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Abstract

The problem of maximizing influence spread has been widely
studied in social networks, because of its tremendous number of
applications in determining critical points in a social network for
information dissemination. All the techniques proposed in the
literature are inherently static in nature, which are designed for
social networks with a fixed set of links. However, many forms
of social interactions are transient in nature, with relatively short
periods of interaction. Any influence spread may happen only
during the period of interaction, and the probability of spread is a
function of the corresponding interaction time. Furthermore, such
interactions are quite fluid and evolving, as a result of which the
topology of the underlying network may change rapidly, as new
interactions form and others terminate. In such cases, it may be
desirable to determine the influential nodes based on the dynamic
interaction patterns. Alternatively, one may wish to discover the
most likely starting points for a given infection pattern. We
will propose methods which can be used both for optimization of
information spread, as well as the backward tracing of the source of
influence spread. We will present experimental results illustrating
the effectiveness of our approach on a number of real data sets.
Keywords: Social Networks, Influence Analysis

1 Introduction

Social networks have traditionally been studied in the con-
text of static (or slowly evolving) networks such as Face-
book or LinkedIn [22, 23]. This is because the topology of
such networks is defined by friendship links which evolve
slowly over time. However, many social networks may be
defined in the form of transient interactions between en-
tities. In such cases, edges may be rapidly added to and
deleted from the network, as a result of which the topology
of the network may vary drastically over time. Many natural
social interactions such as epidemiological networks, email
networks or chat networks can be modeled much more nat-
urally from a dynamic perspective. In this paper, we study
the significantly more challenging problem of information
spread through transient social interactions. Some examples
of such applications are as follows:

• In an epidemiological network, the interaction between
the entities may be very dynamic and transient. In
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such cases, influence analysis can help provide an
understanding of the most potent infection points, and
also the most likely infection points for a particular
pattern of infection.

• The interactions of a given social network of entities
can often be predicted based on past patterns or written
calendar records in some cases. These represent future
interactions, which can be used in order to model the
spread of information.

• In an online chat network, it may sometimes be possible
to model periodic patterns of interaction between differ-
ent entities. This can help determine the key points in
the network for information release.

The problem of dynamic information flow analysis is a
fundamentally more difficult problem, because of the rapidly
changing network pattern of interactions. In such cases, the
more influential points are likely to not only be well con-
nected entities, but also need to be connected to other en-
tities in a temporally strategic way for maximum influence.
The dynamic aspect of the problem makes the problem sig-
nificantly more challenging, because of the complicated in-
terplay between the structural and temporal aspects of the
underlying network.

We will design a stochastic approach to determine the
information flow authorities with the use of a globally op-
timized forward trace approach, and a locally optimized
backward approach. The former approach is more accu-
rate, though it comes at the expense of greater computational
costs. We will also present methods in order to determine the
most likely release points for a given pattern of information
spread. We present experimental results illustrating the ef-
fectiveness and efficiency of the approach.

This paper is organized as follows. In the remainder
of this section, we will discuss related work. In section
2, we introduce the dynamic model for information flow in
social networks. In section 3, we will show how to use this
model in order to determine the most influential points in the
network with the use of a forward algorithm. In section 4,
we will present a locally optimized backward trace method
for optimizing the dynamic influence. We will also present a
method for finding the most likely release points for a given
pattern of infection. The experimental results are discussed
in section 5. Section 6 contains the conclusions.



1.1 Related Work The problem of epidemic spread in
computer networks has been studied extensively in [5, 12,
11, 13, 14, 15, 19, 20, 21]. Much of this work studies pat-
terns of information flows under which such flows becoming
epidemics. Some recent research [21] studies the informa-
tion propagation problem in context of similar models for
computer virus and epidemic spreading [15, 19]. The work
in [5, 17, 16, 21] studies the information flows in the context
of social networks and other kinds of computer networks. A
method for mining the network value of customers for viral
marketing model was proposed in [8].

