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Abstract—In this paper, we will examine the problem of mination of patterns which indicate different kinds of
clustering massive domain data streams. Massive-domain data classification behavior may become infeasible from a
streams are those in which the number of possible domain values space- and computational efficiency perspective.

for each attribute are very large and cannot be easily tracked ve-d in cl : I .
for clustering purposes. Some examples of such streams include | N€ Problem of massive-domain clustering naturally ocaurs

IP-address streams, credit-card transaction streams, or skams the space ofliscrete attributeswhereas most of the known

of sales data over large numbers of items. In such cases, it isdata stream clustering methods are designed on the space of
well known that even simple stream operations such as counting continuous attributesFurthermore, since we are solving the
can be extremely difficult because of the difficulty in maintaining - o ohiem for the case of fast data streams, this restricts the
summary information over the different discrete values. The task . . L

of clustering is significantly more challenging in such cases, since COMputational approaciwhich may be used for discriminatory
the intermediate statistics for the different clusters cannot be analysis. Thus, this problem is significantly more difficult
maintained efficiently. In this paper, we propose a method for than the standard clustering problem in data streams. Space
clustering massive-domain data streams with the use of sketches efficiency is a special concern in the case of data streams,
We prove probabilistic results which show that a sketch-based o5 \se it is desirable to hold most of the data structures in
clustering method can provide similar results to an infinite- . . o .

space clustering algorithm with high probability. We present Main memory in order to maximize the processing rate of the
experimental results which validate these theoretical results, ah underlying data. Smaller space requirements ensure tmatyit
show that it is possible to approximate the behavior of an infinite- be possible to hold most of the intermediate data in fastesch

space algorithm accurately. which can further improve the efficiency of the approach.
Furthermore, it may often be desirable to implement stream
clustering algorithms in a wide variety of space-consgdin
In recent years, new ways of collecting data have resulteddfehitectures such as mobile devices, sensor hardwarejlor ¢
a need for applications which work effectively and efficlgnt nrqcessors. Such architectures present special chaietoge
with data streams. One important problem in the data strega massive-domain case, if the underlying algorithms ate n
domain is that of clustering. The clustering problem hasbegpace-efficient.
widely studied because of its applications to a wide vartéty  The problem of clustering can be extremely challenging
problems in customer-segmentation and target-marketi@lj [ from a space and time perspective in the massive-domain
[11], [17]. A broad overview of different clustering mett®d case. This is because one needs to retain the discriminatory
may be found in [12], [13]. The problem of clustering has alsgnharacteristics of the most relevant clusters in the dathe
been studied in the context of data streams [1], [3], [14]. massive-domain case, this may entail storing the frequency
In this paper, we will examine the problem of massivestatistics of a large number of possible attribute valuesil&Vh
domain stream clustering. Massive-domains are those dgig may be difficult to do explicitly, the problem is furthier
domains in which the number of possible values for one @insified by the large volume of the data stream which prevent
more attributes is very large. Examples of such domains afgsy determination of the importance of different attebut
as follows: values. In this paper, we will propose a sketch-based approa
« In network applications, many attributes such as IRa order to keep track of the intermediate statistics of the
addresses are drawn over millions of possibilities. londerlying clusters. These statistics are used in orderaicem
a multi-dimensional application, this problem is furtheapproximate determinations of the assignment of data point
magnified because of the multiplication of possibilitieso clusters. We provide probabilistic results which indica
over different attributes. that these approximations are sufficiently accurate toigeov
« Typical credit-card transactions can be drawn from similar results to an infinite-space clustering algorithrithw
universe of millions of different possibilities dependindhigh probability. We also present experimental resultscivhi
upon the nature of the transactions. illustrate the high accuracy of the approximate assignment
« Supermarket transactions are often drawn from a universeThis paper is organized as follows. The remainder of
of millions of possibilities. In such cases, the detetthis section discusses related work on the stream clugterin
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problem. In the next section, we will propose a techniqu#ata streamD contains d-dimensional records denoted by
for massive-domain clustering of data streams. We providg ... Xy .... The attributes of recordy; are denoted by
a probabilistic analysis which shows that our sketch-baséd! ...z¢). It is assumed that the attribute valu is drawn
stream clustering method provides similar results to anitefi from the unordered domain séf, = {v}...v% ,}. We note
space clustering algorithm with high probability. In seati that the value ofAM* denotes the domain size for thgh
lll, we discuss the experimental results. We show that tlagtribute. The value ofi/* can be very large, and may range
experimental behavior of the sketch-based clusteringritigo  in the order of millions or billions. From the point of view of
behaves in accordance with the presented theoreticaltseswd clustering application, this creates a number of chafleng
Section IV contains the conclusions and summary. since it is no longer possible to hold the cluster statistica
space-limited scenario.

A. Related Work Sketch based techniques [6], [7] are a natural method for
The problem of clustering has been widely studied in thr@ompressing the counting information in the underlyingadat
database, statistical and pattern recognition commur{iti®], so that the broad characteristics of the dominant counts can
[12], [13], [11], [17]. Detailed surveys of clustering alifbms be maintained in a space-efficient way. In this paper, we will
may be found in [12], [13]. In the database community, thapply the count-min sketch [7] to the problem of clustering
major focus in designing clustering algorithms has been teassive-domain data streams. We will demonstrate a number

