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Abstract— In this paper, we will examine the problem of
clustering massive domain data streams. Massive-domain data
streams are those in which the number of possible domain values
for each attribute are very large and cannot be easily tracked
for clustering purposes. Some examples of such streams include
IP-address streams, credit-card transaction streams, or streams
of sales data over large numbers of items. In such cases, it is
well known that even simple stream operations such as counting
can be extremely difficult because of the difficulty in maintaining
summary information over the different discrete values. The task
of clustering is significantly more challenging in such cases, since
the intermediate statistics for the different clusters cannot be
maintained efficiently. In this paper, we propose a method for
clustering massive-domain data streams with the use of sketches.
We prove probabilistic results which show that a sketch-based
clustering method can provide similar results to an infinite-
space clustering algorithm with high probability. We present
experimental results which validate these theoretical results, and
show that it is possible to approximate the behavior of an infinite-
space algorithm accurately.

I. I NTRODUCTION

In recent years, new ways of collecting data have resulted in
a need for applications which work effectively and efficiently
with data streams. One important problem in the data stream
domain is that of clustering. The clustering problem has been
widely studied because of its applications to a wide varietyof
problems in customer-segmentation and target-marketing [10],
[11], [17]. A broad overview of different clustering methods
may be found in [12], [13]. The problem of clustering has also
been studied in the context of data streams [1], [3], [14].

In this paper, we will examine the problem of massive-
domain stream clustering. Massive-domains are those data
domains in which the number of possible values for one or
more attributes is very large. Examples of such domains are
as follows:

• In network applications, many attributes such as IP-
addresses are drawn over millions of possibilities. In
a multi-dimensional application, this problem is further
magnified because of the multiplication of possibilities
over different attributes.

• Typical credit-card transactions can be drawn from a
universe of millions of different possibilities depending
upon the nature of the transactions.

• Supermarket transactions are often drawn from a universe
of millions of possibilities. In such cases, the deter-

mination of patterns which indicate different kinds of
classification behavior may become infeasible from a
space- and computational efficiency perspective.

The problem of massive-domain clustering naturally occursin
the space ofdiscrete attributes, whereas most of the known
data stream clustering methods are designed on the space of
continuous attributes. Furthermore, since we are solving the
problem for the case of fast data streams, this restricts the
computational approachwhich may be used for discriminatory
analysis. Thus, this problem is significantly more difficult
than the standard clustering problem in data streams. Space-
efficiency is a special concern in the case of data streams,
because it is desirable to hold most of the data structures in
main memory in order to maximize the processing rate of the
underlying data. Smaller space requirements ensure that itmay
be possible to hold most of the intermediate data in fast caches,
which can further improve the efficiency of the approach.
Furthermore, it may often be desirable to implement stream
clustering algorithms in a wide variety of space-constrained
architectures such as mobile devices, sensor hardware, or cell
processors. Such architectures present special challenges to
the massive-domain case, if the underlying algorithms are not
space-efficient.

The problem of clustering can be extremely challenging
from a space and time perspective in the massive-domain
case. This is because one needs to retain the discriminatory
characteristics of the most relevant clusters in the data. In the
massive-domain case, this may entail storing the frequency
statistics of a large number of possible attribute values. While
this may be difficult to do explicitly, the problem is furtherin-
tensified by the large volume of the data stream which prevents
easy determination of the importance of different attribute-
values. In this paper, we will propose a sketch-based approach
in order to keep track of the intermediate statistics of the
underlying clusters. These statistics are used in order to make
approximate determinations of the assignment of data points
to clusters. We provide probabilistic results which indicate
that these approximations are sufficiently accurate to provide
similar results to an infinite-space clustering algorithm with
high probability. We also present experimental results which
illustrate the high accuracy of the approximate assignments.

This paper is organized as follows. The remainder of
this section discusses related work on the stream clustering



problem. In the next section, we will propose a technique
for massive-domain clustering of data streams. We provide
a probabilistic analysis which shows that our sketch-based
stream clustering method provides similar results to an infinite-
space clustering algorithm with high probability. In section
III, we discuss the experimental results. We show that the
experimental behavior of the sketch-based clustering algorithm
behaves in accordance with the presented theoretical results.
Section IV contains the conclusions and summary.

A. Related Work

The problem of clustering has been widely studied in the
database, statistical and pattern recognition communities [10],
[12], [13], [11], [17]. Detailed surveys of clustering algorithms
may be found in [12], [13]. In the database community, the
major focus in designing clustering algorithms has been to
reduce the number of passes required in order to perform the
clustering. For example, the algorithms discussed in [10],[11],
[17] focus on clustering the underlying data in one pass.

Subsequently, the problem of clustering has also been
studied in the data stream scenario. Computational efficiency
is of special importance in the case of data streams, becauseof
the large volume of the incoming data. A variety of methods
for clustering data streams are proposed in [1], [9], [14]. The
techniques in [9], [14] proposek-means techniques for stream
clustering. A micro-clustering approach has been combined
with a pyramidal time-frame concept [1] in order to provide
the user with greater flexibility in querying stream clusters
over different time horizons. Recently the technique has been
extended to the case of high dimensional data with the use of
a projected clustering approach [2]. Details on different kinds
of stream clustering algorithms may be found in [4].

Recently the problem of stream clustering has also been
extended to domains other than continuous attributes. Methods
for clustering binary data streams were presented in [16]. Tech-
niques for clustering categorical and text data streams maybe
found in [15] and [18] respectively. A recent technique [3] was
designed to cluster both text and categorical data streams.This
technique is useful in a wide variety of scenarios which require
detailed over different time horizons. The method in [3] canbe
combined with the concept of pyramidal time-frame in order
to enable such an analysis.