Influential points are closely related to central points
of network clusters. Many algorithms have been designed
for determining clusters and communities [2, 3] in massive
graphs. A number of influence maximization methods for
the case of static networks were proposed in [1, 7, 6, 9]. All
these previous papers handle only the static case of a fixed
network, and are designed to determine the influential nodes
on the basis of steady state behavior of the network. This
is the first paper which addresses the problem of information
flow authority determination in dynamic networks on the ba-
sis of transient interactions. This is a much more challeng-
ing and realistic assumption in most real scenarios. Further-
more, this paper examines both the problems of optimizing
influence, and that of tracing back from a given pattern of
spread.

2 Modeling Influential Nodes in Dynamic Social
Networks

We assume that the universal set of nodes over which the
social network is defined at time t is denoted by N(t), and
the edge set by A(t). The edge set is assumed to be directed,
since information flows are specific to direction in the most
general case. We note that both the node set N(t) and
edge set A(t) are time-dependent. Therefore, the underlying
time-dependent graph G(t) is denoted by (N(t), A(t)). In
addition, we define the set of edges E(t1, t2) which appear
in the interval (t1, t2) as the union of all the edges which
appear at any time t in (t1, t2). Therefore, we have:

(2.1) E(t1, t2) = ∪t∈(t1,t2)A(t)

In many dynamic applications, the edge set A(t) may
change drastically over time, as different kinds of transient
interactions occur in the network. For example, the meeting
of two actors corresponds to the creation of an edge, and
their separation corresponds to the deletion of the edge. We
assume that the probability of information spread along an
edge (i, j) is given by the probability fij(δt), where fij(δt)
is an increasing function of δt, and δt is the total amount
of time for which the edge was present in the network. For
example, a typical example of a transmission function could
be:

(2.2) fij(δt) = a · (1 − e−λij ·δt)

In this case, we have 0 ≤ a ≤ 1. Therefore, the steady-state
probability of transmission is a, though the transmission
probability is likely to be much lower for the transient case,
when the edge is present in the network only for a small
amount of time. The parameter λij controls the transmission
rate across an edge (i, j). The matrix of transmission
functions is denoted by F (·) = [fij(·)].

The set of nodes from which an incoming edge is inci-
dent into node i at time t is denoted by I(i, t). In other words,
we have I(i, t) = {k : (k, i) ∈ A(t)}. The set of nodes on
which the outgoing edges of i are incident are denoted by
O(i, t). Therefore, we have O(i, t) = {k : (i, k) ∈ A(t)}.
We assume a model of information transmissibility, in which
a node i which contains a piece of information can trans-
mit it along a transient edge (i, j) lasting for time δt with
probability fij(δt). In addition, we also define the incom-
ing and outgoing edges for a time interval (t1, t2) as the
union of all edges which appear in this interval. We de-
fine the notations IN(i, t1, t2) and OU(i, t1, t2), in order to
denote the horizon specific incoming and outgoing edges.
Therefore, we have IN(i, t1, t2) = ∪t∈(t1,t2)I(i, t) and
OU(i, t1, t2) = ∪t∈(t1,t2)O(i, t).

One of the common steps that all algorithms in this pa-
per need to repeatedly perform is to determine the transmis-
sion probabilities of the edges over different time intervals.
Specifically, we need to compute the transmission probabil-
ity of an edge over an arbitrary time interval (t1, t2). We de-
note the transmission probability along edge (i, j) between
the time period (t1, t2) by pij(t1, t2). We note that this
transmission probability can be derived from the length of
the period between (t1, t2) for which the edge (i, j) was
present. We note that since the edge (i, j) may occur mul-
tiple times in the interval (t1, t2), we need to compute the
overall transmission probability for that period. Let δt1, δt2,
. . ., δtr be the time periods in (t1, t2), at which the edge
(i, j) was present.1 Then, the probability of transmission is
given by 1−∏r

m=1(1−fij(δtm)). For example, an interest-
ing special case is the memory less function when f ij(t) is
1− e−λijt. In such a case, the transmission probability eval-
uates to 1 − e−

∑r
m=1 λij ·δtm = fij(

∑r
m=1 δtm). In other

words, we simply need to evaluate the function over the sum
of the periods in (t1, t2) over which the edge is present.