reduce the number of passes required in order to perform tifeimportant theoretical and experimental results aboet th
clustering. For example, the algorithms discussed in [1d],, behavior of such an algorithm. In the count-min sketch, a
[17] focus on clustering the underlying data in one pass. hashing approach is utilized in order to keep track of the
Subsequently, the problem of clustering has also beatiribute-value statistics in the underlying data. We use-
studied in the data stream scenario. Computational effigienIn(1/4)] pairwise independent hash functions, each of which
is of special importance in the case of data streams, becduseap onto uniformly random integers in the rarige- [0, ¢/,
the large volume of the incoming data. A variety of methodsheree is the base of the natural logarithm. The data structure
for clustering data streams are proposed in [1], [9], [14]eT itself consists of a two dimensional array withh cells with a
techniques in [9], [14] propose-means techniques for streamength ofh and width ofw. Each hash function corresponds to
clustering. A micro-clustering approach has been combinede ofw 1-dimensional arrays with cells each. In standard
with a pyramidal time-frame concept [1] in order to providepplications of the count-min sketch, the hash functiores ar
the user with greater flexibility in querying stream clusterused in order to update the counts of the different cells in
over different time horizons. Recently the technique hanbethis 2-dimensional data structure. For example, consider a
extended to the case of high dimensional data with the usedifnensional data stream with elements drawn from a massive
a projected clustering approach [2]. Details on differeantdk set of domain values. When a new element of the data stream
of stream clustering algorithms may be found in [4]. is received, we apply each of thehash functions to map onto
Recently the problem of stream clustering has also beamumber in[0...4 — 1]. The count of each of the set af
extended to domains other than continuous attributes. ddisth cells is incremented by 1. In order &stimatethe count of an
for clustering binary data streams were presented in [¥8JhT item, we determine the set af cells to which each of the
nigues for clustering categorical and text data streams lmeayhash-functions map, and compute the minimum value among
found in [15] and [18] respectively. A recent technique [2}sv all these cells. Let; be the true value of the count being
designed to cluster both text and categorical data streBinis. estimated. We note that the estimated count is at least equal
technique is useful in a wide variety of scenarios which megu to ¢;, since we are dealing with non-negative counts only, and
detailed over different time horizons. The method in [3] ban there may be an over-estimation because of collisions among
combined with the concept of pyramidal time-frame in ordérash cells. As it turns out, a probabilistic upper bound ® th
to enable such an analysis. estimate may also be determined. It has been shown in [7],
None of the above mentioned techniques are useful for tthat for a data stream witl’ arrivals, the estimate is at most
case of massive-domain data streams. At attempt to gengr+ ¢ - 7" with probability at leastl — 4.
alize these algorithms to the massive-domain case results iln this paper, we will use the sketch-based approach in order
excessive space requirements. Such space-requirementstaecluster massive-domain data streams. We will refer to the
cause additional challenges in implementing stream aiugte algorithm was th&CSketchalgorithm, since the algorithm clus-
algorithms across a variety of recent space-constraingdete ters the data with the use of sketches. Teketchalgorithm
such as mobile devices, cell processors or GPUs. The aimusks the number of clusteksand the data strea® as input
this paper is significantly broaden the applicability ofesim to the algorithm. The clustering algorithm is partitionsbd,
clustering algorithms to very massive-domain data stre@msand assigns incoming data points to the most similar cluster
space-constrained scenarios. centroid. The frequency counts for the different attribtgkies
in the cluster centroids are incremented with the use of the
sketch table. These frequency counts can be maintained only
Before presenting the clustering algorithm, we will introapproximately because of the massive domain size of the
duce some notations and definitions. We assume that thederlying attributes in the data stream. Similarity is mwad
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Algorithm CSketcfLabeled Data StreanD,

the estimated dot product is the largest. We note that the
NumClustersk)

value of ¢/(zF) cannot be known exactly, but can only

begin be estimated approximately because of the massive-domain

Createk sketch tables of size - i each; constraint. There are two key steps which use the sketch tabl
Initialize k sketch tables to null counts; during the clustering process:

repeat
Receive next data poinX from D;
Compute the approximate dot product of incoming data
point with each cluster-centroid with the use of the
sketch tables;

« Updating the sketch-table and other required statistics fo
the corresponding cluster for each incoming record.

« Comparing the similarity of the incoming record to the
different clusters with the use of the corresponding sketch

Pick the centroid with the largest approximate .tables. ) )
dot product to incoming point; First, we discuss the process of updating the sketch table,
Increment the sketch counts in the chosen table once a particular cluster has been identified for assignment
for all d dimensional value strings; For each record, the sketch-table entries corresponditigeto
until (all points inD have been processed); attribute values on the different dimensions are incresent
end In some cases, the different dimensions may take on the same
value when the values are drawn from the same domain.
Fig. 1. The Sketch-based Clustering Algorithm (CSketchofitm) For example, in a network intrusion application, two of the

dimensions may be source and destination IP-addresses. In
such cases, we would like to distinguish between similar
with the computation of the dot-product function betweevlues across different dimensions for the purpose ofssitzgi
the incoming point and the centroid of the different clustertracking in the sketch tables. A natural solution is to tag th
This computation can be performed only approximately in tiimension identification with the categorical value. Tliere,
massive-domain case, since the frequency counts for thewalfor the categorical value for each dimensionwe create a
in the different dimensions cannot be maintained expjicitlString which concatenates the following two values:
For each cluster, we maintain the frequency sketches of the The categorical value’.
records which are assigned to it. Specifically, for eachtelus o+ The indexr of the dimension.

