
Content-Centric Flow Mining for Influence Analysis in
Social Streams

Karthik Subbian
University of Minnesota, MN.

karthik@cs.umn.edu

Charu Aggarwal
IBM Watson Research, NY.

charu@us.ibm.com

Jaideep Srivastava
University of Minnesota, MN.

srivasta@cs.umn.edu

ABSTRACT
The problem of discovering information flow trends and influencers
in social networks has become increasingly relevant both because
of the increasing amount of content available from online networks
in the form of social streams, and because of its relevance as a
tool for content trends analysis. An important part of this analysis
is to determine the key patterns of flow and corresponding influ-
encers in the underlying network. Almost all the work on influence
analysis has focused on fixed models of the network structure, and
edge-based transmission between nodes. In this paper, we propose
a fully content-centered model of flow analysis in social network
streams, in which the analysis is based on actual content transmis-
sions in the network, rather than a static model of transmission on
the edges. First, we introduce the problem of information flow
mining in social streams, and then propose a novel algorithm In-
FlowMine to discover the information flow patterns in the network.
We then leverage this approach to determine the key influencers in
the network. Our approach is flexible, since it can also determine
topic-specific influencers. We experimentally show the effective-
ness and efficiency of our model.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
Social networks such as Twitter and Facebook have tremendous

amount of content being posted on them on a daily basis. A lot of
this content (or key parts of them) is often re-posted by different
users on a daily basis, and this leads to cascades of information
flow. Examples of such cascades are as follows:

• When a user posts a news-article or other interesting item on
their wall in Facebook, this is replicated by the friends of this
user on their own wall.
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• When a user tweets a message (or a link) in Twitter, the fol-
lowers of that user may either re-tweet, or tweet a message
containing the same topic (which is reflected by its hash-tag).
This corresponds to topical propagation.

The constant flow of such user content through a network is re-
ferred to as a social stream [1], and in conjunction with the network
structure it is the only observable aspect of social network dynam-
ics. The determination of information flow patterns from social
streams, such as Twitter, provide useful insights, because repeated
tweets can be tracked as discrete event paths, the construction of
which is revealing in terms of the importance of different actors.
This also provides a natural understanding into the key influencers
in the network using frequent epicenters (or originators) of the in-
formation cascades. This problem is directly related to that of find-
ing influential nodes [2, 3, 9] in a network, though the latter prob-
lem assumes that propagation probabilities are already available.
On the other hand, the information flow mining model provides a
holistic and integrated model, which starts directly from the avail-
able content flow in the social network stream.

The problem of information flows has been widely studied in un-
derstanding epidemic spread [4, 3] and flow cascades in blogs [6].
Most of these related work in information flow analysis have been
closely associated with influence cascade models [3, 5, 9], such as
linear threshold or independent cascade models [3], as they model
the underlying process of information diffusion. The main draw-
back of these models is the use of static edge propagation probabil-
ities, that do not directly capture the dynamic nature of the content
flows. Also, the work on actually modeling these transition proba-
bilities is very sparse and almost never uses the actual content be-
havior in the underlying network. Some recent work on estimating
influence probabilities [8] uses a number of application-dependent
assumptions about the weights of the different edges in the social
network. The results of this paper suggest that such static model-
ing is quite questionable, because the influence behavior of an edge
depends on many factors including the actual content of the inter-
action, the time period, and other factors, which can only be tracked
using the underlying content stream of the social network. Our ap-
proach addresses these problems by tracking the dynamic content
flows in the underlying network structure in order to determine in-
fluencers.

We develop an efficient algorithm called InFlowMine to discover
the information flow patterns using content propagation on the un-
derlying network structure. As the problem of information flow
and influence mining are tightly coupled, we leverage this solution
for influence analysis. We propose a Network Influencer Discovery
algorithm called NDIF, to discover influencers using the mined in-
formation flows patterns. Our framework can easily be tailored to
content- and topic-specific influencer discovery.