None of the above mentioned techniques are useful for the
case of massive-domain data streams. At attempt to gener-
alize these algorithms to the massive-domain case results in
excessive space requirements. Such space-requirements can
cause additional challenges in implementing stream clustering
algorithms across a variety of recent space-constrained devices
such as mobile devices, cell processors or GPUs. The aim of
this paper is significantly broaden the applicability of stream
clustering algorithms to very massive-domain data streamsin
space-constrained scenarios.

II. SKETCH-BASED CLUSTERING MODEL

Before presenting the clustering algorithm, we will intro-
duce some notations and definitions. We assume that the

data streamD contains d-dimensional records denoted by
X1 . . . XN . . .. The attributes of recordXi are denoted by
(x1

i . . . xd
i ). It is assumed that the attribute valuexk

i is drawn
from the unordered domain setJk = {vk

1 . . . vk
Mk}. We note

that the value ofMk denotes the domain size for thekth
attribute. The value ofMk can be very large, and may range
in the order of millions or billions. From the point of view of
a clustering application, this creates a number of challenges,
since it is no longer possible to hold the cluster statisticsin a
space-limited scenario.

Sketch based techniques [6], [7] are a natural method for
compressing the counting information in the underlying data
so that the broad characteristics of the dominant counts can
be maintained in a space-efficient way. In this paper, we will
apply the count-min sketch [7] to the problem of clustering
massive-domain data streams. We will demonstrate a number
of important theoretical and experimental results about the
behavior of such an algorithm. In the count-min sketch, a
hashing approach is utilized in order to keep track of the
attribute-value statistics in the underlying data. We usew =
⌈ln(1/δ)⌉ pairwise independent hash functions, each of which
map onto uniformly random integers in the rangeh = [0, e/ǫ],
wheree is the base of the natural logarithm. The data structure
itself consists of a two dimensional array withw·h cells with a
length ofh and width ofw. Each hash function corresponds to
one ofw 1-dimensional arrays withh cells each. In standard
applications of the count-min sketch, the hash functions are
used in order to update the counts of the different cells in
this 2-dimensional data structure. For example, consider a1-
dimensional data stream with elements drawn from a massive
set of domain values. When a new element of the data stream
is received, we apply each of thew hash functions to map onto
a number in[0 . . . h − 1]. The count of each of the set ofw
cells is incremented by 1. In order toestimatethe count of an
item, we determine the set ofw cells to which each of thew
hash-functions map, and compute the minimum value among
all these cells. Letct be the true value of the count being
estimated. We note that the estimated count is at least equal
to ct, since we are dealing with non-negative counts only, and
there may be an over-estimation because of collisions among
hash cells. As it turns out, a probabilistic upper bound to the
estimate may also be determined. It has been shown in [7],
that for a data stream withT arrivals, the estimate is at most
ct + ǫ · T with probability at least1 − δ.

In this paper, we will use the sketch-based approach in order
to cluster massive-domain data streams. We will refer to the
algorithm was theCSketchalgorithm, since the algorithm clus-
ters the data with the use of sketches. TheCSketchalgorithm
uses the number of clustersk and the data streamD as input
to the algorithm. The clustering algorithm is partition-based,
and assigns incoming data points to the most similar cluster
centroid. The frequency counts for the different attributevalues
in the cluster centroids are incremented with the use of the
sketch table. These frequency counts can be maintained only
approximately because of the massive domain size of the
underlying attributes in the data stream. Similarity is measured



Algorithm CSketch(Labeled Data Stream:D,
NumClusters:k)

begin
Createk sketch tables of sizew · h each;
Initialize k sketch tables to null counts;
repeat

Receive next data pointX from D;
Compute the approximate dot product of incoming data
point with each cluster-centroid with the use of the
sketch tables;

Pick the centroid with the largest approximate
dot product to incoming point;

Increment the sketch counts in the chosen table
for all d dimensional value strings;

until (all points inD have been processed);
end

Fig. 1. The Sketch-based Clustering Algorithm (CSketch Algorithm)

with the computation of the dot-product function between
the incoming point and the centroid of the different clusters.
This computation can be performed only approximately in the
massive-domain case, since the frequency counts for the values
in the different dimensions cannot be maintained explicitly.
For each cluster, we maintain the frequency sketches of the
records which are assigned to it. Specifically, for each cluster,
the algorithm maintains a separate sketch table containingthe
counts of the values in the incoming records. It is important
to note that thesame hash function is used for each cluster-
specific hash table. As we will see, this is useful in deriving
some important theoretical properties of theCSketchalgo-
rithm. The algorithm starts off by initializing the counts in
each sketch table to 0. Subsequently, for each incoming record,
we will update the counts of each of the cluster-specific hash
tables. In order to determine the assignments of data points
to clusters, we need to compute the dot product of thed-
dimensional incoming records with the frequency statistics of
the values in the different clusters. We note that this is not
possible to do explicitly, since the precise frequency statistics
are not maintained. Letqj

r(x
r
i ) represents the frequency of the

value xr
i in the j-th cluster. Letmi be the number of data

points assigned to thej-th cluster. Then, thed-dimensional
statistics of the record(x1

i . . . xd
i ) for the j-th cluster is given

by (qj
1(x

1
i ) . . . qj

d(x
d
i )). Then, the frequency-based dot-product

Dj(Xi) of the incoming record with statistics of clusterj
is given by the dot product of the fractional frequencies
(qj

1(x
1
i )/mj . . . qj

d(x
d
i )/mj) of the attribute values(x1

i . . . xd
i )

with the frequencies of these same attribute values within
recordXi. We note that the frequencies of the attribute values
with the recordXi are unit values corresponding to(1, . . . 1).
Therefore, the corresponding dot product is the following:

Dj(Xi) =

d∑

r=1

qj
r(x

r
i )/mj (1)

The incoming record is assigned to the cluster for which

the estimated dot product is the largest. We note that the
value of qj

r(x
r
i ) cannot be known exactly, but can only

be estimated approximately because of the massive-domain
constraint. There are two key steps which use the sketch table
during the clustering process:

• Updating the sketch-table and other required statistics for
the corresponding cluster for each incoming record.