The matrix of transmission probabilities in period
(t1, t2) is denoted by P (t1, t2) We denote the corresponding
matrix of transmission probabilities by P (t) = [pij(t1, t2)].
Each value of pij(t1, t2) is defined with the use of the un-
derlying parameters. We note that this matrix is extremely

1For simplicity in this example, we assume that the edge (i, j) is not
present at time t1. In the event that edge (i, j) is present at time t1, then its
transmission probability would be defined by fij(t1+δt1−ta)−fij(t1−
ta). Here ta < t1 is the time of arrival of the edge (i, j), which continues
to be present at time t1. The modeling in this paper does not assume any
such simplifying assumption.



sparse, because it is often overlaid on very sparse graphs
such as social networks. We note that if π(i, t1) be the prob-
ability that a given node i contains a given piece of infor-
mation at time t1, then the probability that the the adjacent
node j contains the information I at time t2 is given by the
probability π(i, t1) · pij(t1, t2).

The problem of influence analysis in dynamic networks
can be modeled in two ways, depending upon the goals of
the analysis:

• We wish to pick the k points at time t1, which would
result in the maximum influence at time t2.

• We wish to pick the most likely points of influence at
time t1 for a particular pattern of influence at t2.

In this paper, we will study both cases. The first problem
of influence maximization is defined as follows:

PROBLEM 1. Determine the set S of k data points in the
time interval (t0, t0 + h) at which release of the information
bits I at time t0 would maximize the expected number of
nodes over which I is spread at time t0 + h.

Such a problem can be very challenging in a rapidly chang-
ing network. This is because the spread probabilities may
need to be potentially recomputed continuously as new so-
cial connections (edges) arrive in the network.

Let π(i, t) be the probability that a particular piece of
information is available at node i at time t. We note that
the node i contains the information at time t2, if it either
already contained the information at time t1 or if it transmits
the information between times t1 and t2. Therefore, we have:

π(i, t2) = π(i, t1) +

+(1− π(i, t1)) · (1−
∏

j∈IN(i,t1,t2)

(1− π(j, t1) · pji(t1, t2)))

The above equation can be explained as follows. The
probability at time period t2 is expressed as the sum of the
probabilities of two events: (1) In the first case, the node
already contains the information at time t1. The probability
of this is π(i, t1), which is the first term above. (2) In the
second case, the node does not contain the information at
time t1 with probability (1−π(i, t1)), but the information is
transmitted to it by one of its neighbors. In the second term
above, the expression

∏
j∈IN(i,t1,t2)

(1−π(j, t1)·pji(t1, t2))
represents the probability that none of the incoming edges
of node i in the period (t1, t2) transmit to it. Therefore, the
probability of transmission by at least one of the neighboring
nodes is given by 1−∏

j∈IN(i,t1,t2)
(1−π(j, t1)·pji(t1, t2)).

The generic problem requires us to determine a set S of
k nodes, such that if the information is released at the time
t0, the total amount of information spread is maximized at
time t0 + h. Therefore, Problem 1 can be formally restated

Algorithm DynInfluenceVal(Initial Set: S,
Transmission Matrix: F (·), Time Horizon: (t0, t0 + h))

begin
for each i ∈ S set π(i, t) = 1 and 0 otherwise;
Divide (t0, t0 + h) into time periods t0 . . . tr = t0 + h;
j = 0;
repeat
Compute edge set E(tj , tj+1) and transmission matrix P (tj , tj+1);
for each i do
Compute π(i, tj+1) from π(·, tj) using dynamic update equations;
j = j + 1;

until(j = r);
return(

∑
i π(i, tr));

end

Figure 1: Evaluating Influence for Fixed Node Set

as follows:
Problem 1 (Formal Restatement): Determine the set S of
nodes at which to release the information at time t0, which
maximizes the probabilistic spread

∑
i∈N(t0+h) π(i, t0+h).

3 Dynamic Influential Node Discovery

In order to determine the most influential nodes, we first
design a method for evaluating the influence of a given
set of k nodes S, which is referred to by the subroutine
DynInfuenceV al. The input to this algorithm is the set
S of nodes, a time-interval (t0, t0 + h), and a transmission
matrix F , which contains the time-dependent functions for
influence spread. We note that our earlier equations for
dynamically updating the probabilities at a given time-period
from those in the previous time-period can be very useful
for this purpose. However, we cannot apply this equation
at one time between periods t0 and t0 + h, as this would
not approximate the proper sequence of infections among
nodes, because of the transient edges occurring between t 0
and t0 + h. In order to obtain the most accurate possible
result, the time interval (t0, t0 + h) needs to be discretized
into infinitesimally small intervals, and the probabilistic
derivation of π(i, t2) needs to be constructed on the basis
of the edges in this period. However, this is unlikely to be
practical for real applications, and we need to discretize into
much larger intervals as an approximation.