This paper is organized as follows. In section 2 we introduce
the problem of information flow mining. In section 3 we discuss
an approach to address this problem. In section 4 we explain an
application to find the information epicenters using the mined flow
patterns. Section 5 discusses the experimental results. Section 6
discusses the conclusions and summary.

2. PROBLEM DEFINITION
In this section, we introduce the necessary notations, and defini-

tions to formally define the problem of information flow mining.
We assume that we have a network G = (N,A), containing the

node set N and the edge set A. For ease in exposition, we assume
that the edge set A is undirected, though this assumption can be
easily relaxed without loss of generality. Each actor i ∈ N per-
forms a number of content-based actions such as sending tweets,
or posting wall posts etc. Since, this process occurs simultaneously
over the entire set of actors in the social network, the stream of
content created by the different actors can be globally treated as a
social stream of text content, denoted by T = T1 . . . Tn . . .. We
refer to each Ti as a content token. Each such content-token in the
stream is associated with the following meta-data:

(1) The content-token Ti represents the i-th component of the
content created by an actor in the social stream. This could cor-
respond to the actual text of the tweet/post, or only specific parts
of the post, such as URL strings, keywords, or hash tags. In the
event that the cascade behavior is being observed broadly in the
form of topics, rather than re-posts, the string Ti could also sim-
ply be one of a set of a topical dictionary of keywords (contained
in the tweet), or it could be the hash-tag from the tweet. We note
that since this content may be copied, re-posted, re-tweeted, or may
generally influence the future content posted by the different actors
(in the form of appropriate keywords or hash-tags), the value of
the different strings Ti (over different values of the index i) will
often be the same. It is precisely this propagation of the content
over the network, which we wish to track. In general, for a given
application, it is first pre-decided what kind of content to track for
interesting information flow patterns (e.g. URLs posted, full tweets
or keywords from a specific topic), and then all future analysis is
applied to this set of content-tokens. An interesting feature of our
approach is that it can be easily applied to an arbitrary subset of
content-tokens in order to facilitate topic-specific influence in the
network.

(2) It is assumed that the content Ti is created by the actor ai.
The value ai ∈ N is an index drawn from the actor set N , and it
represents the actor who is responsible for the origination of that
particular piece of content.

The entire social stream is denoted by T . We note that in many
social networks such as Twitter and blog networks, the stream of
content can be tracked in an automated way. In many cases, the
re-posting of the content is a direct result of a particular actor be-
ing influenced by specific neighbors, and the cascade effect of this
influence behavior, which can be monitored in terms of the URLs
posted, the keywords (or hash-tag) in the posts, or the exact content
of the tweets. Therefore, it is interesting to determine the frequent
information flows, in which consecutive participants share a neigh-
bor relationship, and the content of the (tracked subset of the) post
is the same.

We define the information flow patterns in terms of actors rather
than the content, as the same sequence of actors may be involved
in multiple such content interactions over different portions of the
stream. The purpose of our approach is to determine such frequent
information flows, where certain content flow may occur frequently
in a specific path of the network. In this paper, we assume that flow

patterns are essentially sequential paths in the network, however,
resulting flow cascades can be obtained by overlaying multiple such
frequent flow patterns. Correspondingly, we define the model for
determining the information flow patterns in networks. We start
off by defining a valid flow of information, based on the network
relationship of different actors:

DEFINITION 1 (VALID FLOW PATH). A valid flow path in the
network G = (N,A) is an ordered set of nodes i1 . . . ik ∈ N , such
that all nodes i1 . . . ik are distinct from one another, and for each
r ∈ {1 . . . k − 1}, an edge exists between ir and ir+1 in A.

We note that the purpose of defining a valid flow path is to focus
only on those flows which are governed by the network relation-
ships between actors, rather than arbitrary links. This is because of
the underlying assumption is that network cascades are caused by
social interactions, copying behavior, and more subtle influences
between neighbor nodes.