the algorithm maintains a separate sketch table contath®g \y,e genote this string by” @ . Therefore, each recor®;

counts of the values in the incoming records. It is importapt,s 5 corresponding set df strings which are denoted by
to note that thesame hash function is used for each cluster:1 o | .4 & 7 For each incoming recor&;, we apply

specific hash tableAs we will see, this is useful in deriving e;ich of thew hash functions to the strings! & 1...29 & d.
some important theoretical properties of tiSketchalgo- | e 1, pe the index of the cluster to which the data point is
rithm. The algorithm starts off by initializing the counts i 5gigned. Then, exactly - w entries in the sketch table for
each sketch table to 0. Subsequently, for each incomingdecq,ster m are updated by applying the hash functions to

we will update the counts of each of the cluster-specific hagh -1y of thed strings which are denoted by & 1...27 & d.
tables. In order to determine the assignments of data pOifi$e corresponding entries are incremented by one unit each.
to clusters, we need to compute the dot product of dhe | aqgition, we explicitly maintain the number of reconds
dimensional incoming records with the frequency stasstt ;. cluster .

the values in the different clusters. We note that this is not oyt we discuss the process of comparing the different
possible to do explicitly, since the precise frequencyisiias o,qters for similarity to the incoming data point. In order

are not maintained. Let/ () represents the frequency of theyey o cluster for assignment, the approximate dot-praguct
value 27 in the j-th cluster. Letm; be the number of data 5oross gifferent clusters need to be computed. As in the
points assigned to thg-th cluster. Then, thel-dimensional previous case, thé stringsz! @ 1... 2% @ d are constructed.
statlsjtlcsi of th? re{;:ordoszl ..a) for the j-th cluster is given T, e apply they hash functions to each of thedetrings.
by (q1(z;) - . . ¢(=7)). Then, the frequency-based dot-produGjye retrieve the correspondimisketch-table entries for each of
D7(X;) of the incoming record with statistics of clustgr 6, hash functions and each cluster. For each ofitteash-
'S giver by th? dft product of the fractional ‘;requ‘znc'eﬁmctions for the sketch table for clustgr the d counts are
(a1 (wi)/m; ... q(x{) /my) of the attribute valuege; ...a7)  gimply estimates of the value gf («) . .. g (zd). Specifically,
with the frequencies of these same attribute values Withity ihe count for the entry picked by théh hash function
record X;. We note that the frequencies of the attribute Va'“%%rresponding to theth dimension of record. in the sketch
with the recordX; are unit values corresponding (0,...1).  tapje for clusterj be denoted by:;i-- Then, we estimate the
Therefore, the corresponding dot product is the following: . productD;; between the record; and the frequency
o d statistics for clusteyj as follows:
DI(X) = al(a])/my (1) ;
r=1 .

Dij = min; Zcim/mj (2)

r=1

The incoming record is assigned to the cluster for which



The value ofD;; is computed over all clusterg, and the note that for each incoming data point, we atidounts to one
cluster with the largest dot product to the recdfdis picked of the sketch tables, since there are a totat afimensions.
for assignment. We make the following claim:

We note that the distribution of the data points across Lemma 1:Let the count for the entry hashed into by the
different clusters is not random, since it is affected byrteu /th hash function corresponding to thén dimension of record
in the sketch table entries. Furthermore, since the proce$sin the sketch table for cluster be denoted by:;jir. Let
of incrementing the sketch tables depends upon cluster astz?) represent the frequency of the valué in the j-th
signments, it follows that the distribution of counts asroscluster. Then, with probability at leagt— § we have:
hash-table entries is not random either. Therefore, a tdirec
application of the properties in [7] to each cluster-specifi ,
sEgtch table would r?ot E)e valid. FlErt]hermore, we are intgd-:-s Z‘# i) < Z mim;cijir < qu )+ N-d-e (3)
in preserving the ordering of the dot-products as opposed to”=!
the absolute values of the dot products. This ensures tkat th o ] .
clustering assignments are not significantly affected by th Proof: The lower bound is immediate since all counts are
approximation process. In the next section, we will prowage "oN- negative, and counts can only be over-estimated becaus

analysis of the effectiveness of using a sketch-based appro Of collisions. For the case of the upper bounds, we cannot
immediately apply the results of [7] to each cluster-specifi

A. Analysis sketch table. However, we can use some properties of the

We would like to determine the accuracy of the clusteringPer-sketch table in order to simplify our analysis.
approach, since we are using approximations from the sketch-et ;;i- denote the portion of the count from;;. which
table in order to make key assignment decisions. In generiglcaused by collisions to the true valug in cluster; for the
we would like the behavior of the clustering algorithm tdth sketch fUﬂCtIOI’] We would like to determlne the expected
mirror the behavior of an infinite-space algorithm as much &glue of M = Z, 1 Cijlr = 2571 Cijlr — ZT 1 ¢1(x7). This
possible. While the dot product computation is approximat{m is bounded above by the number of collisions in the super-
it is really the ordering of the values of the different dot Sketch tableS, since the collisions in the super-sketch table
products that matters. As long as this ordering is preserv@je a super-set of the collisions in any cluster specificcéket
the behavior of the clustering algorithm will be similar tdable. For each record, the sketch table is updatdimes.
that of an infinite-space algorithm. The analysis is greatfyince the total frequency count in the super-sketch table is
complicated by the fact that the assignment of data points A d, we can use a similar analysis in [7] on the super-sketch
clusters depends upon the counts in the different sket(testabtab'e to show thaf[cj;,] < N - d - ¢/e. Therefore, we have
Since the addition of counts to sketch tables depends upBf>.’_, @iji-] < N -d? - ¢/e. By the Markov inequality, we
the counts in the sketch tables themselves, it follows that thaveP(Zf L Gijir > N -d* - €) < 1/e. The probability that
randomness property of the sketch entries is lost. Thexefothis |nequal|ty is true for all values dfe {1...In(1/6)} is at
for each cluster-specificsketch table, the properties of [7]most(1/e) In(1/8) — 5. We note that the |nequa||ty is true for
no longer hold true. Nevertheless, it is worthwhile to notell values ofl, if and only |fZT:1 min;c; jir — Zr:l(qr( z7) >
that since the same hash functions are used across differ®ntd? . ¢. Therefore, we have:
clusters, the sum of the hash tables across different ctuste
forms a sketch table over the entire data set, which doesfysati

d

2 .
the properties in [7]. Zm'nlcwlr qu z) >N -d"-€)<§
Let us define the super-sketch tabfte as the sum of
the counts in the sketch tables for the different clusters. 2
We note that the super-sketch table is not sensitive to the melc”“" > Zq” )+ N-d"-e) <0

nature of the partitioning of the data points to clusters] an

therefore the properties of [7] do apply to it. We will use th&he result follows. u
concept of super-sketch table along with some properties THe above result can be used in order to characterize the
the partitioning in order to simplify our analysis. behavior of the dot product.

