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Preface

The problem of clustering is perhaps one of the most widely studied in the data mining and machine
learning communities. This problem has been studied by researchers from several disciplines over
five decades. Applications of clustering include a wide variety of problem domains such as text,
multimedia, social networks, and biological data. Furthermore, the problem may be encountered in
a number of different scenarios such as streaming or uncertain data. Clustering is a rather diverse
topic, and the underlying algorithms depend greatly on the data domain and problem scenario.

Therefore, this book will focus on three primary aspects of data clustering. The first set of chap-
ters will focus on the core methods for data clustering. These include methods such as probabilistic
clustering, density-based clustering, grid-based clustering, and spectral clustering. The second set
of chapters will focus on different problem domains and scenarios such as multimedia data, text
data, biological data, categorical data, network data, data streams and uncertain data. The third set
of chapters will focus on different detailed insights from the clustering process, because of the sub-
jectivity of the clustering process, and the many different ways in which the same data set can be
clustered. How do we know that a particular clustering is good or that it solves the needs of the
application? There are numerous ways in which these issues can be explored. The exploration could
be through interactive visualization and human interaction, external knowledge-based supervision,
explicitly examining the multiple solutions in order to evaluate different possibilities, combining
the multiple solutions in order to create more robust ensembles, or trying to judge the quality of
different solutions with the use of different validation criteria.

The clustering problem has been addressed by a number of different communities such as pattern
recognition, databases, data mining and machine learning. In some cases, the work by the different
communities tends to be fragmented and has not been addressed in a unified way. This book will
make a conscious effort to address the work of the different communities in a unified way. The book
will start off with an overview of the basic methods in data clustering, and then discuss progressively
more refined and complex methods for data clustering. Special attention will also be paid to more
recent problem domains such as graphs and social networks.

The chapters in the book will be divided into three types:

• Method Chapters: These chapters discuss the key techniques which are commonly used for
clustering such as feature selection, agglomerative clustering, partitional clustering, density-
based clustering, probabilistic clustering, grid-based clustering, spectral clustering, and non-
negative matrix factorization.

• Domain Chapters: These chapters discuss the specific methods used for different domains
of data such as categorical data, text data, multimedia data, graph data, biological data, stream
data, uncertain data, time series clustering, high-dimensional clustering, and big data. Many of
these chapters can also be considered application chapters, because they explore the specific
characteristics of the problem in a particular domain.

• Variations and Insights: These chapters discuss the key variations on the clustering process
such as semi-supervised clustering, interactive clustering, multi-view clustering, cluster en-
sembles, and cluster validation. Such methods are typically used in order to obtain detailed
insights from the clustering process, and also to explore different possibilities on the cluster-
ing process through either supervision, human intervention, or through automated generation

xxi
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of alternative clusters. The methods for cluster validation also provide an idea of the quality
of the underlying clusters.

This book is designed to be comprehensive in its coverage of the entire area of clustering, and it is
hoped that it will serve as a knowledgeable compendium to students and researchers.
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2 Data Clustering: Algorithms and Applications

1.1 Introduction

The problem of data clustering has been widely studied in the data mining and machine learning
literature because of its numerous applications to summarization, learning, segmentation, and target
marketing [46, 47, 52]. In the absence of specific labeled information, clustering can be considered
a concise model of the data which can be interpreted in the sense of either a summary or a generative
model. The basic problem of clustering may be stated as follows:

Given a set of data points, partition them into a set of groups which are as similar as possible.

Note that this is a very rough definition, and the variations in the problem definition can be sig-
nificant, depending upon the specific model used. For example, a generative model may define
similarity on the basis of a probabilistic generative mechanism, whereas a distance-based approach
will use a traditional distance function for quantification. Furthermore, the specific data type also
has a significant impact on the problem definition.

Some common application domains in which the clustering problem arises are as follows:

• Intermediate Step for other fundamental data mining problems: Since a clustering can
be considered a form of data summarization, it often serves as a key intermediate step for
many fundamental data mining problems such as classification or outlier analysis. A compact
summary of the data is often useful for different kinds of application-specific insights.

• Collaborative Filtering: In collaborative filtering methods, the clustering provides a summa-
rization of like-minded users. The ratings provided by the different users for each other are
used in order to perform the collaborative filtering. This can be used to provide recommenda-
tions in a variety of applications.

• Customer Segmentation: This application is quite similar to collaborative filtering, since
it creates groups of similar customers in the data. The major difference from collaborative
filtering is that instead of using rating information, arbitrary attributes about the objects may
be used for clustering purposes.

• Data Summarization: Many clustering methods are closely related to dimensionality reduc-
tion methods. Such methods can be considered a form of data summarization. Data summa-
rization can be helpful in creating compact data representations, which are easier to process
and interpret in a wide variety of applications.

• Dynamic Trend Detection: Many forms of dynamic and streaming algorithms can be used
to perform trend detection in a wide variety of social networking applications. In such appli-
cations, the data is dynamically clustered in a streaming fashion and can be used in order to
determine important patterns of changes. Examples of such streaming data could be multidi-
mensional data, text streams, streaming time-series data, and trajectory data. Key trends and
events in the data can be discovered with the use of clustering methods.

• Multimedia Data Analysis: A variety of different kinds of documents such as images, audio
or video, fall in the general category of multimedia data. The determination of similar seg-
ments has numerous applications, such as the determination of similar snippets of music or
similar photographs. In many cases, the data may be multimodal and may contain different
types. In such cases, the problem becomes even more challenging.

• Biological Data Analysis: Biological data has become pervasive in the last few years, be-
cause of the success of the human genome effort and the increasing ability to collect different
kinds of gene expression data. Biological data is usually structured either as sequences or as
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networks. Clustering algorithms provide good ideas of the key trends in the data, as well as
the unusual sequences.

• Social Network Analysis: In these applications, the structure of a social network is used in
order to determine the important communities in the underlying network. Community detec-
tion has important applications in social network analysis, because it provides an important
understanding of the community structure in the network. Clustering also has applications to
social network summarization, which is useful in a number of applications.

The aforementioned list of applications is not exhaustive by any means; nevertheless it represents
a good cross-section of the wide diversity of problems which can be addressed with clustering
algorithms.

The work in the data clustering area typically falls into a number of broad categories;

• Technique-centered: Since clustering is a rather popular problem, it is not surprising that nu-
merous methods, such as probabilistic techniques, distance-based techniques, spectral tech-
niques, density-based techniques, and dimensionality-reduction based techniques, are used
for the clustering process. Each of these methods has its own advantages and disadvantages,
and may work well in different scenarios and problem domains. Certain kinds of data types
such as high dimensional data, big data, or streaming data have their own set of challenges
and often require specialized techniques.

• Data-Type Centered: Different applications create different kinds of data types with different
properties. For example, an ECG machine will produce time series data points which are
highly correlated with one another, whereas a social network will generated a mixture of
document and structural data. Some of the most common examples are categorical data, time
series data, discrete sequences, network data, and probabilistic data. Clearly, the nature of the
data greatly impacts the choice of methodology used for the clustering process. Furthermore,
some data types are more difficult than others because of the separation between different
kinds of attributes such as behavior or contextual attributes.

• Additional Insights from Clustering Variations: A number of insights have also been de-
signed for different kinds of clustering variations. For example, visual analysis, supervised
analysis, ensemble-analysis, or multiview analysis can be used in order to gain additional in-
sights. Furthermore, the issue of cluster validation is also important from the perspective of
gaining specific insights about the performance of the clustering.

This chapter will discuss each of these issues in detail, and will also discuss how the organization of
the book relates to these different areas of clustering. The chapter is organized as follows. The next
section discusses the common techniques which are used in cluster analysis. Section 1.3 explores
the use of different data types in the clustering process. Section 1.4 discusses the use of different
variations of data clustering. Section 1.5 offers the conclusions and summary.

