 8: False Positives versus Benefits of Quick
Detection (SStream-A)

larger than such external latencies. Thus, when the la-
tency of detection is larger than δz, the benefit function
is set to zero. For latencies less than δz, a linear function
was used in order to characterize the benefit. Therefore,
for a latency of t, the the benefit function B(t) is defined
as follows:

B(t) = max{0, δz − t}(3.10)

We note that in this case, t is the latency of first

detection of the anomaly after its actual occurrence.
Similarly, the number of false positives is defined as
the number of times an alarm is raised outside the δz

interval after the true occurrence of any anomaly. The
value of δz was chosen to be 100 in each case.

The detector proposed in this paper outputs an
analogue signature level which is used for the prediction
process. This analog signature can easily be converted
into a binary decision by using thresholding on the
intensity of the signature. When the signature level
exceeds a given threshold, the detector outputs an
anomaly detection indicator. The higher the threshold,
the greater the latency3 but the greater number of false
positives. Therefore, higher number of false positives
correspond to lower values of the benefit function and
and vice-versa. In order to quantify this relationship,
we create a corresponding AMOC curve which plots the
false positives on the X-axis and the benefits on the Y -
axis. Since the CL detector also uses thresholding on a
similarity measure for the classification process [15], it
is also possible to create AMOC curves for that case by
varying this threshold.

3We note that in many cases, higher values of the threshold
result in the detector completely missing the anomaly detection.
This corresponds to infinite latency, and therefore zero benefit.

Data Set Offline Update Time Maximum Throughput (online)

SStream-A 3 seconds 2881 per second
SStream-B 4 seconds 2755 per second
SStream-C 3 seconds 1829 per second
SStream-D 3 seconds 1954 per second

Table 1: Time Requirements of the Event Detector

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

False Positives

B
en

ef
its

StreamEvent
CL Detector

Figure 9: False Positives versus Benefits of Quick
Detection (SStream-B)

0 20 40 60 80 100 120
50

55

60

65

70

75

80

85

90

False Positives

B
en

ef
its

StreamEvent
CL Detector

Figure 10: False Positives versus Benefits of Quick
Detection (SStream-C)

0 20 40 60 80 100 120
50

55

60

65

70

75

80

85

90

False Positives

B
en

ef
its

StreamEvent
CL Detector

Figure 11: False Positives versus Benefits of Quick
Detection (SStream-D)

The AMOC curves for both the EventStream and
CL detector are illustrated in Figures 8, 9, 10, and 11
respectively. We note that in each case, the AMOC
curve for the CL-detector algorithm was dominated by
our data stream anomaly detector. In fact, in each
case, there was not even one point at which the CL
detector was superior to the StreamEvent algorithm.
Furthermore, the gap between the two algorithms was
significant in most cases. For example, in most cases,
the StreamEvent algorithm was able to achieve relatively
low latencies for less than 10 false positives. Modest
latencies were usually achieved for only about 0-2 false
positives in a majority of the cases. On the other hand,
the CL Detector was never able to find the anomaly
within the maximum required time latency of δz in the
range of 10 false positives or less. Thus, the region in
which the CL detector provided non-zero benefit was
one in which the number of false positives was too high
for the algorithm to be of practical use. As in the
previous case, the StreamEvent algorithm significantly
outperforms the CL-detector.

We tested the efficiency of the anomaly detection
algorithm for processing large data streams. The algo-
rithm was tested on 2.2 GHz laptop running Windows

5 10 15 20 25
1600

1800

2000

2200

2400

2600

2800

3000

Progression of Data Stream (seconds)

P
ro

ce
ss

in
g

R
at

e
(D

at
a

P
oi

nt
s

pe
r s

ec
on

d)

SStream−A
SStream−B
SStream−C
SStream−D

Figure 12: Processing Rate of Data Stream

XP operating system and 256 MB of main memory. We
note that represents very modest hardware available to-
day. There were two aspects which needed to be mea-
sured:

• (1) The online efficiency: This quantity was de-
fined in terms of the maximum number of ticks for
which a prediction could be made per second. We
define this as the maximum throughput, since it is
reflects the maximum processing capabilities of the
algorithm per unit of time. When the stream ar-
rives at a faster rate than the maximum through-
put, then it is necessary to use load shedding tech-
niques in order to reduce the throughput being han-
dled by the data stream. These load shedding tech-
niques can be implemented in the form of sampling
points from the data stream. While sampling re-
duces the effectiveness of the prediction process to
some extent, it is an acceptable solution in many
practical scenarios.

• (2) Efficiency of the model update process:
We computed the time required by the offline
component in order to update the model. As long
as this average time was significantly lower than
the time between the occurrence of two events,
the model was always up to date at the time of
prediction.