For the purpose of our analysis, we will assume that we Theorem 1:After the processing alV d-dimensional points
are analyzing the behavior of the sketch table, when the da{athe stream, let the fraction of the data points assigned to
point X; has arrived, andV data points have arrived beforethe i clusters be denoted bf . .. fx. Then, with probability
z;. Therefore, we have = N + 1. Let us also assume thatat leastl — ¢, the dot productD’ (X;) of data pointX; with
the fraction of data points assigned to thelifferent clusters cluster; is related to the approximatioR;; by the following
are denoted by ... fi. As discussed earlier, we assume thag|ationship:
there arek sketch tables, which are denoted 8y. .. S;.. The
sum of these sketch tables is the super-sketch table which is DI(X;) < Dy < DI(X;) +e-d*/f; (4)
denoted byS. As before, we assume that the length of the
sketch table ish = e/e, and the width isw = In(1/§). We



Proof: From Lemma 1, we know that the following isith hash function corresponding to thih dimension of record
true with probability at least — 4: X, in the sketch table for cluster be denoted by:; ;. Let
d d d ¢ (z) represent the frequency of the valug in the j-th
¢ (a7) < minc; i, < Z@)+N-d2-e) (5) cluster. LetB be any positive value. Then, with probability at
; (=) ; rt ;( () ) leastl — (N - d?/(B - h))* we have:

Dividing the inequality above byn;, and subsequently sub- d_ d a
stutingm; = I+ 5, we get Sl < Sominey, < S @@+ B (1)
Di; < DV (X;) < Dyjj +e-d°/f (6) r=1 r=1 r=1

Proof: This proof is quite similar to Lemma 1.The

Next, we would like to quantify the probability that anm"’(‘iin difference is that the expected Yalue@lecij” -

- i int i i ith the J(xT) is at mostN - d?/h. This is because the total

incoming data point is assigned to the same cluster with ther=1 9% o >

use of the sketch-based approach, as with the use of ggntribution of collisions to the above expressionNs- d?

frequency counts. From the result of Theorem 1, it is cle4fhich get mapped uniformly onto the enter lengtfof the

that with high probability the dot product can be approxiedat SUPEr-Sketch table. Therefore, by using the Markov ',f‘m}“a'

accurately. This can be extended to quantify the likelingd the probability that the eXpreSS"ﬁQrzl Cijir = Dy G(7)

the ordering of dot products is preserved. is greater thanB is at mostN - d*/(B - h). Therefore, the
Theorem 2:After the processing aV d-dimensional points Probability that the expressiop,,_, cijir — >,y ¢/(7) is

in the stream, let the fraction of the data points assigndtieo 9reater thanB over all values ofl € {1...w} is at most

k clusters be denoted bfi . .. f. Let p andq be the indices (IV-d°/(B-h))*. Therefore, we have:

of two clusters such that:

d d
Dy > Dig+d* €/ fp (7) P(zjl min;cijir — 231%7«(555) > B) < (N-d*/(B-h)"
Then, with probability at least — §, the dot productD?(X;) d -
is no less tharD?(Xj;). P(Y mineii, > Y ql(af) + B) < (N -d*/(B - h)"
Proof: Since all frequency counts are non-negative we r=1 r=1
know that: - The result follows. [
Diq > D(X;) (8)  Theorem 3:After the processing aV d-dimensional points

The inequality in the pre-condition of this theorem furthef the stream, let the fraction of the data points assigned to
implies that: the k clusters be denoted by, ... fr. Let b be any positive

o value. Then, with probability at least— (d?/(b- f;-h))", the
Dip > Dig+d*-€/f, > DU(X;)+d*-€/f,  (9) dot productD’(X;) of data pointX; with cluster; is related

From Theorem 1, we know that with probability at leést), to the approximatiorD;; by the following relationship:

we have: o DI(X;) < Dy < DI(X;)+b (12)
DP (X)) +d? - ¢/fy > Dy (10)
Combining Equations 9 and 10, it follows th#”(.X;) > Proof: We note that the inequality in Theorem 3 is related

D?(X;) with probability at least —4. B i5 that of Lemma 2, by dividing the key inequality in the latte
The above result suggests that the difference between yem4 and by pickingB =b-N - f; andm; = N - f;. ®
g - J J = J

estimated dot products of the most similar clusterand

second-most similar cluster should be at led$t ¢/f, in

order for the assignment to be correct with high probability
The above analysis computes the difference in dot produ

Theorem 3 immediately provides us with a way to quantify
the probability that the ordering in the estimated dot poidu
translates to the true frequency counts. This is analogous t
L . . H@ result of Theorem 4. We summarize this result as follows:
which 1S required for the aSS|gnment to be correct wit Theorem 4:After the processing oV d-dimensional points
probability at least — 5. We would like to pose the CONVETSE the stream, let the fraction of the data points assignedeo

question, .m.Wh.'Ch we would like _to _quantlfy the probab|I|tyk clusters be denoted bf; ... fr. Let p andq be the indices
that the similarity with one centroid is greater than theeoth .