One possibility for discretization is to use equal length
intervals. However, this is not very useful in cases where
the structure of the network evolves at different rates over
time. This is because the rate of edge-additions and dele-
tions may vary over time. Ideally, if the edges in the net-
work change more rapidly, then the discretization interval
should be smaller. Therefore, we opt for a non-uniform dis-
cretization methodology, in which we successively generate
the time-intervals based on the level of structural change in
the underlying network. The approach is to start at the time-
interval t0, and then generate t1, t2, . . . tr = t0 + h suc-



cessively, in which the time-point tq+1 is generated from
tq based on the level of evolution in the interval (tq, tq+1).
In order to do so, we define the structural evolution of the
graphs G(ta) and G(tb) at two time periods ta and tb, where
tb ≥ ta.

DEFINITION 1. (STRUCTURAL EVOLUTION) The struc-
tural evolution evolution level Q(ta, tb) of graph G(ta) =
(N(ta), A(ta)) to the graph G(tb) = (N(tb), A(tb)) is
defined as follows:

(3.3) Q(ta, tb) = 1− |A(ta) ∩ A(tb)|
|A(ta) ∪ A(tb)|

We note that the value of Q(ta, tb) lies between 0 and
1. The greater the value of Q(ta, tb), the greater the level of
evolution from ta to tb. Furthermore, as tb − ta increases,
the value of Q(ta, tb) will typically increase, though this
may not always be the case because of noise, especially after
tb − ta already becomes large.

We compute the time tq+1 from tq by computing the
level of evolution between these periods, and using a thresh-
old η in order to quantify this evolution. The value η is re-
ferred to as the evolution threshold. The time period t q+1 is
generated from tq as follows:
The value of tq+1 is determined as the smallest time at which
Q(tq, tq+1) is greater than η.
The only exception to the above rule is the case for which
tq+1 is larger than the end of the horizon t0+h. In that case,
we set tq+1 to t0 + h, and terminate the discretization pro-
cess. We note that the use of smaller values of η results in
a larger number of intervals. While this is more accurate, it
will come at the expense of the greater amount of computa-
tion, because a greater granularity of the network requires us
to compute the probabilistic influence analysis over a larger
number of periodic intervals.

We will describe the approach for finding the dynamic
spread in a given time interval (t0, t0 + h) with the use of
the afore-mentioned discretization of intervals. The first step
is to construct the new set of discretized intervals, which are
divided at the time points t0, t1, . . . tr. We start off with the
counter j = 0, and set the value of π(i, t0) to 1 if i is in S and
0 otherwise. The value of j is incremented in each iteration
as the edges in the next temporal interval are processed. In
each iteration, we process the time-interval (tj , tj+1) and
update π(i, tj+1) from π(i, tj) with the use of the afore-
mentioned dynamic update equations. We first generate
the edge set E(tj , tj+1) and the transition probabilities
P (tj , tj+1). These edge sets and transition probabilities are
used in conjunction with the dynamic update equations in
order to generate the probabilities π(·, tj+1) from π(·, tj).
This process is repeated for each of the discretized time
periods from 1 through r. The overall algorithm is described
in Figure 1 and is denoted by DynInfluenceV al.