1.2 Common Techniques Used in Cluster Analysis

The clustering problems can be addressed using a wide variation of methods. In addition, the
data preprocessing phase requires dedicated techniques of its own. A number of good books and
surveys discuss these issues [14, 20, 31, 37, 46, 47, 48, 52, 65, 80, 81]. The most common techniques
which are used for clustering are discussed in this section.
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1.2.1 Feature Selection Methods

The feature selection phase is an important preprocessing step which is needed in order to en-
hance the quality of the underlying clustering. Not all features are equally relevant to finding the
clusters, since some may be more noisy than other. Therefore, it is often helpful to utilize a pre-
processing phase in which the noisy and irrelevant features are pruned from contention. Feature
selection and dimensionality reduction are closely related. In feature selection, original subsets of
the features are selected. In dimensionality reduction, linear combinations of features may be used
in techniques such as principal component analysis [50] in order to further enhance the feature se-
lection effect. The advantage of the former is greater interpretability, whereas the advantage of the
latter is that a lesser number of transformed directions is required for the representation process.
Chapter 2 of this book will discuss such feature selection methods in detail. A comprehensive book
on feature selection may be found in [61].

It should be noted that feature selection can also be integrated directly into the clustering al-
gorithm to gain better locality specific insights. This is particularly useful, when different features
are relevant to different localities of the data. The motivating factor for high dimensional subspace
clustering algorithms is the failure of global feature selection algorithms. As noted in [9]: “. . . in
many real data examples, some points are correlated with respect to a given set of dimensions and
others are correlated with respect to different dimensions. Thus, it may not always be feasible to
prune off too many dimensions without at the same time incurring a substantial loss of informa-
tion” p.61. Therefore, the use of local feature selection, by integrating the feature selection process
into the algorithm, is the best way of achieving this goal. Such local feature selections can also be
extended to the dimensionality reduction problem [8, 19] and are sometimes referred to as local
dimensionality reduction. Such methods are discussed in detail in Chapter 9. Furthermore, Chapter
2 also discusses the connections of these classes of methods to the problem of feature selection.

1.2.2 Probabilistic and Generative Models

In probabilistic models, the core idea is to model the data from a generative process. First, a
specific form of the generative model (e.g., mixture of Gaussians) is assumed, and then the parame-
ters of this model are estimated with the use of the Expectation Maximization (EM) algorithm [27].
The available data set is used to estimate the parameters in such as way that they have a maximum
likelihood fit to the generative model. Given this model, we then estimate the generative probabil-
ities (or fit probabilities) of the underlying data points. Data points which fit the distribution well
will have high fit probabilities, whereas anomalies will have very low fit probabilities.

The broad principle of a mixture-based generative model is to assume that the data were gener-
ated from a mixture of k distributions with the probability distributions G1 . . .Gk with the use of the
following process:

• Pick a data distribution with prior probability αi, where i ∈ {1 . . .k}, in order to pick one of
the k distributions. Let us assume that the rth one is picked.

• Generate a data point from Gr.

The probability distribution Gr is picked from a host of different possibilities. Note that this gen-
erative process requires the determination of several parameters such as the prior probabilities and
the model parameters for each distribution Gr. Models with different levels of flexibility may be de-
signed depending upon whether the prior probabilities are specified as part of the problem setting,
or whether interattribute correlations are assumed within a component of the mixture. Note that the
model parameters and the probability of assignment of data points to clusters are dependent on one
another in a circular way. Iterative methods are therefore desirable in order to resolve this circularity.
The generative models are typically solved with the use of an EM approach, which starts off with
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a random or heuristic initialization and then iteratively uses two steps to resolve the circularity in
computation:

• (E-Step) Determine the expected probability of assignment of data points to clusters with the
use of current model parameters.

• (M-Step) Determine the optimum model parameters of each mixture by using the assignment
probabilities as weights.

One nice property of EM-models is that they can be generalized relatively easily to different
kinds of data, as long as the generative model for each component is properly selected for the
individual mixture component Gr. Some examples are as follows:

• For numerical data, a Gaussian mixture model may be used in order to model each component
Gr. Such a model is discussed in detail in Chapter 3.

• For categorical data, a Bernoulli model may be used for Gr in order to model the generation
of the discrete values.

• For sequence data, a Hidden Markov Model (HMM) may be used for Gr in order to model the
generation of a sequence. Interestingly, an HMM is itself a special kind of mixture model in
which the different components of the mixture are dependent on each other though transitions.
Thus, the clustering of sequence data with a mixture of HMMs can be considered a two-level
mixture model.

Generative models are among the most fundamental of all clustering methods, because they try to
understand the underlying process through which a cluster is generated. A number of interesting
connections exist between other clustering methods and generative models, by considering special
cases in terms of prior probabilities or mixture parameters. For example, the special case in which
each prior probability is fixed to the same value and all mixture components are assumed to have
the same radius along all dimensions reduces to a soft version of the k-means algorithm. These
connections will be discussed in detail in Chapter 3.

1.2.3 Distance-Based Algorithms

Many special forms of generative algorithms can be shown to reduce to distance-based algo-
rithms. This is because the mixture components in generative models often use a distance function
within the probability distribution. For example, the Gaussian distribution represents data genera-
tion probabilities in terms of the euclidian distance from the mean of the mixture. As a result, a
generative model with the Gaussian distribution can be shown to have a very close relationship with
the k-means algorithm. In fact, many distance-based algorithms can be shown to be reductions from
or simplifications of different kinds of generative models.

Distance-based methods are often desirable because of their simplicity and ease of implemen-
tation in a wide variety of scenarios. Distance-based algorithms can be generally divided into two
types:

• Flat: In this case, the data is divided into several clusters in one shot, typically with the use of
partitioning representatives. The choice of the partitioning representative and distance func-
tion is crucial and regulates the behavior of the underlying algorithm. In each iteration, the
data points are assigned to their closest partitioning representatives, and then the representa-
tive is adjusted according to the data points assigned to the cluster. It is instructive to compare
this with the iterative nature of the EM algorithm, in which soft assignments are performed
in the E-step, and model parameters (analogous to cluster representatives) are adjusted in the
M-step. Some common methods for creating the partitions are as follows:
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– k-Means: In these methods, the partitioning representatives correspond to the mean of
each cluster. Note that the partitioning representative is not drawn from the original data
set, but is created as a function of the underlying data. The euclidian distance is used
in order to compute distances. The k-Means method is considered one of the simplest
and most classical methods for data clustering [46] and is also perhaps one of the most
widely used methods in practical implementations because of its simplicity.

– k-Medians: In these methods, the median along each dimension, instead of the mean, is
used to create the partitioning representative. As in the case of the k-Means approach,
the partitioning representatives are not drawn from the original data set. The k-Medians
approach is more stable to noise and outliers, because the median of a set of values is
usually less sensitive to extreme values in the data. It should also be noted that the term
“k-Medians” is sometimes overloaded in the literature, since it is sometimes also used
to refer to a k-Medoid approach (discussed below) in which the partitioning representa-
tives are drawn from the original data. In spite of this overloading and confusion in the
research literature, it should be noted that the k-Medians and k-Medoid methods should
be considered as distinct techniques. Therefore, in several chapters of this book, the k-
Medians approach discussed is really a k-Medoids approach, though we have chosen to
be consistent within the specific research paper which is being described. Nevertheless,
it would be useful to note the overloading of this term in order to avoid confusion.

– k-Medoids: In these methods, the partitioning representative is sampled from the orig-
inal data. Such techniques are particularly useful in cases, where the data points to be
clustered are arbitrary objects, and it is often not meaningful to talk about functions of
these objects. For example, for a set of network or discrete sequence objects, it may
not be meaningful to talk about their mean or median. In such cases, partitioning repre-
sentatives are drawn from the data, and iterative methods are used in order to improve
the quality of these representatives. In each iteration, one of the representatives is re-
placed with a representative from the current data, in order to check if the quality of
the clustering improves. Thus, this approach can be viewed as a kind of hill climb-
ing method. These methods generally require many more iterations than k-Means and
k-Medoids methods. However, unlike the previous two methods, they can be used in
scenarios where it is not meaningful to talk about means or medians of data objects (eg.
structural data objects).

• Hierarchical: In these methods, the clusters are represented hierarchically through a dendo-
gram, at varying levels of granularity. Depending upon whether this hierarchical representa-
tion is created in top-down or bottom-up fashion, these representations may be considered
either agglomerative or divisive.