. ’ . of two clusters such that:
centroid for a given error bound, and sketch table width
and lengthh. This will help us compute the sketch table Dip > Dig + b (13)
dimensions which are required in order to guarantee a given _ 3
probability of assignment error. This result is necessary Then, with probability at least — (d*/(b- f, - h))*, the dot
order to design a clustering process for which the sequehcePgoduct D”(X;) is no less thanD?(X;). _
assignments is similar to that of an infinite-space algorith Proof: Since all frequency counts are non-negative we

Lemma 2:Let w andh denote the width and length of theknow that:

sketch tables. Let the count for the entry hashed into by the D;, > DY(X;) (14)



The inequality in the condition of the theorem further inegli of P(E,) on the right hand side of the above equation, the

that: result follows. ]
) _ ) We are interested in minimizing the number of such assign-
Dip > Dig +d° - ¢/fp > DU(Xi) +d” - ¢/ fp (15)  ment errors over the course of a clustering application. One
From Theorem 2, we know that with probability at leést- impprtant.point to be. kept in mind is that' in many cases
(d2/(b- f; - h))*), we have: an incoming data} pomt may match well with many of the
‘ clusters. Since similarity functions such as the dot produc
DP(X;) +d? - ¢/f, > Dy (16) are heuristically defined, small errors in ordering (whign

is small) are not very significant for the clustering process
Combining Equations 15 and 16, we obtain the condition thg{milarly, some of the clusters correspond to outlier point
DP(X;) > DU(X;) is true with probability at least—(d*/(b-  and are sparsely populated. Therefore, we are interested in
fo - R))™. B ensuring that assignments to “significant clusters” (foiolh
An important observation is that the value bfshould be r isabove a given threshold) are correct. Therefore, we define
picked large enough, so thdt/(b- f;-h) < 1, in order to get the concept of anf, b)-significant assignment error as follows:
a non-zero bound on the probability. In order to get a prattic pefinition 1: An assignment error which results from the
idea of the approach, let us consider a modest sketch taBigimation of dot products is said to l¢, b)-significant, if
with a lengthh = 1000,000 andw = 10 in order to cluster 3 data point is incorrectly assigned to cluster ingewhich
10-dimensional data. We note that such a sketch table Efjuigontains at least a fractiofi of the points, and the correct

only a few megabytes, and can easily be held in main mem@ily;ster for assignment has indgxvhich satisfies the following
with modest desktop hardware. Let us consider the caseewhgationship:

the estimated dot product with one centroid is greater thah t Dip > Dig+b (18)

with the other centroid by.02. Let us assume that the centroidrhe above result definition considers the case where a data

(with the greater similarity) contains a fractigh) = 0.05 of  point is incorrectly assigned to a robust (non-outlier)stén

the points. Then, the probability that the ordering of theé dang its estimated dot product with the incoming point has

products is correct, if we had used the true frequency casntssignificantly higher similarity than the true cluster (whic

given by at least — (100/(0.020.05x10°))'"* =1-10""".  \yould have been obtained by using the true dot-product).

From a practical point of view, this probability is small emh e can use the result of Theorem 5 in order to bound the

to suggest that the ordering would be preserved in practiggbbability of an(f, b)-significant error in a given assignment.

scenarios. Lemma 3:The probability of an(f, b)-significant error in
Theorem 3 only quantifies the probability of ordering bean assignment is at most equalite (d2/(b- f-h))v.

tween a pair of clusters. In general, we would like to quantifwe can use this in order to bound the probability that there

the probability that the assignment to the most similartelus js no (f,b)-significant error over the entire course of the

(based on the estimated dot-product) is the correct ons. ltcjustering process alV data points.

easy to extend the result of Theorem 3 to the general case ofheorem 6:Let us assume thaV - k- (d2/(b- f - h))” < 1.

k clusters. The probability that there is at least of& b)-significant error
Theorem 5:After the processing oV d-dimensional points in the clustering process df data points is given by at most

in the stream, let the fraction of the data points assigned b_f{ZJZQ .

the k& clusters be denoted by, ... fx. Let p be the index of broof  This is a simple application of the Markov

the cluster with the largest estimated dot product sintyiari inequality since the expected number of errors is given by at

and for eachy # p, let it be the case that: mostN - k- (d?/(b- f-h))™. If the expected number of errors

is less than 1 (as in the pre-condition), we can use the Markov

Dip = Dig + by 17 inequality in order to estimate at bound on the probabilitytt
Then, with probability at least — 3= (d?/(by - f, - h))*, there is at least ongf, b)_-significant.err_qr. =
the true dot producb? (X;) is no less tharD?(X;) for every We note that if there is ndf,b)-significant error, it does
value of g # p. ’ not imply that the clustering process picks exactly the same

Proof: Let E, be the event thaD?(X;) < D(X;). sequence of assignments. It simply suggests that the assign

We are trying to estimaté — P(U,,F,). From elementary ments will elt_her mirror an |nf|n|te-_spac_e glusterlng aigiu_n
probability theory, we know that: exactly or vy|ll be quz_ihtatlvely quite similar. In the exper
mental section, we will see that the sequence of assignments