For the ease of analysis, we consider only the first posting of a
particular piece of content by an actor in the social stream. In effect,
this implies, the actors not influenced repeatedly by their own posts.
In many cases, repeated postings which are exactly identical are
more likely to be spam, rather than postings of specific interest,
and the issue of first posting is usually more critical. Therefore, it
makes sense not to include such repeated posts caused by the same
content from the same actor. For a given actor j ∈ N , who posts
the content U ∈ T , the index of the first position of the content
U in the social stream T = T1 . . . Ti . . . is denoted by F (j, U).
Thus, the content TF (j,U) ∈ T is the same as U . In the event that
the content U is not posted by actor j, we have F (j, U) = −1.

Next, we define the concept of information flow frequency. This
is essentially defined as the number of times that an ordered set of
actors posts the same content-token in that order.

DEFINITION 2 (INFORMATION FLOW FREQUENCY). The in-
formation flow frequency of actors i1 . . . ik is defined as the num-
ber r of unique content-tokens U1 . . . Ur , such that for each Uj , we
have:

• Each actor i1 . . . ik has posted Uj . Thus, we have:

F (ir, Uj) > 0 ∀r, j (1)

• Each content Uj was posted by the actors in the order i1 . . . ik.
Thus, for each Uj we have:

F (i1, Uj) < . . . < F (ir, Uj) < . . . < F (ik, Uj) (2)

The above definition can be generalized in order to determine the
frequent flow path for a specified frequency. This is essentially a se-
quence of actors who share a neighbor relationship in the network,
and post the same set of content-tokens in a specific order, possibly
as a result of being influenced by the behavior of their neighboring
actors in the network.

DEFINITION 3 (FREQUENT FLOW PATH). A sequence of ac-
tors i1 . . . ik is said to be a frequent flow path at frequency f , if the
following two conditions are satisfied:
• The sequence of actors i1 . . . ik is valid flow path.

• The information flow frequency of the actor sequence i1 . . . ik
is at least f .



Algorithm InFlowMine(SocialStream: T
frequency: f );

begin
for each node i
F1

i = {};
if node i has at least f posts in T then F1

i = {i};
end
k = 1;
while ∪iFk

i is not empty do
for each i generate Pk+1

i from Fk
i by by appending each

frequent neighbor node of i to the paths in Fk
i , and keeping

only potential paths with all distinct nodes;
for each i prune any path from Fk+1

i , for which at least
one of its path of length k is not in Fk

r (for some r);
for each i generate the path in Fk+1

i which
are valid frequent flow paths;

Reorganize the frequent potential paths ∪iPk+1
i based

on the last nodes of these paths, and generate the
corresponding path lists Fk+1

i for each node i;
k = k + 1;

end
return(S(f) = ∪k ∪i Fk

i )
end

Figure 1: Algorithm for Information Flow Mining

The frequency f expressed here is absolute and can be easily
converted to relative frequency by appropriate normalization. The
frequency, in essence, indicates the strength of the flow path, as to-
gether with the valid flow path constraint it ensures the flow obeys
the structure of the network. The problem of information flow min-
ing is formally defined as follows.

PROBLEM 1 (INFORMATION FLOW MINING). Given a graph
G, a stream of content propagations T = T1, . . . , Ti, . . . and a
user specified frequency f , the problem of information flow mining
is to find the set of all frequent flow paths S in the underlying graph
G using the unique content tokens U1, U2, . . . , Um generated from
the content stream T .

3. FLOW MINING ALGORITHM
In this section, we discuss our algorithm for mining information

flows from the social stream T . A simple method for doing so
would be to generate all possible information flows in a brute-force
manner and test if they satisfy the frequent flow path conditions.
However, this kind of approach is extremely slow as it completely
ignores network relationships and frequency of interest.