– Agglomerative: In these methods, a bottom-up approach is used, in which we start
off with the individual data points and successively merge clusters in order to create
a tree-like structure. A variety of choices are possible in terms of how these clusters
may be merged, which provide different tradeoffs between quality and efficiency. Some
examples of these choices are single-linkage, all-pairs linkage, centroid-linkage, and
sampled-linkage clustering. In single-linkage clustering, the shortest distance between
any pair of points in two clusters is used. In all-pairs linkage, the average over all pairs
is used, whereas in sampled linkage, a sampling of the data points in the two clusters
is used for calculating the average distance. In centroid-linkage, the distance between
the centroids is used. Some variations of these methods have the disadvantage of chain-
ing, in which larger clusters are naturally biased toward having closer distances to other
points and will therefore attract a successively larger number of points. Single linkage
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clustering is particularly susceptible to this phenomenon. A number of data domains
such as network clustering are also more susceptible to this behavior.

– Divisive: In these methods, a top-down approach is used in order to successively parti-
tion the data points into a tree-like structure. Any flat clustering algorithm can be used in
order to perform the partitioning at each step. Divisive partitioning allows greater flex-
ibility in terms of both the hierarchical structure of the tree and the level of balance in
the different clusters. It is not necessary to have a perfectly balanced tree in terms of the
depths of the different nodes or a tree in which the degree of every branch is exactly two.
This allows the construction of a tree structure which allows different tradeoffs in the
balancing of the node depths and node weights (number of data points in the node). For
example, in a top-down method, if the different branches of the tree are unbalanced in
terms of node weights, then the largest cluster can be chosen preferentially for division
at each level. Such an approach [53] is used in METIS in order to create well balanced
clusters in large social networks, in which the problem of cluster imbalance is partic-
ularly severe. While METIS is not a distance-based algorithm, these general principles
apply to distance-based algorithms as well.

Distance-based methods are very popular in the literature, because they can be used with almost any
data type, as long as an appropriate distance function is created for that data type. Thus, the problem
of clustering can be reduced to the problem of finding a distance function for that data type. There-
fore, distance function design has itself become an important area of research for data mining in its
own right [5, 82]. Dedicated methods also have often been designed for specific data domains such
as categorical or time series data [32, 42]. Of course, in many domains, such as high-dimensional
data, the quality of the distance functions reduces because of many irrelevant dimensions [43] and
may show both errors and concentration effects, which reduce the statistical significance of data
mining results. In such cases, one may use either the redundancy in larger portions of the pairwise
distance matrix to abstract out the noise in the distance computations with spectral methods [19] or
projections in order to directly find the clusters in relevant subsets of attributes [9]. A discussion of
many hierarchical and partitioning algorithms is provided in Chapter 4 of this book.

1.2.4 Density- and Grid-Based Methods

Density- and grid-based methods are two closely related classes, which try to explore the data
space at high levels of granularity. The density at any particular point in the data space is defined
either in terms of the number of data points in a prespecified volume of its locality or in terms of
a smoother kernel density estimate [74]. Typically, the data space is explored at a reasonably high
level of granularity and a postprocessing phase is used in order to “put together” the dense regions
of the data space into an arbitrary shape. Grid-based methods are a specific class of density-based
methods in which the individual regions of the data space which are explored are formed into a
grid-like structure. Grid-like structures are often particularly convenient because of greater ease in
putting together the different dense blocks in the post-processing phase. Such grid-like methods can
also be used in the context of high-dimensional methods, since the lower dimensional grids define
clusters on subsets of dimensions [6].

A major advantage of these methods is that since they explore the data space at a high level of
granularity, they can be used to reconstruct the entire shape of the data distribution. Two classical
methods for density-based methods and grid-based methods are DBSCAN [34] and STING [83],
respectively. The major challenge of density-based methods is that they are naturally defined on
data points in a continuous space. Therefore, they often cannot be meaningfully used in a discrete
or noneuclidian space, unless an embedding approach is used. Thus, many arbitrary data types such
as time-series data are not quite as easy to use with density-based methods without specialized
transformations. Another issue is that density computations becomes increasingly difficult to define
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with greater dimensionality because of the greater number of cells in the underlying grid structure
and the sparsity of the data in the underlying grid. A detailed discussion of density-based and grid-
based methods is provided in Chapters 5 and 6 of this book.

1.2.5 Leveraging Dimensionality Reduction Methods

Dimensionality reduction methods are closely related to both feature selection and clustering, in
that they attempt to use the closeness and correlations between dimensions to reduce the dimension-
ality of representation. Thus, dimensionality reduction methods can often be considered a vertical
form of clustering, in which columns of the data are clustered with the use of either correlation or
proximity analysis, as opposed to the rows. Therefore, a natural question arises, as to whether it is
possible to perform these steps simultaneously, by clustering rows and columns of the data together.
The idea is that simultaneous row and column clustering is likely to be more effective than perform-
ing either of these steps individually. This broader principle has led to numerous algorithms such
as matrix factorization, spectral clustering, probabilistic latent semantic indexing, and co-clustering.
Some of these methods such as spectral clustering are somewhat different but are nevertheless based
on the same general concept. These methods are also closely related to projected clustering meth-
ods, which are commonly used for high dimensional data in the database literature. Some common
models will be discussed below.

1.2.5.1 Generative Models for Dimensionality Reduction

In these models, a generative probability distribution is used to model the relationships between
the data points and dimensions in an integrated way. For example, a generalized Gaussian distri-
bution can be considered a mixture of arbitrarily correlated (oriented) clusters, whose parameters
can be learned by the EM-algorithm. Of course, this is often not easy to do robustly with increasing
dimensionality due to the larger number of parameters involved in the learning process. It is well
known that methods such as EM are highly sensitive to overfitting, in which the number of param-
eters increases significantly. This is because EM methods try to retain all the information in terms
of soft probabilities, rather than making the hard choices of point and dimension selection by non-
parametric methods. Nevertheless, many special cases for different data types have been learned
successfully with generative models.

A particularly common dimensionality reduction method is that of topic modeling in text data
[45]. This method is also sometimes referred to as Probabilistic Latent Semantic Indexing (PLSI).
In topic modeling, a cluster is associated with a set of words and a set of documents simultaneously.
The main parameters to be learned are the probabilities of assignments of words (dimensions) to
topics (clusters) and those of the documents (data points) to topics (clusters). Thus, this naturally
creates a soft clustering of the data from both a row and column perspective. These are then learned
in an integrated way. These methods have found a lot of success in the text mining literature, and
many methods, such as Latent Dirichlet Allocation (LDA), which vary on this principle, with the
use of more generalized priors have been proposed [22]. Many of these models are discussed briefly
in Chapter 3.

1.2.5.2 Matrix Factorization and Co-Clustering

Matrix factorization and co-clustering methods are also commonly used classes of dimension-
ality reduction methods. These methods are usually applied to data which is represented as sparse
nonnegative matrices, though it is possible in principle to generalize these methods to other kinds
of matrices as well. However, the real attraction of this approach is the additional interpretability
inherent in nonnegative matrix factorization methods, in which a data point can be expressed as a
nonnegative linear combination of the concepts in the underlying data. Nonnegative matrix factor-
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ization methods are closely related to co-clustering, which clusters the rows and columns of a matrix
simultaneously.

Let A be a nonnegative n× d matrix, which contains n data entries, each of which has a di-
mensionality of d. In most typical applications such as text data, the matrix A represents small
nonnegative quantities such as word frequencies and is not only nonnegative, but also sparse. Then,
the matrix A can be approximately factorized into two nonnegative low rank matrices U and V of
sizes n× k and k× d, respectively. As we will discuss later, these matrices are the representatives
for the clusters on the rows and the columns, respectively, when exactly k clusters are used in order
to represent both rows and columns. Therefore, we have

A≈U ·V (1.1)

The residual matrix R represents the noise in the underlying data:

R = A−U ·V (1.2)

Clearly, it is desirable to determine the factorized matrices U and V , such that the sum of the squares
of the residuals in R is minimized. This is equivalent to determining nonnegative matrices U and V ,
such that the Froebinius norm of A−U ·V is minimized. This is a constrained optimization problem,
in which the constraints correspond to the nonnegativity of the entries in U and V . Therefore, a
Lagrangian method can be used to learn the parameters of this optimization problem. A detailed
discussion of the iterative approach is provided in [55].