P(UgzpE,) < E P(E,) of the approximation turn out to be almost identical to an
q#ptq) = q ) . ’ ;
ap exact algorithm. In order to estimate the effectivenessisf t
approach, let us consider an example wfitk- 0.05, b = 0.02,
1—P(UgzpEy) >1—-» P(E .
(VopBy) 2 1= 3 P(Ey) h=10%, w =10, d = 10, k = 10, and N = 107. In this case,

a7 it can be shown that the probability of &if, b)-significant

We note that the value aP(E,) is at most(d?/(b, - f,-h))” error over the entire data stream is at most equal.ed.
according to the result of Theorem 4. By substituting thei@al Thus, the probability that there is r{¢, b)-significant error in



the entire clustering process(i99, which is quite acceptable
for a large data stream af)” data points. A point to be noted
here is that as the number of poind in the data stream
increases, the pre-conditiaW - & - (d%/(b- f - h))” < 1 may

no longer hold true. However, this problem can be balanced by
using a larger value ob for data streams which are expected
to contain a very large number of points. We also note Mat
need not necessarily correspond to the size of the stream, bu
simply the number of points in a contiguous block in which we
wish to guarantee no error with high probability. Furtherejo
sincew occurs in the exponenthe width of the sketch table
needs to increase only logarithmically with the number of
points in the data stream (or block size over which the error
is guaranteed)In the example above, it can be shown that by
increasingw to 15 from 10, data streams with more thigi?

points (iravbyte streams) can be effectively handied.SThES. 2 Spece Reaurementof Csterspeife Sk T ereasg

only a 50% increase in space changes the effective stream
handling capacity by 5 orders of magnitude. We summarize
this observation specifically as follows:

Observation 1:The value ofw should be picked to be at
Ieast%. Therefore, the width of the sketch table
should scale logarithmically with data stream size.

We also summarize our earlier observation about the lerfgth o
the sketch table so that /(b- f - h) < 1.

Observation 2:The value ofh should be picked to be at
leastd?/(b- f) in order to avoid(f, b)-significant errors while
clusteringd-dimensional data.

The above observations suggest a natural way to pick the
values of h and w, so that the probability of ndf,b)-
significant error is at least — . The steps are as follows:

« For some constar®' > 1, pick h = C - d?/(b- f).

o If N is an upper bound on thestimated number of points

expected to be contained in the stream, then picks
follows:

w— log(N) + log(k) + log(1/~)
B log(C)

We note thatV need not be necessarily be the actual stream
size, but may simply represent the size of the chunk of
data points over which we wish to guarantee no error with
probability at leastl — ~.

Observation 3:The total sizeV/ of the sketch table in order
to guarantee n¢f, b)-significant error with probability at least
1 —~ is given by:

.d2 .
o Cod “09<;V><g ;og;)(k} +109(1/7) 50,
Og . .
Note that we can choose any value@®@f> 1. Smaller values
of C reduce the sketch table size, but increase the width of
the sketch table, which increases computational time. n ou
practical implementations, we always us€d= 10.

(19)

IIl. EXPERIMENTAL RESULTS

In this section, we will present the experimental resultgig 4
for testing the effectiveness and efficiency of tB&ketch pata set

algorithm. We tested the following measures: (1) Effectass
of the CSketchclustering algorithm (2) Efficiency of the

Fig. 3.
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CsSketchclustering algorithm (3) Sensitivity of th€Sketch implemented an exact version of tiSketchalgorithm, where
algorithm with respect to different parameter values. we used a first-level main-memory sketch table, and allowed
Since this is the first algorithm for clustering massive dany additional collisions from this sketch table to be inslx

main data streams, there is no historical baseline fomiggtie onto disk. The counts for each additional collision as e
effectiveness of the approach. A critical aspect of the mass maintained on disk. The frequency counts were implemented
domain algorithm is the use of a sketch-based approximationthe form of an index, which was ampen hash tablg5],

in order to determine the assignment of data points to alsistein which each entry of the hash table pointed téisa of the
Therefore, it would be useful to examine how well the sketdditribute valueswhich hashed onto the entry along with the
based approximation mimics a perfect oracle which coutwrresponding frequency counts. Thus, the frequency sount
implement the partitioning approach exactly with the usare maintained exactly, since the collisions between hasle t

of true frequency counts. It turns out that it is possible tentries are resolved by explicit maintenance of exactaitiei
implement such an oracle in a limited way, if one is willing t@wounts for each possible value. We note that the attribute
sacrifice time and space-efficiency of the algorithm. Werrefgalues need to be maintained explicitly in order to avoid the
to this implementation as limited, because the space redjuiapproximations which are involved with collisions in a @ds

by this approach will continuously increase over the exeaut hash table. This creates an extra space overhead, espémiall

of the stream clustering algorithm, as new domain valuegplications with large string representations of the uyie

are encountered. In the asymptotic case, where the domiaibels. For example, the maintenance of the attribute value
size is larger than the space constraints, the oracle #igori such as the IP-address often requires much greater space tha
will eventually terminate at some point in the execution dhe frequency count itself. Furthermore, since overflowsnfr

a continuous data stream. Nevertheless, we can still use the main memory hash table are indexed onto disk (with
oracle algorithm for very long streams, and it providesoan the use of a hash-based index), this can reduce the speed
timistic baseline for effectiveness, since one cannot generalijnen the counts need to be retrieved from the disk hash-
hope to outperform the exact counting version of @fketch index. We note that most of the retrievals still continue $e u
algorithm in terms of quality. As the baseline oracle, wéhe main memory table, since the most frequently occurring
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domain values are held in the main memory table where@ssible values in addition to several thousand sensor ids,
a small fraction of the retrievals are required to access thiich were geographically placed around the globe. We used
disk. This fraction continually increases over the progres three different data sets, which are denoted by 1P06-0102,

the algorithm, as new domain-values are encountered. Ve n{06-0304 and IP06-05 respectively. The first two data sets
that the oracle algorithm is not really a practical algorittor COMPrised streams of alerts for two consecutive days, valsere

a data stream from either a computational or space-effigierf@€ third data set comprises a stream of alerts for a single da
point of view, since it can lead to a large number of disk N order to measure the quality of the results, we used
access and eventually terminate because of space overflaﬁ. alert id field which was related to the other attributes