In Figure 12. we have illustrated the processing rate of
the online portion of the event detection process. It
is interesting to see that the processing rates for all
the streams were quite stable over time and ranged in
the order of thousands of data points per second. In
Table 1, we have also illustrated the summary of the
overall online efficiency of the algorithm for the entire
data stream. While all the data sets are processed at

the rate of thousands of data points per second, the
differences between the different data sets is because
of the varying dimensionality of the data sets. An
increased dimensionality resulted in lower processing
rates, since a larger number of data points needed to
be processed every second. However, since the absolute
processing rates are quite high, this means that the
streams can be processed efficiently using this technique.

In Table 1, we have also illustrated the time required
by the offline component of the event detector. The
most expensive process in the offline learning algorithm
are the iterations of the gradient descent algorithm for
finding the weights of the different channels. Since the
gradient descent method is an iterative approach, it
required a few computations in order to update the
model. However, in each case, these computations
require less than 5 seconds to execute. On the other
hand, since the algorithm is specifically designed for
detecting rare events in data streams, this time interval
of a few seconds is likely to be negligible compared to
the inter-arrival period between two events. Therefore,
such an offline update process is easily implementable
because of its relative rarity. As in the previous case,
are some differences among the update times for the
different data sets because of varying dimensionality of
different data sets.

4 Conclusions and Summary

In this paper, we proposed a new technique for anomaly
detection in massive data streams. The method is capa-
ble of fast and accurate anomaly detection in the pres-
ence of other non-relevant anomalies in the data. There-
fore, the detector is able to distinguish between spurious
and true anomalies. Such a system is quite unique in
retaining specificity in anomaly detection from multi-
dimensional data streams. It also has applications in
many domains in which real time detection is necessary
for quick response times to anomalous events. In future
work, we will construct a decision support system for
quick anomaly detection in massive data streams. Such
a decision support system would utilize active involve-
ment of the user in making decisions about the data.

References

[1] C. C. Aggarwal, A Framework for Diagnosing Changes

in Evolving Data Streams, Proceedings of the ACM
SIGMOD Conference, (2003).

[2] R. Abbott, and H. Garcia-Molina, Scheduling real-time

transactions with disk resident data, Proceedings of the
VLDB Conference, (1989).

[3] D. Bertsekas, Nonlinear Programming, Athena Scien-
tific, 2nd Edition, (1999).

[4] M. Berndtsson, and J. Hansson, Issues in Active Real-

Time Databases, Active and Real-Time Databases,
(1995), pp. 142–157.

[5] D. Bonachea, K. Fisher, A. Rogers, and F. Smith,
Hancock: A language for processing very large data,
USENIX 2nd Conference on Domain-Specific Lan-
guages, (1999), pp. 163–176.

[6] H. Branding, A. Buchmann, T. Kudrass, and J. Zim-
mermann, Rules in an open system: The reach rule

system, First Workshop of Rules in Database Systems,
(1993).

[7] J. Feigenbaum, S. Kannan, M. Strauss, and M. Vish-
wanathan, Testing and spot-checking of data streams,
Proceedings of the ACM SODA Conference, (2000).

[8] J. Fong, and M. Strauss, An approximate L
p-difference

algorithm for massive data streams, Annual Sympo-
sium on Theoretical Aspects in Computer Science,
(2000).

[9] C. Cortes, K. Fisher, D. Pregibon, A. Rogers, and F.
Smith, Hancock: A Language for Extracting Signatures

from Data Streams, Proceedings of the ACM KDD
Conference, (2000).

[10] P. Domingos, and G. Hulten, Mining High-Speed Data

Streams, Proceedings of the ACM KDD Conference,
(2000).

[11] V. Ganti, J. Gehrke, and R. Ramakrishnan, Mining

Data Streams under block evaluation, ACM SIGKDD
Explorations, Vol. 3(2), (2002).

[12] J. Gehrke, F. Korn, and D. Srivastava, On Computing

Correlated Aggregates over Continual Data Streams,
Proceedings of the ACM SIGMOD Conference, (2001).

[13] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan,
Clustering Data Streams , Proceedings of the IEEE
FOCS Conference, (2000).

[14] R. A. Johnson, and D. W. Wichern, Applied Multivari-

ate Statistical Analysis, Fourth Edition, Prentice Hall,
Upper Saddle River, NJ, (1999).

[15] T. Lane, and C. E. Brodley, An Application of Ma-

chine Learning to Anomaly Detection, Proceedings of
the 20th National Information Systems Security Con-
ference, (1997), pp. 366-380.

[16] W. Labio, and H. Garcia-Molina, Efficient Snapshot

Differential Algorithms for Data Warehousing, Pro-
ceedings of the VLDB Conference, (1996).

[17] W. Lee, S. J. Stolfo, and P. K. Chan, Learning Pat-

terns from Unix Process Execution Traces for Intrusion

Detection, AAAI Workshop: AI Approaches to Fraud
Detection and Risk Management, (1997), pp. 50–56.

[18] B-K Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish,
C. Faloutsos, and A. Biliris, Online Data Mining for

Co-Evolving Time Sequences, Proceedings of the ICDE
Conference, (2000).