The nonnegative n× k matrix U represents the coordinates of each of the n data points into
each of the k newly created dimensions. A high positive value of the entry (i, j) implies that data
point i is closely related to the newly created dimension j. Therefore, a trivial way to perform the
clustering would be to assign each data point to the newly created dimension for which it has the
largest component in U . Alternatively, if data points are allowed to belong to multiple clusters, then
for each of the k columns in V , the entries with value above a particular threshold correspond to
the document clusters. Thus, the newly created set of dimensions can be made to be synonymous
with the clustering of the data set. In practice, it is possible to do much better, by using k-means
on the new representation. One nice characteristic of the nonnegative matrix factorization method
is that the size of an entry in the matrix U tells us how much a particular data point is related to a
particular concept (or newly created dimension). The price of this greater interpretability is that the
newly created sets of dimensions are typically not orthogonal to one another. This brings us to a
discussion of the physical interpretation of matrix V .

The k×d matrix V provides the actual representation of each of the k newly created dimensions
in terms of the original d dimensions. Thus, each row in this matrix is one component of this
newly created axis system, and the rows are not necessarily orthogonal to one another (unlike most
other dimensionality reduction methods). A large positive entry implies that this newly created
dimension is highly related to a particular dimension in the underlying data. For example, in a
document clustering application, the entries with large positive values in each row represent the most
common words in each cluster. A thresholding technique can be used to identify these words. Note
the similarity of this approach with a projection-based technique or the softer PLSI technique. In the
context of a document clustering application, these large positive entries provide the word clusters
in the underlying data. In the context of text data, each document can therefore be approximately
expressed (because of the factorization process) as a nonnegative linear combination of at most
k word-cluster vectors. The specific weight of that component represents the importance of that
component, which makes the decomposition highly interpretable. Note that this interpretability is
highly dependent on nonnegativity. Conversely, consider the word-membership vector across the
corpus. This can be expressed in terms of at most k document-cluster vectors. This provides an idea
of how important each document cluster is to that word.

At this point, it should be evident that the matrices U and V simultaneously provide the clusters
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on the rows (documents) and columns (words). This general principle, when applied to sparse non-
negative matrices, is also referred to as co-clustering. Of course, nonnegative matrix factorization is
only one possible way to perform the co-clustering. A variety of graph-based spectral methods and
other information theoretic methods can also be used in order to perform co-clustering [29, 30, 71].
Matrix factorization methods are discussed in Chapter 7. These techniques are also closely related
to spectral methods for dimensionality reduction, as discussed below.

1.2.5.3 Spectral Methods

Spectral methods are an interesting technique for dimensionality reduction, which work with the
similarity (or distance) matrix of the underlying data, instead of working with the original points and
dimensions. This, of course, has its own set of advantages and disadvantages. The major advantage
is that it is now possible to work with arbitrary objects for dimensionality reduction, rather than
simply data points which are represented in a multi-dimensional space. In fact, spectral methods
also perform the dual task of embedding these objects into a euclidian space, while performing
the dimensionality reduction. Therefore, spectral methods are extremely popular for performing
clustering on arbitrary objects such as node sets in a graph. The disadvantage of spectral methods
is that since they work with an n× n similarity matrix, the time complexity for even creating the
similarity matrix scales with the square of the number of data points. Furthermore, the process of
determining the eigenvectors of this matrix can be extremely expensive, unless a very small number
of these eigenvectors is required. Another disadvantage of spectral methods is that it is much more
difficult to create lower dimensional representations for data points, unless they are part of the
original sample from which the similarity matrix was created. For multidimensional data, the use
of such a large similarity matrix is rather redundant, unless the data is extremely noisy and high
dimensional.

Let D be a database containing n points. The first step is to create an n×n matrix W of weights,
which represents the pairwise similarity between the different data points. This is done with the use
of the heat kernel. For any pair of data points Xi and Xj, the heat kernel defines a similarity matrix
W of weights:

Wi j = exp(−||Xi−Xj||2/t) (1.3)

Here t is a user-defined parameter. Furthermore, the value of Wi j is set to 0 if the distance between Xi

and Xj is greater than a given threshold. The similarity matrix may also be viewed as the adjacency
matrix of a graph, in which each node corresponds to a data item, and the weight of an edge corre-
sponds to the similarity between these data items. Therefore, spectral methods reduce the problem
to that of finding optimal cuts in this graph, which correspond to partitions which are weakly con-
nected by edges representing similarity. Hence, spectral methods can be considered a graph-based
technique for clustering of any kinds of data, by converting the similarity matrix into a network
structure. Many variants exist in terms of the different choices for constructing the similarity matrix
W . Some simpler variants use the mutual k-nearest neighbor graph, or simply the binary graph in
which the distances are less than a given threshold. The matrix W is symmetric.

It should be noted that even when distances are very noisy, the similarity matrix encodes a
significant amount of information because of its exhaustive nature. It is here that spectral analy-
sis is useful, since the noise in the similarity representation can be abstracted out with the use of
eigenvector-analysis of this matrix. Thus, these methods are able to recover and sharpen the latent
information in the similarity matrix, though at a rather high cost, which scales with the square of
the number of data points.

First, we will discuss the problem of mapping the points onto a 1-dimensional space. The gen-
eralization to the k-dimensional case is relatively straightforward. We would like to map the data
points in D into a set of points y1 . . .yn on a line, in which the similarity maps onto euclidian dis-
tances on this line. Therefore, it is undesirable for data points which are very similar to be mapped
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onto distant points on this line. We would like to determine values of yi which minimize the follow-
ing objective function O:

O =
n

∑
i=1

n

∑
j=1

Wi j · (yi− y j)
2 (1.4)

The objective function O can be rewritten in terms of the Laplacian matrix L of W . The Lapla-
cian matrix is defined as D−W , where D is a diagonal matrix satisfying Dii = ∑n

j=1 Wi j. Let
y = (y1 . . .yn). The objective function O can be rewritten as follows:

O = 2 · yT ·L · y (1.5)

We need to incorporate a scaling constraint in order to ensure that the trivial value of yi = 0 for all i
is not selected by the problem. A possible scaling constraint is as follows:

yT ·D · y = 1 (1.6)

Note that the use of the matrix D provides different weights to the data items, because it is assumed
that nodes with greater similarity to different data items are more involved in the clustering process.
This optimization formulation is in generalized eigenvector format, and therefore the value of y is
optimized by selecting the smallest eigenvalue for which the generalized eigenvector relationship
L ·y= λ ·D ·y is satisfied. In practice however, the smallest generalized eigenvalue corresponds to the
trivial solution, where y is the (normalized) unit vector. This trivial eigenvector is noninformative.
Therefore, it can be discarded, and it is not used in the analysis. The second-smallest eigenvalue
then provides an optimal solution, which is more informative.

This model can be generalized to determining all the eigenvectors in ascending order of eigen-
value. Such directions correspond to successive orthogonal directions in the data, which result in the
best mapping. This results in a set of n eigenvectors e1,e2 . . .en (of which the first is trivial), with
corresponding eigenvalues 0 = λ1 ≤ λ2 . . .≤ λn. Let the corresponding vector representation of the
data points along each eigenvector be denoted by y1 . . .yn.

What do the small and large magnitude eigenvectors intuitively represent in the new transformed
space? By using the ordering of the data items along a small magnitude eigenvector to create a cut,
the weight of the edges across the cut is likely to be small. Thus, this represents a cluster in the
space of data items. At the same time, if the top k longest eigenvectors are picked, then the vector
representations yn . . .yn−k+1 provide a n× k matrix. This provides a k-dimensional embedded rep-
resentation of the entire data set of n points, which preserves the maximum amount of information.
Thus, spectral methods can be used in order to simultaneously perform clustering and dimensional-
ity reduction. In fact, spectral methods can be used to recover the entire lower dimensional (possibly
nonlinear) shape of the data, though arguably at a rather high cost [78]. The specific local dimen-
sionality reduction technique of this section is discussed in detail in [19]. An excellent survey on
spectral clustering methods may be found in [35, 63]. These methods are also discussed in detail in
Chapter 8 of this book.

1.2.6 The High Dimensional Scenario

The high dimensional scenario is particularly challenging for cluster analysis because of the
large variations in the behavior of the data attributes over different parts of the data. This leads to
numerous challenges in many data mining problems such as clustering, nearest neighbor search, and
outlier analysis. It should be noted that many of the algorithms for these problems are dependent
upon the use of distances as an important subroutine. However, with increasing dimensionality, the
distances seem to increasingly lose their effectiveness and statistical significance because of irrel-
evant attributes. The premise is that a successively smaller fraction of the attributes often remains
relevant with increasing dimensionality, which leads to the blurring of the distances and increasing
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concentration effects, because of the averaging behavior of the irrelevant attributes. Concentration
effects refer to the fact that when many features are noisy and uncorrelated, their additive effects will
lead to all pairwise distances between data points becoming similar. The noise and concentration
effects are problematic in two ways for distance-based clustering (and many other) algorithms:

• An increasing noise from irrelevant attributes may cause errors in the distance representation,
so that it no longer properly represents the intrinsic distance between data objects.