Nevertheless, it provides aoptimistic baselineto the best N the data. In order to perform the clustering, we used all
possible accuracpf the CSketchalgorithm. fields other than thelertid field and then tested how well

All results were tested on a Lenovo T60 Thinkpad with H?e clustering process separated out the different alertsa

speed of 1.83GHz and 1GB of main memory. The operati%ﬁere”t clust.ers. Since thalertid field was not directl'y usgd
system was Windows XP Professional, and the algorithm wisthe clustering process, but was related to other fieldsiin a
implemented in Visual C++ 5.0. The algorithm was testedirect way, it can be used as an evaluation field in order
on a number of intrusion detection data sets from IBM logQ Measure the quality of the clustering process. Let there
at a variety of geographically located sensors. Each recdtd s different alert types, with relative fractions of presence
represented an alert which was generated at a particfi§n0ted bypi ... p, in & subseC of the data. The quality of
sensor based on other known information about the recorgParation in the subsét was measured with the use of an
There could be several hundred alert-types, some of whigAtroPy measur& which was defined as follows:

were more frequent than others. Each record contained fields 5

corresponding to thalertid, the time stamp, the sensor id, E(C)=1-) p} (21)

the source IP address of a suspected intrusion, the déstinat i=1

IP-address of the intrusion, and the severity of the attadkle note thatZ(C) always lies in the rang@, 1]. The value
We note that this is a massive-domain data set, becauseobf(C') is closer to zero, when a given cluster is dominated
the use of IP-addresses which have a very large numberbgfa small number of alert types. On the other hand, when



experimentally show that even for this conservative choice
osf of N, the CSketchapproach continues to exhibit very high
accuracy over the the entire data stream. Furthermore, even
T e if the value of N was increased in order to obtain a much
TF PASE STREAM ENTROPY larger sketch table, this affects the space requiremenrs on
modestly because of the logarithmic dependence implied by
Equation 20. We constructed an analytical curve (according
to Equation 20), which illustrates the variation in sketahlé
size with increasing values @&¥. This is presented in Figure 2.
All parameters are set to the default values above. The wdlue

y R N in Equation 20 is illustrated on th¥-axis, and the value of
Hlosommmnosso _ the sketch table size (in Kilobytes) is illustrated in tHeaxis.
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Fig. 13. Quality Sensitivity with Parameter (IP06-0102) with M, it is clear that as the value aV increased from
10* to 107, the space requirements increased from 1.1MB to
only 1.55MB. Clearly, such modest space requirements are

well within the even the main memory or caching capability
of most modern desktop systems.

In Figures 3, 5, and 7, we have illustrated the effectiveness
of both theCSketchand the Oracle algorithm with the pro-
gression of the data stream. On tKeaxis, we have illustrated
) the progression of the stream in terms of the number of data
e points, and on théV-axis, we have illustrated the average
oot cluster entropy of the latest block of stream points for both
f - the CSketchand Oracle methods. We have also computed
‘ ‘ the entropy of the overall data stream itself over the same
toeumanosas blocks of points and plotted it over the progression of the
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stream. While the Oracle algorithm is not a practical aldponit
Fig. 14. Time Sensitivity with Parameter (IP06-0102) for a data stream from a space-efficiency or computational

point of view, it serves the useful purpose of providing an

optimistic baseline to th&€Sketchalgorithm. An immediate
the setC’ contains an even mixture of the alert types the valygyservation is that there is a very close overlap between the
of E(C) is closer to 1. In general, we would like a goodcsketchmethod and the Oracle algorithm. This means, that
clustering process to create sets of clusters, such thdit effe Csketchalgorithm does not deviate very much from the
of them is dominated by one (or a small number of relateédyact” clustering process because of the use of approgimat
alert types. LetC; ... C}, be the sets corresponding to the counts in theCSketchapproach. From Figure 3, it is clear
different clusters. Then the average entropy measure SiCrgat in many cases, th€Sketchalgorithm did not deviate

the different clusters was defined as follows: very much from optimistic baseline provided by the Oracle
Zle |Cy| - E(Cy) algorithm. In fact, there is some in.ght deviation pnly _ireth
E= o (22)  case of the data set IP06-0102 (Figure 3), and in this case,
i Gl the entropy of theCSketchalgorithm is actually slight lower,

Clearly, the smaller the value d the better than the quality which makes the quality of the clusters superior. This tends
of the clustering. The value df(-) can also be computed onto suggest that any variations from the “perfect” assignmen
the base data set, and we refer to this as the baseline entriopglve small enough difference in the true dot product galu
of the data stream. Typical values of the entropies tested that there is no practical difference in the quality values.
the data stream were well over85, which suggests that the Therefore, the resulting deviations in the clustering ddog
stream contained a wide mixture of different kinds of alertseither slightly better or worse, and is dictated more by the
Unless otherwise mentioned, the default values of the pandomness in future variations of the data stream, raktaer t
rameters used in the testing process wgre 0.02, b = 0.1, a significant difference in the quality of assignments. la th
~ = 0.01 over each block ofV = 10000 data points, and case of Figures 5 and 7, every single assignment was exactly
the number of clusters = 15. At a later stage, we will also the same in th&€Sketchapproach as in the case of the Oracle
provide a sensitivity analysis which illustrates the rdhass algorithm. In Figures 3, 5, and 7, we have also illustrated th
of the method over a wide range of values. We note that thaseline entropy of the entire data stream. It is clear that i
value of N represents only the blocksize over which the erroeach case, the baseline entropy values were fairly high and
are guaranteed, rather then the stream length. The latter Wa clustering process considerably reduces the entrapg®c
typically more than two orders of magnitude larger. We willhe evaluation field (alert distribution), even though itsweot



used directly in the clustering process. Thus, suggestghba other parameters were set to the default values, as indieate
clustering approach is indeed effective in finding meanihgfthe beginning of this section. In each case, the correspgndi
clusters from the underlying data stream. parameter is illustrated on th&-axis, whereas the average