We propose a level-wise approach to efficiently perform the flow
mining process. Our level-wise approach expands the flow paths
in the network closely in coordination with the knowledge about
the network structure. The k-th iteration of this approach gener-
ates an information flow path of length k, which satisfies both the
network and frequency constraints. In order to achieve this goal,
we maintain a linked list associated with each node in the network.
At the end of the k-th iteration, this list essentially contains all the
frequent flow paths of length k (i.e. containing k nodes) with at
least frequency f , which end at node i. We denote this frequent
flow path list at each node i at the end of iteration k by Fk

i .
The algorithm proceeds as follows. In the first iteration, we gen-

erate all the singleton actor nodes, which have at least a frequency
of f in the social stream T . Thus, in this case, each node i con-
tains a list F1

i of either 0 or 1 element, depending upon whether
or not that actor has a frequency of at least f in the social stream.
In the next step, we examine all neighbors of a given node in order
to generate all paths of length 2. Specifically, we concatenate all

frequent neighbors of node i at the end of each path in F1
i , in or-

der to generate potential 2-length paths denoted by P2
i , which have

i as the penultimate node. From these candidate paths, we deter-
mine those for which the frequency is at least f . It is important that
the frequent flow paths from P2

i cannot be added to F2
i , since the

node i is now the penultimate node for the corresponding flow path,
where F2

i may contain only paths in which i is the final node. This
means thatF2

i is not a subset of P2
i , but a subset of the union of the

potential lists at its neighbor nodes. Therefore, the frequent paths
of P2

i are added to the lists F2
i corresponding to the final nodes

in these paths. This process is repeated until iteration k for node i
when there are no more potential paths in Pk+1

i .
In order to speed up the process of flow mining, a pruning tech-

nique is used. It uses the fact that the frequent flow path satisfies
antimonotonicity property, i.e. all k subsets of a (k + 1)-frequent
flow paths are also frequent. We further note that we only care
about those k length path, which are contiguous in the network;
therefore, we only have to check the k length path after dropping1

the first element in a (k + 1)-candidate. Therefore, we can prune
any (k + 1)-candidate in Pk+1

i , if this path of length k is not a
frequent flow path. Let us consider a path Q ∈ Pk+1

i , which ends
in node r. Then, we prune the flow path Q from the potential list if
any of its path of length k (and also ending with r), are not found in
Fk

r . The process is repeated iteratively to generate frequent flows
of longer and longer lengths. The process finally terminates, when
in a given iteration, the potential paths Pk+1

i are empty. All the
frequent flow paths satisfying the network constraints are returned
at the end of the algorithm. The discovered frequent flow paths is
denoted by S(s) = ∪k ∪i Fk

i . The overall algorithm is illustrated
in Figure 1.

3.1 Online Re-organization of Social Stream
Content via Hashing

The efficiency of the algorithm, listed in Figure 1, depends on
efficiently keeping track of the frequency of the information flow
paths. An important point to remember is that this process re-
quires determination of content-influence behavior between differ-
ent posts. As mentioned earlier, this influence is detected in terms
of content-token propagation. In order to simplify the string match-
ing and frequency tracking process, we use a hash table to track the
sequences of actors for each distinct content-token in the stream.
Thus, for each distinct content-token U ∈ T , we map it into the
hash table index h(U) (typically with the use of a standard hash-
ing technique such as a linear hash function with linear probing
for collision resolution). As mentioned earlier, the content-token
U may be a URL string, tweet message string, hash-tag, keyword,
or another text content string depending upon the underlying sce-
nario, and the particular content that we have pre-decided to track
in the social stream. Then, for each distinct value of U in the social
stream, we determine all actors j for which F (j, U) > 0. This is
the set P (U) = {j : j ∈ N,F (j, U) > 0}.

For each distinct value of the content U in the social stream, its
hash table slot h(U) points to a linked list of actors in P (U). Fur-
thermore, the actors in P (U) are organized by order of their values
of F (j, U). Thus, the set P (U) is converted into the ordered list
O(U), based on the first time of occurrence of the content U for a
particular actor. The entire set of lists in the hash table is denoted
by O = ∪All distinct content UO(U). After this re-organization
process is over, we have a set of ordered lists pointed to by the hash
table, which contains the list of actors who have posted that content,
in order of their (first) occurrence in the social stream. Because of

1The path after dropping the last element is already known to be in
its corresponding frequent path list.



the use of a hashing approach, this conversion can be performed ef-
ficiently, and in online fashion with the social stream. Specifically,
for each incoming post of content U by actor j, we determine if
the actor j occurs in the list pointed to by h(U). If this is the case,
then the list is not modified. Otherwise, the actor j is appended
to the end of the list. Thus, at any point in the social stream, this
data structure is always available for efficient tracking of flow path
frequency and maintained in an online fashion.