• The concentration effects from the irrelevant dimensions lead to a reduction in the statistical
significance of the results from distance-based algorithms, if used directly with distances that
have not been properly denoised.

The combination of these issues above leads to questions about whether full-dimensional distances
are truly meaningful [8, 21, 43]. While the natural solution to such problems is to use feature se-
lection, the problem is that different attributes may be relevant to different localities of the data.
This problem is inherent in high-dimensional distance functions and nearest neighbor search. As
stated in [43]: “. . . One of the problems of the current notion of nearest neighbor search is that it
tends to give equal treatment to all features (dimensions), which are however not of equal impor-
tance. Furthermore, the importance of a given dimension may not even be independent of the query
point itself” p. 506. These noise and concentration effects are therefore a problematic symptom of
(locally) irrelevant, uncorrelated, or noisy attributes, which tend to impact the effectiveness and sta-
tistical significance of full-dimensional algorithms. This has lead to significant efforts to redesign
many data mining algorithms such as clustering, which are dependent on the notion of distances
[4]. In particular, it would seem odd that data mining algorithms should behave poorly with in-
creasing dimensionality at least from a qualitative perspective when a larger number of dimensions
clearly provides more information. The reason is that conventional distance measures were gener-
ally designed for many kinds of low-dimensional spatial applications which are not suitable for the
high-dimensional case. While high-dimensional data contain more information, they are also more
complex. Therefore, naive methods will do worse with increasing dimensionality because of the
noise effects of locally irrelevant attributes. Carefully designed distance functions can leverage the
greater information in these dimensions and show improving behavior with dimensionality [4, 11]
at least for a few applications such as similarity search.

Projected clustering methods can be considered a form of local feature selection, or local di-
mensionality reduction, in which the feature selection or transformation is performed specific to
different localities of the data. Some of the earliest methods even refer to these methods as local-
dimensionality reduction [23] in order to emphasize the local feature selection effect. Thus, a pro-
jected cluster is defined as a set of clusters C1 . . .Ck, along with a corresponding set of subspaces
E1 . . .Ek, such that the points in Ci cluster well in the subspace represented by Ei. Thus, these meth-
ods are a form of local feature selection, which can be used to determine the relevant clusters in
the underlying data. Note that the subspace Ei could represent a subset of the original attributes,
or it could represent a transformed axis system in which the clusters are defined on a small set of
orthogonal attributes. Some of the earliest projected clustering methods are discussed in [6, 9, 10].
The literature on this area has grown significantly since 2000, and surveys on the area may be found
in [67, 54]. An overview of algorithms for high-dimensional data will be provided in Chapter 9.

It should also be pointed out that while pairwise distances are often too noisy or concentrated
to be used meaningfully with off-the-shelf distance-based algorithms, larger portions of the entire
distance matrix often retain a significant amount of latent structure due to the inherent redundan-
cies in representing different pairwise distances. Therefore, even when there is significant noise and
concentration of the distances, there will always be some level of consistent variations over the sim-
ilarity matrix because of the impact of the consistent attributes. This redundancy can be leveraged
in conjunction with spectral analysis [19, 78] to filter out the noise and concentration effects from
full-dimensional distances and implicitly recover the local or global lower dimensional shape of the
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underlying data in terms of enhanced distance representations of newly embedded data in a lower
dimensional space. In essence, this approach enhances the contrasts of the distances by carefully
examining how the noise (due to the many irrelevant attributes) and the minute correlations (due
to the smaller number of relevant attributes) relate to the different pairwise distances. The general
principle of these techniques is that distances are measured differently in high-dimensional space,
depending upon how the data is distributed. This in turn depends upon the relevance and relation-
ships of different attributes in different localities. These results are strong evidence for the fact that
proper distance function design is highly dependent on its ability to recognize the relevance and
relationships of different attributes in different data localities.

Thus, while (naively designed) pairwise distances cannot be used meaningfully in high dimen-
sional data with off-the-shelf algorithms because of noise and concentration effects, they often do
retain sufficient latent information collectively when used carefully in conjunction with denoising
methods such as spectral analysis. Of course, the price for this is rather high, since the size of
the similarity matrix scales with the square of the number of data points. The projected cluster-
ing method is generally a more efficient way of achieving an approximately similar goal, since it
works directly with the data representation, rather than building a much larger and more redundant
intermediate representation such as the distance matrix.

1.2.7 Scalable Techniques for Cluster Analysis

With advances in software and hardware technology, data collection has become increasingly
easy in a wide variety of scenarios. For example, in social sensing applications, users may carry
mobile or wearable sensors, which may result in the continuous accumulation of data over time. This
leads to numerous challenges when real-time analysis and insights are required. This is referred to
as the streaming scenario, in which it is assumed that a single pass is allowed over the data stream,
because the data are often too large to be collected within limited resource constraints. Even when
the data are collected offline, this leads to numerous scalability issues, in terms of integrating with
traditional database systems or in terms of using the large amounts of data in a distributed setting,
with the big data framework. Thus, varying levels of challenges are possible, depending upon the
nature of the underlying data. Each of these issues is discussed below.

1.2.7.1 I/O Issues in Database Management

The most fundamental issues of scalability arise when a data mining algorithm is coupled with
a traditional database system. In such cases, it can be shown that the major bottleneck arises from
the I/O times required for accessing the objects in the database. Therefore, algorithms which use
sequential scans of the data, rather than methods which randomly access the data records, are often
useful. A number of classical methods were proposed in the database literature in order to address
these scalability issues.

The easiest algorithms to extend to this case are flat partitioning methods which use sequential
scans over the database in order to assign data points to representatives. One of the first methods
[66] in this direction was CLARANS, in which these representatives are determined with the use of
a k-medoids approach. Note that the k-medoids approach can still be computationally quite inten-
sive because each iteration requires trying out new partitioning representatives through an exchange
process (from the current set). If a large number of iterations is required, this will increase the num-
ber of passes over the data set. Therefore, the CLARANS method uses sampling, by performing the
iterative hill climbing over a smaller sample, in order to improve the efficiency of the approach.
Another method in this direction is BIRCH [87], which generalizes a k-means approach to the clus-
tering process. The CURE method proposed in [41] finds clusters of nonspherical shape by using
more than one representative point per cluster. It combines partitioning and sampling to ensure a
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more efficient clustering process. A number of scalable algorithms for clustering are discussed in
Chapter 11.

1.2.7.2 Streaming Algorithms

The streaming scenario is particularly challenging for clustering algorithms due to the require-
ments of real-time analysis, and the evolution and concept-drift in the underlying data. While
database-centric algorithms require a limited number of passes over the data, streaming algorithms
require exactly one pass, since the data cannot be stored at all. In addition to this challenge, the
analysis typically needs to be performed in real time, and the changing patterns in the data need to
be properly accounted for in the analysis.

In order to achieve these goals, virtually all streaming methods use a summarization technique
to create intermediate representations, which can be used for clustering. One of the first methods in
this direction uses a microclustering approach [7] to create and maintain the clusters from the un-
derlying data stream. Summary statistics are maintained for the microclusters to enable an effective
clustering process. This is combined with a pyramidal time frame to capture the evolving aspects
of the underlying data stream. Stream clustering can also be extended to other data types such as
discrete data, massive-domain data, text data, and graph data. A number of unique challenges also
arises in the distributed setting. A variety of stream clustering algorithms is discussed in detail in
Chapter 10.

1.2.7.3 The Big Data Framework

While streaming algorithms work under the assumption that the data are too large to be stored
explicitly, the big data framework leverages advances in storage technology in order to actually
store the data and process them. However, as the subsequent discussion will show, even if the data
can be explicitly stored, it is often not easy to process and extract insights from them. This is be-
cause an increasing size of the data implies that a distributed file system must be used in order to
store the information, and distributed processing techniques are required in order to ensure suffi-
cient scalability. The challenge here is that if large segments of the data are available on different
machines, it is often too expensive to shuffle the data across different machines in order to extract
integrated insights from them. Thus, as in all distributed infrastructures, it is desirable to exchange
intermediate insights, so as to minimize communication costs. For an application programmer, this
can sometimes create challenges in terms of keeping track of where different parts of the data are
stored, and the precise ordering of communications in order to minimize the costs.