• Comparing the similarity of the incoming record to the
different clusters with the use of the corresponding sketch
tables.

First, we discuss the process of updating the sketch table,
once a particular cluster has been identified for assignment.
For each record, the sketch-table entries corresponding tothe
attribute values on the different dimensions are incremented.
In some cases, the different dimensions may take on the same
value when the values are drawn from the same domain.
For example, in a network intrusion application, two of the
dimensions may be source and destination IP-addresses. In
such cases, we would like to distinguish between similar
values across different dimensions for the purpose of statistics
tracking in the sketch tables. A natural solution is to tag the
dimension identification with the categorical value. Therefore,
for the categorical value for each dimensionr, we create a
string which concatenates the following two values:

• The categorical valuexr
i .

• The indexr of the dimension.

We denote this string byxr
i ⊕ r. Therefore, each recordXi

has a corresponding set ofd strings which are denoted by
x1

i ⊕ 1 . . . xd
i ⊕ d. For each incoming recordXi, we apply

each of thew hash functions to the stringsx1
i ⊕ 1 . . . xd

i ⊕ d.
Let m be the index of the cluster to which the data point is
assigned. Then, exactlyd · w entries in the sketch table for
cluster m are updated by applying thew hash functions to
each of thed strings which are denoted byx1

i ⊕ 1 . . . xd
i ⊕ d.

The corresponding entries are incremented by one unit each.
In addition, we explicitly maintain the number of recordsmj

in clusterj.
Next, we discuss the process of comparing the different

clusters for similarity to the incoming data point. In orderto
pick a cluster for assignment, the approximate dot-products
across different clusters need to be computed. As in the
previous case, thed stringsx1

i ⊕ 1 . . . xd
i ⊕ d are constructed.

Then, we apply thew hash functions to each of thesed strings.
We retrieve the correspondingd sketch-table entries for each of
thew hash functions and each cluster. For each of thew hash-
functions for the sketch table for clusterj, the d counts are
simply estimates of the value ofqj

1(x
1
i ) . . . qj

d(x
d
i ). Specifically,

let the count for the entry picked by thelth hash function
corresponding to therth dimension of recordXi in the sketch
table for clusterj be denoted bycijlr. Then, we estimate the
dot productDij between the recordXi and the frequency
statistics for clusterj as follows:

Dij = minl

d∑

r=1

cijlr/mj (2)



The value ofDij is computed over all clustersj, and the
cluster with the largest dot product to the recordXi is picked
for assignment.

We note that the distribution of the data points across
different clusters is not random, since it is affected by counts
in the sketch table entries. Furthermore, since the process
of incrementing the sketch tables depends upon cluster as-
signments, it follows that the distribution of counts across
hash-table entries is not random either. Therefore, a direct
application of the properties in [7] to each cluster-specific
sketch table would not be valid. Furthermore, we are interested
in preserving the ordering of the dot-products as opposed to
the absolute values of the dot products. This ensures that the
clustering assignments are not significantly affected by the
approximation process. In the next section, we will providean
analysis of the effectiveness of using a sketch-based approach.

A. Analysis

We would like to determine the accuracy of the clustering
approach, since we are using approximations from the sketch
table in order to make key assignment decisions. In general,
we would like the behavior of the clustering algorithm to
mirror the behavior of an infinite-space algorithm as much as
possible. While the dot product computation is approximate,
it is really the ordering of the values of the different dot
products that matters. As long as this ordering is preserved,
the behavior of the clustering algorithm will be similar to
that of an infinite-space algorithm. The analysis is greatly
complicated by the fact that the assignment of data points to
clusters depends upon the counts in the different sketch tables.
Since the addition of counts to sketch tables depends upon
the counts in the sketch tables themselves, it follows that the
randomness property of the sketch entries is lost. Therefore,
for each cluster-specificsketch table, the properties of [7]
no longer hold true. Nevertheless, it is worthwhile to note
that since the same hash functions are used across different
clusters, the sum of the hash tables across different clusters
forms a sketch table over the entire data set, which does satisfy
the properties in [7].

Let us define the super-sketch tableS as the sum of
the counts in the sketch tables for the different clusters.
We note that the super-sketch table is not sensitive to the
nature of the partitioning of the data points to clusters, and
therefore the properties of [7] do apply to it. We will use the
concept of super-sketch table along with some properties of
the partitioning in order to simplify our analysis.

For the purpose of our analysis, we will assume that we
are analyzing the behavior of the sketch table, when the data
point Xi has arrived, andN data points have arrived before
xi. Therefore, we havei = N + 1. Let us also assume that
the fraction of data points assigned to thek different clusters
are denoted byf1 . . . fk. As discussed earlier, we assume that
there arek sketch tables, which are denoted byS1 . . . Sk. The
sum of these sketch tables is the super-sketch table which is
denoted byS. As before, we assume that the length of the
sketch table ish = e/ǫ, and the width isw = ln(1/δ). We

note that for each incoming data point, we addd counts to one
of the sketch tables, since there are a total ofd dimensions.
We make the following claim:

Lemma 1:Let the count for the entry hashed into by the
lth hash function corresponding to therth dimension of record
Xi in the sketch table for clusterj be denoted bycijlr. Let
qj
r(x

r
i ) represent the frequency of the valuexr

i in the j-th
cluster. Then, with probability at least1 − δ we have:

d∑

r=1

qj
r(x

r
i ) ≤

d∑

r=1

minlcijlr ≤
d∑

r=1

qj
r(x

r
i ) + N · d2 · ǫ (3)

Proof: The lower bound is immediate since all counts are
non-negative, and counts can only be over-estimated because
of collisions. For the case of the upper bounds, we cannot
immediately apply the results of [7] to each cluster-specific
sketch table. However, we can use some properties of the
super-sketch table in order to simplify our analysis.