In Figures 4, 6, and 8, we have illustrated the processiegtropy is illustrated on th&-axis. The average entropy is
rate of the two different methods with progression of theomputed over the entire data stream in each case. In the
data stream. Thé& -axis illustrates the progression of the dataase of Figure 13, we have illustrated Jgfy) on the X-
stream in terms of the number of points, whereas¥haxis axis, since the time variations can be seen more clearlygalon
illustrates the processing rate of the data stream overatte lthis scale. In each of the figures, it is evident that the @wytro
set of 10000 points. It is immediately clear that i8ketch does not change at all with variations in parameters. This is
algorithm has a stable processing rate with progressioheof essentially because the clustering process continuesselyl
data stream. On the other hand, the Oracle algorithm starignic the exact (Oracle) clustering method over a wide range
off with a much higher processing rate, but drops off rapidlgf parameters. The entropy is lower for higher valueskof
to less than a fifth of the speed of tl@Sketchalgorithm. since there is better separation of the different alertesscr
This difference is because tlgSketchalgorithm has a stable the clusters. We note that for some of the choices afd f,
data structure for statistical maintenance, whereas tlel©r the sketch table requires only around 250KB. This indicates
algorithm has a data structure whose size continually asge that even with very low space consumption, it is possible to
with progress of the data stream and eventually spills ovelbsely mimic the exact clustering process in which all dsun
to disk. Since our stream tests generate the data strears maintained exactly. This suggests that the quality ef th
from disk, the Oracle algorithm can be made to work i€Sketchalgorithm is extremely robust across a wide range
such scenarios as long as the space requirements do afgparameters, and can be made to work in extremely space
exceed the disk space. In very challenging cases, where tloastrained scenarios such as limited processors embéuded
data is too large for the disk and is received directly froreensors.
the publisher, it can be expected that the Oracle algorithmWe also tested the sensitivity in processing rate across
would eventually have to be terminated for lack of storagdifferent choices of parameters. The results are illustrat
Even in the cases analyzed in this paper, it is clear that time Figures 10, 12, and 14 respectively. The corresponding
continuously decreasing efficiency of the Oracle algoriilm parameter is illustrated on th€-axis, whereas the processing
because a larger and larger fraction of the cluster compasis rate is illustrated on th& -axis. In the case of variations with
need to access the hash index on the disk. In cases whemeameter$ and f, there is very little variation in processing
the stream suddenly evolves, new domain values need torhtes. This is because the sketch table length reduces with
written on disk. This leads to additional overhead, and thiscreasing values of the parametérsand f. This does not
shows up in the three graphs as sudden dips in the processihgnge the number of operations, since the width of the
rate. At some of these instances in Figures 4, 6 and 8, thketch table remains the same. The slight variations in the
Oracle algorithm may process about 50 data points or lge®cessing rate in the figures may be because of random
each second. Thus, the Oracle algorithm can suddenly sleariations in the processor load across different runs. The
down to extremely low processing rates. This suggests thahning time increases with the number of clusters, sinee on
an attempt to maintain exact counts is not very practical, aneeds to compare the dot-products across a larger number of
the efficiency of the technique can only reduce further wittlusters. In Figure 14, we have illustrated the variatiorhia
progression of the stream. Since data streams are inhereptiocessing rate with the parameter Jg@y). We note that
designed for continuous operations over long periods oé tinthe width of the sketch table increases proportionally with
it works against the ability of the Oracle algorithm to maint —log,,(y). Consequently, the running time increases almost
exact statistics for the clustering algorithm. This is esglly linearly with —logio(y). The slight variation from the linear
significant in light of the fact that there is no discernablbehavior of because of the variations in the caching behavio
difference in the quality of the results obtained by @®ketch of the sketch table. We note that at the left end of Figure
and the optimistic baseline provided by the Oracle algorith 14 corresponds toy = 10~° which is an incredibly high

We also tested the sensitivity of ti@Sketchalgorithm with  probability of accuracy. Even at this high level of accurdbg
different choices of the parameters f, and~. We used the CSketchalgorithm maintains a high processing rate. Thus, the
data set IP06-0102 in order to illustrate the sensitivitglgsis, CSketclalgorithm is a robust algorithm, which closely mimics
though the results are very similar across all three dat set clustering algorithm based on exact statistics maintnan
We will present the results over only one data set for lack @fhile maintaining its computational efficiency across aavid
space. We note that by varying these parameters, the lengthge range of parameters.
and width of the sketch table can be changed, and we would
like to explore the effect of this approach on the quality and
the running time. In Figures 9, 11, and 13 we have illustratedIn this paper, we presented a method for massive-domain
the average entropy of the clustering for variations in thgustering of data streams. Such scenarios can arise ia- situ
parameters, f and~ respectively. In each case, we testetions where the number of possible data values is very large
with the cases ok = 15 andk = 25 clusters respectively. All in the different dimensions is very large or the underlying

IV. CONCLUSIONS AND SUMMARY



hardware is very space-constrained. The problem of clagter [3] C.C. Aggarwal and P. S. Yu, “A Framework for Clustering Mive Text
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