In this context, Google’s MapReduce framework [28] provides an effective method for anal-
ysis of large amounts of data, especially when the nature of the computations involves linearly
computable statistical functions over the elements of the data streams. One desirable aspect of this
framework is that it abstracts out the precise details of where different parts of the data are stored
to the application programmer. As stated in [28]: “The run-time system takes care of the details of
partitioning the input data, scheduling the program’s execution across a set of machines, handling
machine failures, and managing the required inter-machine communication. This allows program-
mers without any experience with parallel and distributed systems to easily utilize the resources of
a large distributed system” p. 107. Many clustering algorithms such as k-means are naturally linear
in terms of their scalability with the size of the data. A primer on the MapReduce framework imple-
mentation on Apache Hadoop may be found in [84]. The key idea here is to use a Map function to
distribute the work across the different machines, and then provide an automated way to shuffle out
much smaller data in (key,value) pairs containing intermediate results. The Reduce function is then
applied to the aggregated results from the Map step to obtain the final results.

Google’s original MapReduce framework was designed for analyzing large amounts of web logs
and more specifically deriving linearly computable statistics from the logs. While the clustering pro-
cess is not as simple as linearly computable statistics, it has nevertheless been shown [26] that many
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existing clustering algorithms can be generalized to the MapReduce framework. A proper choice of
the algorithm to adapt to the MapReduce framework is crucial, since the framework is particularly
effective for linear computations. It should be pointed out that the major attraction of the MapRe-
duce framework is its ability to provide application programmers with a cleaner abstraction, which
is independent of very specific run-time details of the distributed system. It should not, however, be
assumed that such a system is somehow inherently superior to existing methods for distributed par-
allelization from an effectiveness or flexibility perspective, especially if an application programmer
is willing to design such details from scratch. A detailed discussion of clustering algorithms for big
data is provided in Chapter 11.

1.3 Data Types Studied in Cluster Analysis

The specific data type has a tremendous impact on the particular choice of the clustering algo-
rithm. Most of the earliest clustering algorithms were designed under the implicit assumption that
the data attributes were numerical. However, this is not true in most real scenarios, where the data
could be drawn from any number of possible types such as discrete (categorical), temporal, or struc-
tural. This section discusses the impact of data types on the clustering process. A brief overview of
the different data types is provided in this section.

1.3.1 Clustering Categorical Data

Categorical data is fairly common in real data sets. This is because many attributes in real data
such as sex, race, or zip code are inherently discrete and do not take on a natural ordering. In many
cases, the data sets may be mixed, in which some attributes such as salary are numerical, whereas
other attributes such as sex or zip code are categorical. A special form of categorical data is market
basket data, in which all attributes are binary.

Categorical data sets lead to numerous challenges for clustering algorithms:

• When the algorithms depends upon the use of a similarity or distance function, the standard
Lk metrics can no longer be used. New similarity measures need to be defined for categorical
data. A discussion of similarity measures for categorical data is provided in [32].

• Many clustering algorithms such as the k-means or k-medians methods construct clustering
representatives as the means or medians of the data points in the clusters. In many cases,
statistics such as the mean or median are naturally defined for numerical data but need to be
appropriately modified for discrete data.

When the data is mixed, then the problem because more difficult because the different attributes now
need to be treated in a heterogeneous way, and the similarity functions need to explicitly account
for the underlying heterogeneity.

It should be noted that some models of clustering are more amenable to different data types than
others. For example, some models depend only on the distance (or similarity) functions between
records. Therefore, as long as an appropriate similarity function can be defined between records,
cluster analysis methods can be used effectively. Spectral clustering is one class of methods which
can be used with virtually any data type, as long as appropriate similarity functions are defined.
The downside is that the the methods scale with the square of the similarity matrix size. Generative
models can also be generalized easily to different data types, as long as an appropriate generative
model can be defined for each component of the mixture. Some common algorithms for categorical
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data clustering include CACTUS [38], ROCK [40], STIRR [39], and LIMBO [15]. A discussion of
categorical data clustering algorithms is provided in Chapter 12.

1.3.2 Clustering Text Data

Text data is a particularly common form of data with the increasing popularity of the web and
social networks. Text data is typically represented in vector space format, in which the specific
ordering is abstracted out, and the data is therefore treated as a bag-of-words. It should be noted that
the methods for clustering text data can also be used for clustering set-based attributes. Text data
has a number of properties which should be taken into consideration:

• The data is extremely high-dimensional and sparse. This corresponds to the fact that the text
lexicon is rather large, but each document contains only a small number of words. Thus, most
attributes take on zero values.

• The attribute values correspond to word frequencies and are, therefore, typically nonnega-
tive. This is important from the perspective of many co-clustering and matrix factorization
methods, which leverage this nonnegativity.

The earliest methods for text clustering such as the scatter–gather method [25, 75] use distance-
based methods. Specifically, a combination of k-means and agglomerative methods is used for the
clustering process. Subsequently, the problem of text clustering has often been explored in the con-
text of topic modeling, where a soft membership matrix of words and documents to clusters is cre-
ated. The EM-framework is used in conjunction with these methods. Two common methods used
for generative topic modeling are PLSI and LDA [22, 45]. These methods can be considered soft
versions of methods such as co-clustering [29, 30, 71] and matrix factorization [55], which cluster
the rows and columns together at the same time. Spectral methods [73] are often used to perform this
partitioning by creating a bipartite similarity graph, which represents the membership relations of
the rows (documents) and columns (words). This is not particularly surprising since matrix factor-
ization methods and spectral clustering are known to be closely related [57], as discussed in Chapter
8 of this book. Surveys on text clustering may be found in [12, 88]. In recent years, the popularity
of social media has also lead to an increasing importance of short text documents. For example, the
posts and tweets in social media web sites are constrained in length, both by the platform and by
user preferences. Therefore, specialized methods have also been proposed recently for performing
the clustering in cases where the documents are relatively short. Methods for clustering different
kinds of text data are discussed in Chapter 13.

1.3.3 Clustering Multimedia Data

With the increasing popularity of social media, many forms of multimedia data may be used in
conjunction with clustering methods. These include image data, audio and video. Examples of social
media sites which contain large amounts of such data are Flickr and Youtube. Even the web and
conventional social networks typically contain a significant amount of multimedia data of different
types. In many cases, such data may occur in conjunction with other more conventional forms of
text data.

The clustering of multimedia data is often a challenging task, because of the varying and hetero-
geneous nature of the underlying content. In many cases, the data may be multimodal, or it may be
contextual, containing both behavioral and contextual attributes. For example, image data are typ-
ically contextual, in which the position of a pixel represents its context, and the value on the pixel
represents its behavior. Video and music data are also contextual, because the temporal ordering
of the data records provides the necessary information for understanding. The heterogeneity and
contextual nature of the data can only be addressed with proper data representations and analysis. In
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fact, data representation seems to be a key issue in all forms of multimedia analysis, which signif-
icantly impacts the final quality of results. A discussion of methods for clustering multimedia data
is provided in Chapter 14.

1.3.4 Clustering Time-Series Data

Time-series data is quite common in all forms of sensor data, stock markets, or any other kinds of
temporal tracking or forecasting applications. The major aspect of time series is that the data values
are not independent of one another, but they are temporally dependent on one another. Specifically,
the data contain a contextual attribute (time) and a behavioral attribute (data value). There is a
significant diversity in problem definitions in the time-series scenario. The time-series data can be
clustered in a variety of different ways, depending upon whether correlation-based online analysis
is required or shape-based offline analysis is required.

• In correlation-based online analysis, the correlations among the different time-series data
streams are tracked over time in order to create online clusters. Such methods are often useful
for sensor selection and forecasting, especially when streams exhibit lag correlations within
the clustered patterns. These methods are often used in stock market applications, where it is
desirable to maintain groups of clustered stock tickers, in an online manner, based on their
correlation patterns. Thus, the distance functions between different series need to be computed
continuously, based on their mutual regression coefficients. Some examples of these methods
include the MUSCLES approach [86] and a large scale time-series correlation monitoring
method [90].