Let cijlr denote the portion of the count fromcijlr which
is caused by collisions to the true valuexr

i in clusterj for the
lth sketch function. We would like to determine the expected
value ofM =

∑d
r=1 cijlr =

∑d
r=1 cijlr −

∑d
r=1 qj

r(x
r
i ). This

sum is bounded above by the number of collisions in the super-
sketch tableS, since the collisions in the super-sketch table
are a super-set of the collisions in any cluster specific sketch
table. For each record, the sketch table is updatedd times.
Since the total frequency count in the super-sketch table is
N ·d, we can use a similar analysis in [7] on the super-sketch
table to show thatE[cijlr] ≤ N · d · ǫ/e. Therefore, we have
E[

∑d
r=1 cijlr] ≤ N · d2 · ǫ/e. By the Markov inequality, we

haveP (
∑d

r=1 cijlr > N · d2 · ǫ) ≤ 1/e. The probability that
this inequality is true for all values ofl ∈ {1 . . . ln(1/δ)} is at
most (1/e)ln(1/δ) = δ. We note that the inequality is true for
all values ofl, if and only if

∑d
r=1 minlcijlr−

∑d
r=1(q

j
r(x

r
i ) >

N · d2 · ǫ. Therefore, we have:

P (
d∑

r=1

minlcijlr −
d∑

r=1

qj
r(x

r
i ) > N · d2 · ǫ) ≤ δ

P (
d∑

r=1

minlcijlr >
d∑

r=1

qj
r(x

r
i ) + N · d2 · ǫ) ≤ δ

The result follows.
The above result can be used in order to characterize the
behavior of the dot product.

Theorem 1:After the processing ofN d-dimensional points
in the stream, let the fraction of the data points assigned to
the k clusters be denoted byf1 . . . fk. Then, with probability
at least1 − δ, the dot productDj(Xi) of data pointXi with
clusterj is related to the approximationDij by the following
relationship:

Dj(Xi) ≤ Dij ≤ Dj(Xi) + ǫ · d2/fj (4)



Proof: From Lemma 1, we know that the following is
true with probability at least1 − δ:

d∑

r=1

qj
r(x

r
i ) ≤

d∑

r=1

minlcijlr ≤

d∑

r=1

(qj
r(x

r
i ) + N · d2 · ǫ) (5)

Dividing the inequality above bymj , and subsequently sub-
stituting mj = N · fj , we get:

Dij ≤ Dj(Xi) ≤ Dij + ǫ · d2/fj (6)

Next, we would like to quantify the probability that an
incoming data point is assigned to the same cluster with the
use of the sketch-based approach, as with the use of raw
frequency counts. From the result of Theorem 1, it is clear
that with high probability the dot product can be approximated
accurately. This can be extended to quantify the likelihoodthat
the ordering of dot products is preserved.

Theorem 2:After the processing ofN d-dimensional points
in the stream, let the fraction of the data points assigned tothe
k clusters be denoted byf1 . . . fk. Let p andq be the indices
of two clusters such that:

Dip ≥ Diq + d2 · ǫ/fp (7)

Then, with probability at least1− δ, the dot productDp(Xi)
is no less thanDq(Xi).

Proof: Since all frequency counts are non-negative we
know that:

Diq ≥ Dq(Xi) (8)

The inequality in the pre-condition of this theorem further
implies that:

Dip ≥ Diq + d2 · ǫ/fp ≥ Dq(Xi) + d2 · ǫ/fp (9)

From Theorem 1, we know that with probability at least(1−δ),
we have:

Dp(Xi) + d2 · ǫ/fp ≥ Dip (10)

Combining Equations 9 and 10, it follows thatDp(Xi) ≥
Dq(Xi) with probability at least1 − δ.
The above result suggests that the difference between the
estimated dot products of the most similar clusterp and
second-most similar cluster should be at leastd2 · ǫ/fp in
order for the assignment to be correct with high probability.

The above analysis computes the difference in dot products
which is required for the assignment to be correct with
probability at least1− δ. We would like to pose the converse
question, in which we would like to quantify the probability
that the similarity with one centroid is greater than the other
centroid for a given error bound, and sketch table widthw
and lengthh. This will help us compute the sketch table
dimensions which are required in order to guarantee a given
probability of assignment error. This result is necessary in
order to design a clustering process for which the sequence of
assignments is similar to that of an infinite-space algorithm.

Lemma 2:Let w andh denote the width and length of the
sketch tables. Let the count for the entry hashed into by the

lth hash function corresponding to therth dimension of record
Xi in the sketch table for clusterj be denoted bycijlr. Let
qj
r(x

r
i ) represent the frequency of the valuexr

i in the j-th
cluster. LetB be any positive value. Then, with probability at
least1 − (N · d2/(B · h))w we have:

d∑

r=1

qj
r(x

r
i ) ≤

d∑

r=1

minlcijlr ≤

d∑

r=1

qj
r(x

r
i ) + B (11)

Proof: This proof is quite similar to Lemma 1.The
main difference is that the expected value of

∑d
r=1 cijlr −∑d

r=1 qj
r(x

r
i ) is at mostN · d2/h. This is because the total

contribution of collisions to the above expression isN · d2

which get mapped uniformly onto the enter lengthh of the
super-sketch table. Therefore, by using the Markov inequality,
the probability that the expression

∑d
r=1 cijlr −

∑d
r=1 qj

r(x
r
i )

is greater thanB is at mostN · d2/(B · h). Therefore, the
probability that the expression

∑d
r=1 cijlr −

∑d
r=1 qj

r(x
r
i ) is

greater thanB over all values ofl ∈ {1 . . . w} is at most
(N · d2/(B · h))w. Therefore, we have:

P (

d∑

r=1

minlcijlr −

d∑

r=1

qj
r(x

r
i ) > B) ≤ (N · d2/(B · h))w

P (

d∑

r=1

minlcijlr >

d∑

r=1

qj
r(x

r
i ) + B) ≤ (N · d2/(B · h))w

The result follows.
Theorem 3:After the processing ofN d-dimensional points

in the stream, let the fraction of the data points assigned to
the k clusters be denoted byf1 . . . fk. Let b be any positive
value. Then, with probability at least1− (d2/(b ·fj ·h))w, the
dot productDj(Xi) of data pointXi with clusterj is related
to the approximationDij by the following relationship:

Dj(Xi) ≤ Dij ≤ Dj(Xi) + b (12)

Proof: We note that the inequality in Theorem 3 is related
to that of Lemma 2, by dividing the key inequality in the latter
by mj , and by pickingB = b · N · fj andmj = N · fj .
Theorem 3 immediately provides us with a way to quantify
the probability that the ordering in the estimated dot product
translates to the true frequency counts. This is analogous to
the result of Theorem 4. We summarize this result as follows:

Theorem 4:After the processing ofN d-dimensional points
in the stream, let the fraction of the data points assigned tothe
k clusters be denoted byf1 . . . fk. Let p andq be the indices
of two clusters such that:

Dip ≥ Diq + b (13)

Then, with probability at least1 − (d2/(b · fp · h))w, the dot
productDp(Xi) is no less thanDq(Xi).

Proof: Since all frequency counts are non-negative we
know that:

Diq ≥ Dq(Xi) (14)



The inequality in the condition of the theorem further implies
that:

Dip ≥ Diq + d2 · ǫ/fp ≥ Dq(Xi) + d2 · ǫ/fp (15)

From Theorem 2, we know that with probability at least(1−
(d2/(b · fj · h))w), we have:

Dp(Xi) + d2 · ǫ/fp ≥ Dip (16)

Combining Equations 15 and 16, we obtain the condition that
Dp(Xi) ≥ Dq(Xi) is true with probability at least1−(d2/(b ·
fp · h))w.
An important observation is that the value ofh should be
picked large enough, so thatd2/(b ·fj ·h) < 1, in order to get
a non-zero bound on the probability. In order to get a practical
idea of the approach, let us consider a modest sketch table
with a lengthh = 1000, 000 and w = 10 in order to cluster
10-dimensional data. We note that such a sketch table requires
only a few megabytes, and can easily be held in main memory
with modest desktop hardware. Let us consider the case, where
the estimated dot product with one centroid is greater than that
with the other centroid by0.02. Let us assume that the centroid
(with the greater similarity) contains a fractionfj = 0.05 of
the points. Then, the probability that the ordering of the dot
products is correct, if we had used the true frequency countsis
given by at least1− (100/(0.02∗0.05∗106))10 = 1−10−10.
From a practical point of view, this probability is small enough
to suggest that the ordering would be preserved in practical
scenarios.

Theorem 3 only quantifies the probability of ordering be-
tween a pair of clusters. In general, we would like to quantify
the probability that the assignment to the most similar cluster
(based on the estimated dot-product) is the correct one. It is
easy to extend the result of Theorem 3 to the general case of
k clusters.

Theorem 5:After the processing ofN d-dimensional points
in the stream, let the fraction of the data points assigned to
the k clusters be denoted byf1 . . . fk. Let p be the index of
the cluster with the largest estimated dot product similarity,
and for eachq 6= p, let it be the case that:

Dip ≥ Diq + bq (17)

Then, with probability at least1 −
∑

q 6=p(d
2/(bq · fp · h))w,

the true dot productDp(Xi) is no less thanDq(Xi) for every
value ofq 6= p.

Proof: Let Eq be the event thatDp(Xi) < Dq(Xi).
We are trying to estimate1 − P (∪q 6=pEq). From elementary
probability theory, we know that:

P (∪q 6=pEq) ≤
∑

q 6=p

P (Eq)

1 − P (∪q 6=pEq) ≥ 1 −
∑

q 6=p

P (Eq)

We note that the value ofP (Eq) is at most(d2/(bq · fp ·h))w

according to the result of Theorem 4. By substituting the value

of P (Eq) on the right hand side of the above equation, the
result follows.
We are interested in minimizing the number of such assign-
ment errors over the course of a clustering application. One
important point to be kept in mind is that in many cases
an incoming data point may match well with many of the
clusters. Since similarity functions such as the dot product
are heuristically defined, small errors in ordering (whenbq

is small) are not very significant for the clustering process.
Similarly, some of the clusters correspond to outlier points
and are sparsely populated. Therefore, we are interested in
ensuring that assignments to “significant clusters” (for which
fp is above a given threshold) are correct. Therefore, we define
the concept of an(f, b)-significant assignment error as follows:

Definition 1: An assignment error which results from the
estimation of dot products is said to be(f, b)-significant, if
a data point is incorrectly assigned to cluster indexp which
contains at least a fractionf of the points, and the correct
cluster for assignment has indexq which satisfies the following
relationship:

Dip ≥ Diq + b (18)
The above result definition considers the case where a data
point is incorrectly assigned to a robust (non-outlier) cluster
and its estimated dot product with the incoming point has
significantly higher similarity than the true cluster (which
would have been obtained by using the true dot-product).
We can use the result of Theorem 5 in order to bound the
probability of an(f, b)-significant error in a given assignment.

Lemma 3:The probability of an(f, b)-significant error in
an assignment is at most equal tok · (d2/(b · f · h))w.
We can use this in order to bound the probability that there
is no (f, b)-significant error over the entire course of the
clustering process ofN data points.

Theorem 6:Let us assume thatN ·k · (d2/(b ·f ·h))w < 1.
The probability that there is at least one(f, b)-significant error
in the clustering process ofN data points is given by at most

N ·k
(b·f ·h/d2)w .