As the number of valid potentials for the paths of length two is
very high for some tokens, we implemented a specialized tracking
method for this case to improve the efficiency further. The reason
for this is that the some of the content-tokens U have a large number
of actors who posted them, which corresponds to a large value of
|O(U)|. On the other hand, for most of the tokens it was relatively
small. So, depending upon the length of the list O(U), we perform
the frequency tracking in the following way:

(1) We maintain a global data structure containing counts of all
pairs of content-tokens. If the actor sequence for the unique con-
tent is less than

√
| ∪i P2

i |, we increment the count of all pairs of
content-tokens, which occur in this list O(U). This can be achieved
by using a doubly nested loop on the ordered list, and this requires
O(| ∪i P2

i |) time per list. (2) For some lists which are very long,
we explicitly check the membership of each flow path of length 2
in ∪iP2

i with respect each unique content Uk, in order to increment
the support counts in the global data structure. This approach also
requires O(| ∪i P2

i |) time per unique content token.
The reason for using this approach is to optimize the frequency

tracking process for longer and shorter flow paths, so that the two
approaches require the same amount of time at the threshold value,
but are optimized within their respective list sizes.

3.2 Topic or Content Specific Flow Mining
An important point to remember is that the information flow min-

ing problem can be made to focus on specific topics or content by
calibrating the kind of content which is tracked for flow paths. This
cannot be easily achieved by cascade and influence analysis tech-
niques which do not directly use the content in the mining process.
For example, let us consider the case where a cosmetics manufac-
turer wishes to determine the content flow patterns corresponding
to the topic of cosmetic products. The first step is to create a vo-
cabulary D of all content-tokens, such as popular hash-tags, URLs
or other strings related to this topic. Then, the occurrence of these
content-tokens in the network posts are treated as the strings Ti for
content analysis. Specifically, for each post which contains one or
more content-tokens from D, we treat each post as a sequence of
strings from that user containing all the contained content-tokens
from D in that post. We further note that this kind of filtering
greatly reduces the amount of content (and the number of valid
flow paths) which need to be tracked. This can greatly speed up the
algorithm InFlowMine described in Figure 1, while simultaneously
achieving the goal of topic-targeting.

4. INFLUENCE MINING APPLICATION
The information flow patterns provide useful insights about the

influence of different entities in the network. In this section we
describe the use of such information flows in finding the frequent
epicenters or influencers of content propagation.

The influence of a node is generally characterized by the number
of nodes that forward or propagate its content further in the net-
work [3]. This is precisely captured by the set of all information
flow paths discovered in the previous section. There are two main
factors that affect the influence of a node in the context of a flow
path: (1) the position of the node in a flow path and (2) the number

of frequent flow paths in which it occurs. As the node consistently
occurs earlier and in more flow paths it is considered as a promising
influencer.

We now, more formally, define the problem of influence mining
in the context of information flow paths. For any frequent flow path
P = {i1 . . . ik}, discovered in the last section, any particular node
ir can influence all the actors, which occur after ir in P (including
itself). This corresponds to the set {ir, ir+1 . . . ik}. Correspond-
ingly, we define, the influence set of a node-flow pair.

DEFINITION 4 (NODE-FLOW INFLUENCE SET). The influence
set Q(i, P ) for a node-flow pair (i, P ) is defined as the set of all
nodes in flow path P , which occur after the occurrence of i in P ,
when P contains i. In the event that node i is not contained in P ,
this set is empty.

Intuitively the above definition is the set of all nodes which are
frequently influenced by a given node i through the frequent flow
path P . The definition above can be generalized to the case where
we are using the entire set of flow paths derived at frequency f ,
rather than a single flow path P . First, we define the influence set
of a given node i at the frequency f . This is essentially the union
of all the node-flow path sets for i for all frequent flow paths P in
S(f).