• In shape-based offline analysis, the time-series objects are analyzed in offline manner, and the
specific details about when a particular time series was created is not important. For example,
for a set of ECG time series collected from patients, the precise time of when a series was
collected is not important, but the overall shape of the series is important for the purposes
of clustering. In such cases, the distance function between two time series is important. This
is important, because the different time series may not be drawn on the same range of data
values and may also show time-warping effects, in which the shapes can be matched only
by elongating or shrinking portions of the time-series in the temporal direction. As in the
previous case, the design of the distance function [42] holds the key to the effective use of the
approach.

A particular interesting case is that of multivariate time series, in which many series are simulta-
neously produced over time. A classical example of this is trajectory data, in which the different
coordinate directions form the different components of the multivariate series. Therefore, trajectory
analysis can be viewed as a special kind of time-series clustering. As in the case of univariate time
series, it is possible to perform these steps using either online analysis (trajectories moving together
in real time) or offline analysis (similar shape). An example of the former is discussed in [59],
whereas an example of the latter is discussed in [68]. A survey on time-series data is found in [60],
though this survey is largely focussed on the case of offline analysis. Chapter 15 discusses both the
online and offline aspects of time series clustering.

1.3.5 Clustering Discrete Sequences

Many forms of data create discrete sequences instead of categorical ones. For example, web
logs, the command sequences in computer systems, and biological data are all discrete sequences.
The contextual attribute in this case often corresponds to placement (e.g., biological data), rather
than time. Biological data is also one of the most common applications of sequence clustering.
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As with the case of continuous sequences, a key challenge is the creation of similarity functions
between different data objects. Numerous similarity functions such as the hamming distance, edit
distance, and longest common subsequence are commonly used in this context. A discussion of the
similarity functions which are commonly used for discrete sequences may be found in [58]. Another
key problem which arises in the context of clustering discrete sequences is that the intermediate and
summary representation of a set of sequences can be computationally intensive. Unlike numerical
data, where averaging methods can be used, it is much more difficult to find such representations
for discrete sequences. A common representation, which provides a relatively limited level of sum-
marization is the suffix tree. Methods for using suffix trees for sequence clustering methods have
been proposed in CLUSEQ [85].

Generative models can be utilized, both to model the distances between sequences and to cre-
ate probabilistic models of cluster generation [76]. A particularly common approach is the use of
mixtures of HMMs. A primer on Hidden Markov Models may be found in [70]. Hidden Markov
Models can be considered a special kind of mixture model in which the different components of the
mixture are dependent on one another. A second level of mixture modeling can be used in order to
create clusters from these different HMMs. Much of the work on sequence clustering is performed
in the context of biological data. Detailed surveys on the subject may be found in [33, 49, 64]. A
discussion of sequence clustering algorithms is provided in Chapter 16, though this chapter also
provides a survey of clustering algorithms for other kinds of biological data.

1.3.6 Clustering Network Data

Graphs and networks are among the most fundamental (and general) of all data representations.
This is because virtually every data type can be represented as a similarity graph, with similarity
values on the edges. In fact, the method of spectral clustering can be viewed as the most general
connection between all other types of clustering and graph clustering. Thus, as long as a similarity
function can be defined between arbitrary data objects, spectral clustering can be used in order to
perform the analysis. Graph clustering has been studied extensively in the classical literature, espe-
cially in the context of the problem of 2-way and multi-way graph partitioning. The most classical
of all multi-way partitioning algorithms is the Kernighan-Lin method [56]. Such methods can be
used in conjunction with graph coarsening methods in order to provide efficient solutions. These
methods are known as multilevel graph partitioning techniques. A particularly popular algorithm in
this category is METIS [53].

A number of methods are commonly used in the literature in order to create partitions from
graphs:

• Generative Models: As discussed earlier in this chapter, it is possible to define a genera-
tive model for practically any clustering problem, as long as an appropriate method exists
for defining each component of the mixture as a probability distribution. An example of a
generative model for network clustering is found in [77].

• Classical Combinatorial Algorithms: These methods use network flow [13] or other iterative
combinatorial techniques in order to create partitions from the underlying graph. It should be
pointed out that even edge sampling is often known to create good quality partitions, when it
is repeated many times [51]. It is often desirable to determine cuts which are well balanced
across different partitions, because the cut with the smallest absolute value often contains
the large majority of the nodes in a single partition and a very small number of nodes in the
remaining partitions. Different kinds of objective functions in terms of creating the cut, such
as the unnormalized cut, normalized cut, and ratio cut, provide different tradeoffs between
cluster balance and solution quality [73]. It should be pointed out that since graph cuts are a
combinatorial optimization problem, they can be formulated as integer programs.
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• Spectral Methods: Spectral methods can be viewed as linear programming relaxations to the
integer programs representing the optimization of graph cuts. Different objective functions
can be constructed for different kinds of cuts, such as the unnormalized cut, ratio cut, and
normalized cut. Thus, the continuous solutions to these linear programs can be used to create
a multidimensional embedding for the nodes, on which conventional k-means algorithms can
be applied. These linear programs can be shown to take on a specially convenient form, in
which the generalized eigenvectors of the graph Laplacian correspond to solutions of the
optimization problem.

• Nonnegative Matrix Factorization: Since a graph can be represented as an adjacency matrix,
nonnegative matrix factorization can be used in order to decompose it into two low rank
matrices. It is possible to apply the matrix factorization methods either to the node–node
adjacency matrix or the node–edge adjacency matrix to obtain different kinds of insights. It
is also relatively easy to augment the matrix with content to create analytical methods, which
can cluster with a combination of content and structure [69].

While the aforementioned methods represent a sampling of the important graph clustering methods,
numerous other objective functions are possible for the construction of graph cuts such as the use
of modularity-based objective functions [24]. Furthermore, the problem becomes even more chal-
lenging in the context of social networks, where content may be available at either the nodes [89]
or edges [69]. Surveys on network clustering may be found in [36, 72]. Algorithms for network
clustering are discussed in detail in Chapter 17.

1.3.7 Clustering Uncertain Data

Many forms of data either are of low fidelity or the quality of the data has been intentionally
degraded in order to design different kinds of network mining algorithms. This has lead to the
field of probabilistic databases. Probabilistic data can be represented either in the form of attribute-
wise uncertainty or in the form of a possible worlds model, in which only particular subsets of
attributes can be present in the data at a given time [3]. The key idea here is that the incorporation
of probabilistic information can improve the quality of data mining algorithms. For example, if
two attributes are equally desirable to use in an algorithm in the deterministic scenario, but one
of them has greater uncertainty than the other, then the attribute with less uncertainty is clearly
more desirable for use. Uncertain clustering algorithms have also been extended recently to the
domain of streams and graphs. In the context of graphs, it is often desirable to determine the most
reliable subgraphs in the underlying network. These are the subgraphs which are the most difficult
to disconnect under edge uncertainty. A discussion of algorithms for reliable graph clustering may
be found in [62]. Uncertain data clustering algorithms are discussed in Chapter 18.

1.4 Insights Gained from Different Variations of Cluster Analysis

While the aforementioned methods discuss the basics of the different clustering algorithms, it
is often possible to obtain enhanced insights either by using more rigorous analysis or by incorpo-
rating additional techniques or data inputs. These methods are particularly important because of the
subjectivity of the clustering process, and the many different ways in which the same data set can
be clustered. How do we know that a particular clustering is good or that it solves the needs of the
application? There are numerous ways in which these issues can be explored. The exploration could
be through interactive visualization and human interaction, external knowledge-based supervision,
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explicitly exploring the multiple solutions to evaluate different possibilities, combining the multiple
solutions to create more robust ensembles, or trying to judge the quality of different solutions with
the use of different validation criteria. For example, the presence of labels adds domain knowledge
to the clustering process, which can be used in order to improve insights about the quality of the
clustering. This approach is referred to as semisupervision. A different way of incorporating domain
knowledge (and indirect supervision) would be for the human to explore the clusters interactively
with the use of visual methods and interact with the clustering software in order to create more
meaningful clusters. The following subsections will discuss these alternatives in detail.