Proof: This is a simple application of the Markov
inequality since the expected number of errors is given by at
mostN · k · (d2/(b · f ·h))w. If the expected number of errors
is less than 1 (as in the pre-condition), we can use the Markov
inequality in order to estimate at bound on the probability that
there is at least one(f, b)-significant error.
We note that if there is no(f, b)-significant error, it does
not imply that the clustering process picks exactly the same
sequence of assignments. It simply suggests that the assign-
ments will either mirror an infinite-space clustering algorithm
exactly or will be qualitatively quite similar. In the experi-
mental section, we will see that the sequence of assignments
of the approximation turn out to be almost identical to an
exact algorithm. In order to estimate the effectiveness of this
approach, let us consider an example withf = 0.05, b = 0.02,
h = 106, w = 10, d = 10, k = 10, andN = 107. In this case,
it can be shown that the probability of an(f, b)-significant
error over the entire data stream is at most equal to0.01.
Thus, the probability that there is no(f, b)-significant error in



the entire clustering process is0.99, which is quite acceptable
for a large data stream of107 data points. A point to be noted
here is that as the number of pointsN in the data stream
increases, the pre-conditionN · k · (d2/(b · f · h))w < 1 may
no longer hold true. However, this problem can be balanced by
using a larger value ofw for data streams which are expected
to contain a very large number of points. We also note thatN
need not necessarily correspond to the size of the stream, but
simply the number of points in a contiguous block in which we
wish to guarantee no error with high probability. Furthermore,
sincew occurs in the exponent,the width of the sketch table
needs to increase only logarithmically with the number of
points in the data stream (or block size over which the error
is guaranteed). In the example above, it can be shown that by
increasingw to 15 from 10, data streams with more than1012

points (tera-byte streams) can be effectively handled. Thus,
only a 50% increase in space changes the effective stream
handling capacity by 5 orders of magnitude. We summarize
this observation specifically as follows:

Observation 1:The value ofw should be picked to be at
least log(N)+log(k)

log(b·f ·h/d2) . Therefore, the width of the sketch table
should scale logarithmically with data stream size.
We also summarize our earlier observation about the length of
the sketch table so thatd2/(b · f · h) < 1.

Observation 2:The value ofh should be picked to be at
leastd2/(b ·f) in order to avoid(f, b)-significant errors while
clusteringd-dimensional data.
The above observations suggest a natural way to pick the
values of h and w, so that the probability of no(f, b)-
significant error is at least1 − γ. The steps are as follows:

• For some constantC > 1, pick h = C · d2/(b · f).
• If N is an upper bound on theestimated number of points

expected to be contained in the stream, then pickw as
follows:

w =
log(N) + log(k) + log(1/γ)

log(C)
(19)

We note thatN need not be necessarily be the actual stream
size, but may simply represent the size of the chunk of
data points over which we wish to guarantee no error with
probability at least1 − γ.

Observation 3:The total sizeM of the sketch table in order
to guarantee no(f, b)-significant error with probability at least
1 − γ is given by:

M =
C · d2 · (log(N) + log(k) + log(1/γ))

log(C) · b · f
(20)

Note that we can choose any value ofC > 1. Smaller values
of C reduce the sketch table size, but increase the width of
the sketch table, which increases computational time. In our
practical implementations, we always usedC = 10.

III. E XPERIMENTAL RESULTS

In this section, we will present the experimental results
for testing the effectiveness and efficiency of theCSketch
algorithm. We tested the following measures: (1) Effectiveness
of the CSketchclustering algorithm (2) Efficiency of the
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CSketchclustering algorithm (3) Sensitivity of theCSketch
algorithm with respect to different parameter values.

Since this is the first algorithm for clustering massive do-
main data streams, there is no historical baseline for testing the
effectiveness of the approach. A critical aspect of the massive-
domain algorithm is the use of a sketch-based approximation
in order to determine the assignment of data points to clusters.
Therefore, it would be useful to examine how well the sketch
based approximation mimics a perfect oracle which could
implement the partitioning approach exactly with the use
of true frequency counts. It turns out that it is possible to
implement such an oracle in a limited way, if one is willing to
sacrifice time and space-efficiency of the algorithm. We refer
to this implementation as limited, because the space required
by this approach will continuously increase over the execution
of the stream clustering algorithm, as new domain values
are encountered. In the asymptotic case, where the domain
size is larger than the space constraints, the oracle algorithm
will eventually terminate at some point in the execution of
a continuous data stream. Nevertheless, we can still use the
oracle algorithm for very long streams, and it provides anop-
timistic baseline for effectiveness, since one cannot generally
hope to outperform the exact counting version of theCSketch
algorithm in terms of quality. As the baseline oracle, we
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implemented an exact version of theCSketchalgorithm, where
we used a first-level main-memory sketch table, and allowed
any additional collisions from this sketch table to be indexed
onto disk. The counts for each additional collision as explicitly
maintained on disk. The frequency counts were implemented
in the form of an index, which was anopen hash table[5],
in which each entry of the hash table pointed to alist of the
attribute valueswhich hashed onto the entry along with the
corresponding frequency counts. Thus, the frequency counts
are maintained exactly, since the collisions between hash table
entries are resolved by explicit maintenance of exact attribute
counts for each possible value. We note that the attribute
values need to be maintained explicitly in order to avoid the
approximations which are involved with collisions in a closed
hash table. This creates an extra space overhead, especially for
applications with large string representations of the underlying
labels. For example, the maintenance of the attribute value
such as the IP-address often requires much greater space than
the frequency count itself. Furthermore, since overflows from
the main memory hash table are indexed onto disk (with
the use of a hash-based index), this can reduce the speed
when the counts need to be retrieved from the disk hash-
index. We note that most of the retrievals still continue to use
the main memory table, since the most frequently occurring
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domain values are held in the main memory table, whereas
a small fraction of the retrievals are required to access the
disk. This fraction continually increases over the progress of
the algorithm, as new domain-values are encountered. We note
that the oracle algorithm is not really a practical algorithm for
a data stream from either a computational or space-efficiency
point of view, since it can lead to a large number of disk
access and eventually terminate because of space overflow.
Nevertheless, it provides anoptimistic baselineto the best
possible accuracyof the CSketchalgorithm.