DEFINITION 5 (INFLUENCE OF A NODE). The node influence
I(i, f) of node i at frequency f is defined to be the size of the
union of all the node-flow influence sets for each frequent flow path
P ∈ S(f). Therefore, we have:

I(i, f) = | ∪P∈S(f) Q(i, P )| (3)

Thus, the above definition determines all the nodes, which are in-
fluenced by node i by all frequent flow path in set S(f). This
definition can of course be naturally generalized to a set of nodes,
rather than a single node, by computing the union of the influence
sets of different nodes.

DEFINITION 6 (INFLUENCE OF A NODE SET). The influence
I(V, f) of a node set V at frequency f is the size of the union of
the influence sets of the nodes in V . Therefore, we have:

I(V, f) = | ∪i∈V ∪P∈S(f)Q(i, P )| (4)

Ideally, we would like to determine a node set V (of pre-defined
size) in a network, for which the influence set I(V, f) is as large as
possible. Therefore, the influence maximization problem may be
stated as follows:

PROBLEM 2 (INFLUENCE MAXIMIZATION). For a given fre-
quency f , determine the node set V with at most k elements, for
which I(V, f) is maximum.

The influence of a given set of nodes V is more likely to be max-
imized, when we pick nodes from different parts of the network,
each of which has a large amount of influence in its locality.

The problem of determining the largest influence set is closely
related to that of sub-modular function maximization. A function
g(S) is defined as a monotonically non-decreasing sub-modular
function over its argument (which is the set S), such that the addi-
tional gain from adding an element to the set S reduces by further
adding elements to the set. In other words, for two sets V1, V2, such
that V1 ⊇ V2, we have:

g(V1) ≥ g(V2)

g(V1 ∪ {i})− g(V1) ≤ g(V2 ∪ {i})− g(V2)

We make the following observation:



Algorithm NDIF(Social Stream: T , frequency f ,
Number of Nodes: k);

begin
Determine all frequent flow paths at frequency f

from stream S (Section 3, Algorithm 1)
Construct influence sets I(i, f) for each node i;
V = {}
while (|V | ≤ k) do
Add the node i to V , such that
I(V ∪ {i}, f)− I(V, f) is as large as possible;

end
return(V );

end

Figure 2: Influence Maximization using Information Flows

OBSERVATION 1. The function gf (V ) = I(V, f) is sub-modular.

The above observation is easy to show, because the additional gain
of adding an element to a larger influence set can be no greater
than that of adding that element to its subset. As in [3], the sub-
modularity immediately suggests that the greedy algorithm of start-
ing with an empty set, and continually adding the element with the
largest incremental addition on the function I(V, f) provides an
effective solution both in theory and practice. The overall frame-
work for influence maximization and the pseudo-code for the cor-
responding algorithm is illustrated in Figure 2. We refer to the
algorithm as NDIF, which corresponds to Network Discovery of
Influencers using Flows.

Based on the results for sub-modular function maximization, the
greedy algorithm also yields a tight approximation bound for influ-
ence maximization algorithm NDIF.

THEOREM 1. The greedy algorithm for influence set maximiza-
tion yields an approximation bound of (e−1)/e, where e is the base
of the natural logarithm.

Our approach is fairly easy to adopt for any specific goals of in-
fluence maximization. For instance, it is possible to target influence
analysis in specific topics or areas of expertise, by focusing only on
propagation of specific content-tokens. Similarly, to target specific
actors L in the social network, by examining the size of I(V, f)∩L
during the application of the influence maximization algorithm.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the efficiency of our approach, In-

FlowMine, in terms of its running time. Then we evaluate the ef-
fectiveness of the discovered information flow patterns by compar-
ing the top-k influencers found by our NDIF algorithm versus other
popular baselines. The results were tested on a 64-bit Windows ma-
chine, with 8GB RAM and 2.7Ghz Intel i7 processor. Now we de-
scribe the measures used for evaluating the flow mining algorithm
and the influence mining application.

Evaluation for InFlowMine: The proposed InFlowMine algo-
rithm addresses a new problem, and hence we have tested its run-
time efficiency with respect to a closest baseline, a modified ver-
sion of a sequence mining algorithm. This is described later in this
section.