1.4.1 Visual Insights

Visual analysis of multidimensional data is a very intuitive way to explore the structure of the
underlying data, possibly incorporating human feedback into the process. Thus, this approach could
be considered an informal type of supervision, when human feedback is incorporated into cluster
generation. The major advantage of incorporating human interaction is that a human can often pro-
vide intuitive insights, which are not possible from an automated computer program of significant
complexity. On the other hand, a computer is much faster at the detailed calculations required both
for clustering and for “guessing” the most appropriate feature-specific views of high dimensional
data. Thus, a combination of a human and a computer often provides clusters which are superior to
those created by either.

One of the most well-known systems for visualization of high-dimensional clusters is the HD-
Eye method [44], which explores different subspaces of the data in order to determine clusters in
different feature-specific views of the data. Another well-known technique is the IPCLUS method
[2]. The latter method generates feature-specific views in which the data is well polarized. A well-
polarized view refers to a 2-dimensional subset of features in which the data clearly separates out
into clusters. A kernel-density estimation method is used to determine the views in which the data
is well polarized. The final clustering is determined by exploring different views of the data, and
counting how the data separates out into clusters in these different views. This process is essentially
an ensemble-based method, an approach which is used popularly in the clustering literature, and
will be discussed in a later part of this section. Methods for both incorporating and extracting visual
insights from the clustering process are discussed in Chapter 19.

1.4.2 Supervised Insights

The same data set may often be clustered in multiple ways, especially when the dimensionality
of the data set is high and subspace methods are used. Different features may be more relevant to
different kinds of applications and insights. Since clustering is often used as an intermediate step in
many data mining algorithms, it then becomes difficult to choose a particular kind of clustering that
may suit that application. The subjectiveness of clustering is highly recognized, and small changes
in the underlying algorithm or data set may lead to significant changes in the underlying clusters. In
many cases, this subjectiveness also implies that it is difficult to refer to one particular clustering as
significantly better than another. It is here that supervision can often play an effective role, because
it takes the specific goal of the analyst into consideration.

Consider a document clustering application, in which a web portal creator (analyst) wishes to
segment the documents into a number of categories. In such cases, the analyst may already have an
approximate idea of the categories in which he is interested, but he may not have fully settled on
a particular set of categories. This is because the data may also contain as yet unknown categories
in which the analyst is interested. In such cases, semisupervision is an appropriate way to approach
the problem. A number of labeled examples are provided, which approximately represent the cat-
egories in which the analyst is interested. This is used as domain knowledge or prior knowledge,
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which is used in order to supervise the clustering process. For example, a very simple form of super-
vision would be to use seeding, in which the documents of the appropriate categories are provided
as (some of the) seeds to a representative clustering algorithm such as k-means. In recent years,
spectral methods have also been heavily adapted for the problem of semisupervised clustering. In
these methods, Laplacian smoothing is used on the labels to generate the clusters. This allows the
learning of the lower dimensional data surface in a semisupervised way, as it relates to the under-
lying clusters. The area of semisupervised clustering is also sometimes referred to as constrained
clustering. An excellent discussion on constrained clustering algorithms may be found in [18]. A
number of interesting methods for semisupervised clustering are discussed in Chapter 20, with a
special focus on the graph-based algorithms.

1.4.3 Multiview and Ensemble-Based Insights

As discussed above, one of the major issues in the clustering process is that different kinds of
clusters are possible. When no supervision is available, the bewildering number of possibilities in
the clustering process can sometimes be problematic for the analyst, especially from the perspective
of interpretability. These are referred to as alternative clusters, and technically represent the behavior
from different perspectives. In many cases, the ability to provide different clustering solutions that
are significantly different provides insights to the analyst about the key clustering properties of the
underlying data. This broader area is also referred to as multiview clustering.

The most naive method for multiview clustering is to simply run the clustering algorithm mul-
tiple times, and then examine the different clustering solutions to determine those which are dif-
ferent. A somewhat different approach is to use spectral methods in order to create approximately
orthogonal clusters. Recall that the eigenvectors of the Laplacian matrix represent alternative cuts
in the graph and that the small eigenvectors represent the best cuts. Thus, by applying a 2-means
algorithm to the embedding on each eigenvector, it is possible to create a clustering which is very
different from the clustering created by other (orthogonal) eigenvectors. The orthogonality of the
eigenvectors is important, because it implies that the embedded representations are very different.
Furthermore, the smallest eigenvectors represent the best clusterings, whereas clusterings derived
from successively larger eigenvectors represent successively suboptimal solutions. Thus, this ap-
proach not only provides alternative clusterings which are quite different from one another, but also
provides a ranking of the quality of the different solutions. A discussion of alternative clustering
methods is provided in Chapter 21.

In many cases, the alternative clustering methods can be combined to create more robust solu-
tions with the use of ensemble-based techniques. The idea here is that a combination of the output
of the different clusterings provides a more robust picture of how the points are related to one an-
other. Therefore, the outputs of the different alternatives can be used as input to a meta-algorithm
which combines the results from the different algorithms. Such an approach provides a more robust
clustering solution. A discussion of ensemble-based methods for clustering is provided in Chapter
22.

1.4.4 Validation-Based Insights

Given a particular clustering, how do we know what the quality of the clustering really is?
While one possible approach is to use synthetic data to determine the matching between the input
and output clusters, it is not fully satisfying to rely on only synthetic data. This is because the results
on synthetic data may often be specific to a particular algorithm and may not be easily generalizable
to arbitrary data sets.

Therefore, it is desirable to use validation criteria on the basis of real data sets. The problem
in the context of the clustering problem is that the criteria for quality is not quite as crisp as many
other data mining problems such as classification, where external validation criteria are available in
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the form of labels. Therefore, the use of one or more criteria may inadvertently favor different algo-
rithms. As the following discussion suggests, clustering is a problem in which precise quantification
is often not possible because of its unsupervised nature. Nevertheless, many techniques provide a
partial understanding of the underlying clusters. Some common techniques for cluster validation are
as follows:

• A common method in the literature is to use case studies to illustrate the subjective quality of
the clusters. While case studies provide good intuitive insights, they are not particularly effec-
tive for providing a more rigorous quantification of the quality. It is often difficult to compare
two clustering methods from a quantitative perspective with the use of such an approach.

• Specific measurements of the clusters such as the cluster radius or density may be used in
order to provide a measure of quality. The problem here is that these measures may favor
different algorithms in a different way. For example, a k-means approach will typically be
superior to a density-based clustering method in terms of average cluster radius, but a density-
based method may be superior to a k-means algorithms in terms of the estimated density of
the clusters. This is because there is a circularity in using a particular criterion to evaluate
the algorithm, when the same criterion is used for clustering purposes. This results in a bias
during the evaluation. On the other hand, it may sometimes be possible to reasonably compare
two different algorithms of a very similar type (e.g., two variations of k-means) on the basis
of a particular criterion.

• In many data sets, labels may be associated with the data points. In such cases, cluster quality
can be measured in terms of the correlations of the clusters with the data labels. This provides
an external validation criterion, if the labels have not been used in the clustering process.
However, such an approach is not perfect, because the class labels may not always align with
the natural clusters in the data. Nevertheless, the approach is still considered more “impartial”
than the other two methods discussed above and is commonly used for cluster evaluation.

A detailed discussion of the validation methods commonly used in clustering algorithms is provided
in Chapter 23.

1.5 Discussion and Conclusions

Clustering is one of the most fundamental data mining problems because of its numerous appli-
cations to customer segmentation, target marketing, and data summarization. Numerous classes of
methods have been proposed in the literature, such as probabilistic methods, distance-based meth-
ods, density-based methods, grid-based methods, factorization techniques, and spectral methods.
The problem of clustering has close relationships to the problems of dimensionality reduction, es-
pecially through projected clustering formulations. High-dimensional data is often challenging for
analysis, because of the increasing sparsity of the data. Clustering methods can be viewed as an
integration of feature selection/dimensionality reduction methods with clustering.

The increasing advances in hardware technology allow the collection of large amounts of data
through in an ever-increasing number of ways. This requires dedicated methods for streaming and
distributed processing. Streaming methods typically work with only one pass over the data, and
explicitly account for temporal locality in the clustering methods. Big data methods develop dis-
tributed techniques for clustering, especially through the MapReduce framework. The diversity of
different data types significantly adds to the richness of the clustering problems. Many variations
and enhancements of clustering such as visual methods, ensemble methods, multiview methods, or
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supervised methods can be used to improve the quality of the insights obtained from the clustering
process.
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