All results were tested on a Lenovo T60 Thinkpad with a
speed of 1.83GHz and 1GB of main memory. The operating
system was Windows XP Professional, and the algorithm was
implemented in Visual C++ 5.0. The algorithm was tested
on a number of intrusion detection data sets from IBM logs
at a variety of geographically located sensors. Each record
represented an alert which was generated at a particular
sensor based on other known information about the record.
There could be several hundred alert-types, some of which
were more frequent than others. Each record contained fields
corresponding to thealertid, the time stamp, the sensor id,
the source IP address of a suspected intrusion, the destination
IP-address of the intrusion, and the severity of the attack.
We note that this is a massive-domain data set, because of
the use of IP-addresses which have a very large number of
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possible values in addition to several thousand sensor ids,
which were geographically placed around the globe. We used
three different data sets, which are denoted by IP06-0102,
IP06-0304 and IP06-05 respectively. The first two data sets
comprised streams of alerts for two consecutive days, whereas
the third data set comprises a stream of alerts for a single day.

In order to measure the quality of the results, we used
the alert id field which was related to the other attributes
in the data. In order to perform the clustering, we used all
fields other than thealertid field and then tested how well
the clustering process separated out the different alerts across
different clusters. Since thealertid field was not directly used
in the clustering process, but was related to other fields in an
indirect way, it can be used as an evaluation field in order
to measure the quality of the clustering process. Let there
be s different alert types, with relative fractions of presence
denoted byp1 . . . ps in a subsetC of the data. The quality of
separation in the subsetC was measured with the use of an
entropy measureE which was defined as follows:

E(C) = 1 −

s∑

i=1

p2
i (21)

We note thatE(C) always lies in the range[0, 1]. The value
of E(C) is closer to zero, when a given cluster is dominated
by a small number of alert types. On the other hand, when
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the setC contains an even mixture of the alert types the value
of E(C) is closer to 1. In general, we would like a good
clustering process to create sets of clusters, such that each
of them is dominated by one (or a small number of related)
alert types. LetC1 . . . Ck be the sets corresponding to thek
different clusters. Then the average entropy measure across
the different clusters was defined as follows:

E =

∑k
i=1 |Ci| · E(Ci)∑k

i=1 |Ci|
(22)

Clearly, the smaller the value ofE the better than the quality
of the clustering. The value ofE(·) can also be computed on
the base data set, and we refer to this as the baseline entropy
of the data stream. Typical values of the entropies tested for
the data stream were well over0.85, which suggests that the
stream contained a wide mixture of different kinds of alerts.

Unless otherwise mentioned, the default values of the pa-
rameters used in the testing process weref = 0.02, b = 0.1,
γ = 0.01 over each block ofN = 10000 data points, and
the number of clustersk = 15. At a later stage, we will also
provide a sensitivity analysis which illustrates the robustness
of the method over a wide range of values. We note that the
value ofN represents only the blocksize over which the errors
are guaranteed, rather then the stream length. The latter was
typically more than two orders of magnitude larger. We will

experimentally show that even for this conservative choice
of N , the CSketchapproach continues to exhibit very high
accuracy over the the entire data stream. Furthermore, even
if the value of N was increased in order to obtain a much
larger sketch table, this affects the space requirements only
modestly because of the logarithmic dependence implied by
Equation 20. We constructed an analytical curve (according
to Equation 20), which illustrates the variation in sketch table
size with increasing values ofN . This is presented in Figure 2.
All parameters are set to the default values above. The valueof
N in Equation 20 is illustrated on theX-axis, and the value of
the sketch table size (in Kilobytes) is illustrated in theY -axis.
Because of the logarithmic variation of space requirements
with M , it is clear that as the value ofN increased from
104 to 107, the space requirements increased from 1.1MB to
only 1.55MB. Clearly, such modest space requirements are
well within the even the main memory or caching capability
of most modern desktop systems.

In Figures 3, 5, and 7, we have illustrated the effectiveness
of both theCSketchand the Oracle algorithm with the pro-
gression of the data stream. On theX-axis, we have illustrated
the progression of the stream in terms of the number of data
points, and on theY -axis, we have illustrated the average
cluster entropy of the latest block of stream points for both
the CSketchand Oracle methods. We have also computed
the entropy of the overall data stream itself over the same
blocks of points and plotted it over the progression of the
stream. While the Oracle algorithm is not a practical algorithm
for a data stream from a space-efficiency or computational
point of view, it serves the useful purpose of providing an
optimistic baseline to theCSketchalgorithm. An immediate
observation is that there is a very close overlap between the
CSketchmethod and the Oracle algorithm. This means, that
the CSketchalgorithm does not deviate very much from the
“exact” clustering process because of the use of approximate
counts in theCSketchapproach. From Figure 3, it is clear
that in many cases, theCSketchalgorithm did not deviate
very much from optimistic baseline provided by the Oracle
algorithm. In fact, there is some slight deviation only in the
case of the data set IP06-0102 (Figure 3), and in this case,
the entropy of theCSketchalgorithm is actually slight lower,
which makes the quality of the clusters superior. This tends
to suggest that any variations from the “perfect” assignment
involve small enough difference in the true dot product values,
that there is no practical difference in the quality values.
Therefore, the resulting deviations in the clustering could be
either slightly better or worse, and is dictated more by the
randomness in future variations of the data stream, rather than
a significant difference in the quality of assignments. In the
case of Figures 5 and 7, every single assignment was exactly
the same in theCSketchapproach as in the case of the Oracle
algorithm. In Figures 3, 5, and 7, we have also illustrated the
baseline entropy of the entire data stream. It is clear that in
each case, the baseline entropy values were fairly high and
the clustering process considerably reduces the entropy across
the evaluation field (alert distribution), even though it was not



used directly in the clustering process. Thus, suggests that the
clustering approach is indeed effective in finding meaningful
clusters from the underlying data stream.