Evaluation for NDIF: Now, we describe how we measured the
effectiveness of our flow mining procedure using the NDIF algo-
rithm. For this purpose we define a measure called Influence Score.
We compute the Influence Score in terms of how the content in the
token set R has spread, for a particular set of influencers K. This is
achieved as follows. For each transaction Di we first mark the seed
influencers in K present in Di as influenced. Then we find each
of their neighbors who appear after them in ordered set Di. We do

this, because influence behavior is always assumed to be causal in
nature and the ordering in Di captures this causality. We proceed
this iteratively until there are no more neighbors who can be influ-
enced in the transaction Di. Now, we count the number of influ-
enced nodes for the transaction Di. We do this for all transactions
in D and average out the total influenced nodes per transaction and
refer to it as Influence Score. This measure is quite meaningful as
it captures the causality of influence. The notion of causality here
is, if b buys something after a buys it, and if a is a friend of b in the
network, then it is highly likely that b’s action was influenced by
that of a.

Baseline: As our problem definition is new, we use the sequence
mining approach as the closest possible baseline. As the sequence
mining approaches require a transaction database, we first trans-
lated the social stream data T to transaction database D. Remem-
ber, that the sequence mining approach does not directly address
our problem. Hence, the output of sequence mining has to be fur-
ther processed to satisfy the flow path constraints to construct all
valid frequent flow paths. We consider one of the most popular se-
quence mining algorithm Prefix Span [10] as our baseline. We show
that our approach extremely efficient in terms of finding flow pat-
terns compared to prefix-span. The efficiency of such an approach
is particularly important, because in the case of larger networks,
this can restrict our ability to determine important propagation pat-
terns at low frequencies.

The choice of baseline algorithm for comparing against the influ-
ence analysis part is very straight-forward. We use the most pop-
ular and standard baselines used in several other recent influence
analysis work [3, 2, 9, 7]. The first baseline is the PMIA algorithm
discussed in [9]. This a Prefix excluded extension of the Maxi-
mum Influence Arborescence (MIA) model. The model takes a
network structure with defined edge probabilities. We calculated
the probabilities using the weighed cascade model proposed in [3].
Our next baseline algorithm is DegreeDiscountIC, which is the de-
gree discount heuristic of [2] developed for the uniform IC model.
The PageRank algorithm is the standard algorithm used for ranking
web pages in web search and we used power method to compute
the page rank values. We used 0.15 as the restart probability and
a difference of 10−4 in L1 norm between two successive iterations
as the stopping criteria. The SP1M is the shortest path heuristics
algorithm of [7] with lazy forward optimization defined in [5].

Data Set: We downloaded the publicly available DBLP XML
data set 2, and extracted the month, year, title and author details for
each of the published document. We cleaned the DBLP data set
to remove documents with missing meta-information such as title,
author or date. After cleaning, the DBLP dataset had 1,008,883
distinct authors and 1,810,117 documents. The dates on the docu-
ments were used in order to create a social stream of content, where
the keywords in the titles formed the content-tokens. Temporal ties
between documents were resolved using their title string. This data
set consisted of 198,760 distinct keywords. We also constructed the
DBLP co-authorship network, which contained 1,008,883 nodes
and 3,383,570 edges.
5.1 Efficiency Results

As a baseline, we used a modified version of the well-known
PrefixSpan algorithm3 for frequent sequence mining [10]. We first
find all frequent sequences (irrespective of network structure) at
the required support level, and then remove those which do not
satisfy the network validity constraints. This is possible only after
the appropriate construction of the transaction database described

2http://dblp.uni-trier.de/xml/
3www.cs.uiuc.edu/~hanj/software/prefixspan.htm

http://dblp.uni-trier.de/xml/
www.cs.uiuc.edu/~hanj/software/prefixspan.htm
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Figure 3: Runtime and Influence Analysis results.