In Figures 4, 6, and 8, we have illustrated the processing
rate of the two different methods with progression of the
data stream. TheX-axis illustrates the progression of the data
stream in terms of the number of points, whereas theY -axis
illustrates the processing rate of the data stream over the last
set of 10000 points. It is immediately clear that theCSketch
algorithm has a stable processing rate with progression of the
data stream. On the other hand, the Oracle algorithm starts
off with a much higher processing rate, but drops off rapidly
to less than a fifth of the speed of theCSketchalgorithm.
This difference is because theCSketchalgorithm has a stable
data structure for statistical maintenance, whereas the Oracle
algorithm has a data structure whose size continually increases
with progress of the data stream and eventually spills over
to disk. Since our stream tests generate the data streams
from disk, the Oracle algorithm can be made to work in
such scenarios as long as the space requirements do not
exceed the disk space. In very challenging cases, where the
data is too large for the disk and is received directly from
the publisher, it can be expected that the Oracle algorithm
would eventually have to be terminated for lack of storage.
Even in the cases analyzed in this paper, it is clear that the
continuously decreasing efficiency of the Oracle algorithmis
because a larger and larger fraction of the cluster comparisons
need to access the hash index on the disk. In cases where
the stream suddenly evolves, new domain values need to be
written on disk. This leads to additional overhead, and this
shows up in the three graphs as sudden dips in the processing
rate. At some of these instances in Figures 4, 6 and 8, the
Oracle algorithm may process about 50 data points or less
each second. Thus, the Oracle algorithm can suddenly slow
down to extremely low processing rates. This suggests that
an attempt to maintain exact counts is not very practical, and
the efficiency of the technique can only reduce further with
progression of the stream. Since data streams are inherently
designed for continuous operations over long periods of time,
it works against the ability of the Oracle algorithm to maintain
exact statistics for the clustering algorithm. This is especially
significant in light of the fact that there is no discernable
difference in the quality of the results obtained by theCSketch
and the optimistic baseline provided by the Oracle algorithm.

We also tested the sensitivity of theCSketchalgorithm with
different choices of the parametersb, f , andγ. We used the
data set IP06-0102 in order to illustrate the sensitivity analysis,
though the results are very similar across all three data sets.
We will present the results over only one data set for lack of
space. We note that by varying these parameters, the length
and width of the sketch table can be changed, and we would
like to explore the effect of this approach on the quality and
the running time. In Figures 9, 11, and 13 we have illustrated
the average entropy of the clustering for variations in the
parametersb, f and γ respectively. In each case, we tested
with the cases ofk = 15 andk = 25 clusters respectively. All

other parameters were set to the default values, as indicated at
the beginning of this section. In each case, the corresponding
parameter is illustrated on theX-axis, whereas the average
entropy is illustrated on theY -axis. The average entropy is
computed over the entire data stream in each case. In the
case of Figure 13, we have illustrated log10(γ) on the X-
axis, since the time variations can be seen more clearly along
this scale. In each of the figures, it is evident that the entropy
does not change at all with variations in parameters. This is
essentially because the clustering process continues to closely
mimic the exact (Oracle) clustering method over a wide range
of parameters. The entropy is lower for higher values ofk
since there is better separation of the different alerts across
the clusters. We note that for some of the choices ofb andf ,
the sketch table requires only around 250KB. This indicates
that even with very low space consumption, it is possible to
closely mimic the exact clustering process in which all counts
are maintained exactly. This suggests that the quality of the
CSketchalgorithm is extremely robust across a wide range
of parameters, and can be made to work in extremely space
constrained scenarios such as limited processors embeddedin
sensors.

We also tested the sensitivity in processing rate across
different choices of parameters. The results are illustrated
in Figures 10, 12, and 14 respectively. The corresponding
parameter is illustrated on theX-axis, whereas the processing
rate is illustrated on theY -axis. In the case of variations with
parametersb andf , there is very little variation in processing
rates. This is because the sketch table length reduces with
increasing values of the parametersb and f . This does not
change the number of operations, since the width of the
sketch table remains the same. The slight variations in the
processing rate in the figures may be because of random
variations in the processor load across different runs. The
running time increases with the number of clusters, since one
needs to compare the dot-products across a larger number of
clusters. In Figure 14, we have illustrated the variation inthe
processing rate with the parameter log10(γ). We note that
the width of the sketch table increases proportionally with
−log10(γ). Consequently, the running time increases almost
linearly with −log10(γ). The slight variation from the linear
behavior of because of the variations in the caching behavior
of the sketch table. We note that at the left end of Figure
14 corresponds toγ = 10−5 which is an incredibly high
probability of accuracy. Even at this high level of accuracy, the
CSketchalgorithm maintains a high processing rate. Thus, the
CSketchalgorithm is a robust algorithm, which closely mimics
a clustering algorithm based on exact statistics maintenance
while maintaining its computational efficiency across a wide
range range of parameters.

IV. CONCLUSIONS ANDSUMMARY

In this paper, we presented a method for massive-domain
clustering of data streams. Such scenarios can arise in situa-
tions where the number of possible data values is very large
in the different dimensions is very large or the underlying



hardware is very space-constrained. The problem of clustering
is especially difficult in the massive-domain case because of
the dual problems of data stream speed and the maintenance
of statistics about a large number of attribute values. We used
the technique of sketches in order to determine an accurate
assignment of data points to clusters. We provide a theoretical
analysis which proves that the clustering process providesan
approximately similar quality of assignments as a process
which maintains exact counts. We presented experimental
results which show that our algorithm maintains almost exactly
the same sequence of assignments as an Oracle algorithm
which also maintains exact counts, but is not very practical
in the case of a fast data stream or in very space-constrained
scenarios. TheCSketchalgorithm exhibits robustness across a
wide range of input parameters, since its accuracy does not
change very much of variation of different parameter values.
Thus, theCSketchalgorithm is a fast, practical, robust, and
space-efficient algorithm for massive-domain clustering of data
streams.
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