Running Time in Secs. W/O Net. Pruning W/ Net. Pruning
Support Level Prefix-Span Our Algo. P2 P3 P2 P3

0.0015 415.23 70 20926050 4060 82509 355
0.001 2373.38 447 153351072 630352 234368 22870
0.0008 5461.77 1123 365823002 4498694 361843 79410
0.0007 11580.93 1984 596751612 13001695 456795 147361

Table 1: Efficiency analysis for InFlowMine versus PrefixSpan.

earlier. The results are illustrated in Figure 3(a). The actual running
times of the PrefixSpan and InF lowMine algorithms are also
illustrated in Tables 1 respectively.

It is evident that the running times of our approach were signifi-
cantly lower than the baseline method, and this advantage increased
with lowered frequency. This can easily be seen in terms of the
scalability with frequency level, in which our approach scaled lin-
early with the frequency, whereas the PrefixSpan method scaled ex-
ponentially. At the lower frequency levels the InFlowMine method
is faster by an order of magnitude compared to the baseline. The
advantage of our method is primarily a result of flow path validity
pruning, while in the process of discovering the patterns. This can
easily be seen from the columns P2 and P3 of Tables 1, which
list the number of potential paths of lengths two and three before
and after network pruning for each of the data sets. It is evident,
that only a very small fraction of the potential paths survive flow
path validity constraint, and this significantly contributes to the ef-
ficiency of our approach.

5.2 Effectiveness Results
We tested the effectiveness of InFlowMine algorithm with re-

spect to the influencers found using the discovered information
flows. We do this by evaluating the influence score measure for
NDIF algorithm varying the number of influencers as shown in Fig-
ure 3(b). The SP1M baseline never completed and the PageRank
method almost fully overlaps with PMIA, and hence they are not
shown for clarity. We note that all methods perform very similarly
when the number of influencers is too small or too large, because
in these cases the problem becomes trivial. However, in the “in-
teresting” range of values on the X-axis, our approach performed
significantly better. With less than 100 influencers our algorithm is
able to propagate almost all the relevant content-tokens to the dif-
ferent nodes as possible. On the other hand, the best baselines such
as PMIA and DegreeDiscountIC do not even come close at a seed
of 100 influencers. This illustrates, the power of using information
flows to discover influencers is much more effective compared to
the standard approaches.

5.3 Efficiency of NDIF Algorithm
We now analyze the efficiency of the NDIF algorithm in compar-

ison with the other baselines. The results for the different methods
are illustrated in Table 2. It is evident that some of the methods
are so slow, that they can sometimes become hard to use, espe-
cially if multiple runs are needed at different times in the social
stream scenario. For example, the PMIA algorithm was slower by

Method NDIF PMIA DD-IC PageRank SP1M
RunTime (Sec.) 472.20 1965.59 21.81 6.29 >86400

Table 2: Efficiency Analysis for NDIF algorithm.

a factor of 10 compared to our NDIF algorithm. The SP1M algo-
rithm was much slower and never completed after running for more
than a day. Hence we report > 86400 seconds for SP1M baseline.
In addition to being slower, our results in the previous subsection
showed that these algorithms also performed poorly in quantitative
influence measures. On the other hand, the running time of NDIF
was quite modest, and it can easily be applied at any point in the
social stream, as long as the online hash tables described are con-
tinuously maintained. While NDIF is not quite as fast as DegreeD-
iscountIC or PageRank, the latter methods performed too poorly
to be practical in these scenarios. Therefore, the NDIF algorithm
provides the best tradeoff between effectiveness and efficiency, and
unprecedented flexibility in terms of content-centric analysis.

6. CONCLUSIONS AND SUMMARY
The availability of increasingly larger amounts of content in on-

line networks makes it possible to perform information flow pattern
discovery than ever before. In this paper, we introduced the infor-
mation flow mining problem based on the propagation of content
in the network structure. Then, we have proposed an approach to
mine the flow patterns, following specific flow validity constraints.
We show the effectiveness of the discovered patterns using an in-
fluence mining application. Our experimental results demonstrate
that our proposed flow mining approach is extremely efficient and
is well suited for several application areas such as influence mining.
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