Algorithm ForwardInfluence(Transmission Matrix: F (·),
Time Horizon: (t0, t0 + h), #InfluencePoints: k);

begin
for each node i ∈ N(t0) do

compute DynInfuenceV al({i}, F (·), (t0, t0 + h));
S =Initial set of k authority nodes with the

highest DynInfuenceV al({i}, F (·), (t0, t0 + h));
for each node i in N(t0)− S in descending
order of DynInfuenceV al(·) do

begin
Find a node j in S, such that
DynInfuenceV al(S ∪ {i} − {j}, F (·), (t0, t0 + h))−
DynInfuenceV al(S, F (·), (t0, t0 + h)) is

as large (positive) as possible;
if DynInfuenceV al(S ∪ {i} − {j}, F (·), (t0, t0 + h)) ≥

DynInfuenceV al(S, F (·), (t0, t0 + h)) then
begin; S = S ∪ {i} − {j}; NoReplace = 0; end

else NoReplace = NoReplace+ 1;
if NoReplace ≥ Min Iter then break;

end
return(S);

end

Figure 2: Forward Algorithm

3.1 Forward Influence Algorithm The forward-
influence algorithm uses a greedy approach in combination
with forward temporal analysis in order to determine the
most influential points in the network. The algorithm is
denoted as ForwardInfluence and is described in Figure 2.
The input to the algorithm is the matrix of transmission
functionsF (·), the time horizon (t0, t0+h), and the number
of influence points k which need to be determined. The
overall algorithm works by maintaining a current set S of
influential points and continually improving it over time
with the use of successive replacement. The algorithm starts
off with a set S of k nodes, which are picked on the basis
of the flow value from those individual nodes. Specifically,
for each node i ∈ N(t0), we evaluate its dynamic influence
in the interval (t0, t0 + h) with the use of our previous
algorithm DynInfluenceVal. The initial set S is the set of the
nodes with the largest flow value from the entire node set.

The first step is to the evaluate the dynamic influence
spread from each individual node in N(t0) with the use of
the procedure DynInfluenceVal. We note that the DynInflu-
enceVal procedure is inherently a procedure which uses for-
ward analysis for computing the total flow value. The in-
dividual nodes in N(t0) − S are sorted in reducing value
of the influence spread. Subsequently, the algorithm pro-
ceeds iteratively in which we pick each successive node i
from N(t0) − S, and determine whether it is possible to re-
place some node j ∈ S in order to increase the total influ-
ence spread in (t0, t0 + h). We check each node j ∈ S and
determine the maximum influence increase on replacing the
node j with i. In the event that at least one such node j ∈ S



exists for which the increase is positive, then we replace the
node j with i. In the event that no such node exists, then
we do not perform the replacement. We maintain a counter
which tracks the number of consecutive times by which the
replacement is not performed and increment it by one, if a
replacement is not performed. We check if the replacement
is not performed for at least min iter consecutive iterations.
If this is the case, then we terminate and report the current
set of nodes S. On the other hand, if the termination criterion
is not met, then we move on to the next node in N(t0)−S in
the sorted order and check it with the different nodes for re-
placement. This process is continually repeated, until either
all nodes in N(t0) − S have been visited, or no exchange
is performed for at least min iter consecutive iterations. The
overall algorithm is illustrated in Figure 2. The forward al-
gorithm essentially starts with a set S of nodes and contin-
uously improves it over time with this iterative procedure.
The use of a sorted order in order to perform the iterative
exchange ensures that only a small number of iterations are
typically required to termination.

4 Backward Influence Algorithms

The forward influence algorithm is somewhat slow in prac-
tice because it requires us to repeatedly estimate the influ-
ence spread from different starting points. Therefore, we will
design faster approximations which use backward analysis in
order to determine approximate release points. In backward
analysis, we use a desired result at t0+h in order to trace the
influence results back to the appropriate nodes. One advan-
tage of this class of methods is that it can not only be used
in order to determine the (approximately) optimal influence
points, but it can also be used to retrospectively determine
the most likely release points for a specific pattern of influ-
ence or determine the best release points for a desired pat-
tern of influence. Such an analysis can be very useful in a
variety of dynamic applications, in which it is costly to re-
lease information at too many nodes, and it is desirable to
influence only a subset of the nodes. Therefore, in the next
subsections, we will propose two variations of the backward
influence algorithm which are applicable to different scenar-
ios:

• Retrospective Version: We attempt to determine the
nodes which result in a specific pattern of influence.

• Maximization Version: This version is similar to the
problem addressed by the forward algorithm.

Although the maximization version of the backward algo-
rithm is the same problem as what we have already dis-
cussed, we will take the unusual step of presenting the retro-
spective version of the backward algorithm first because of
the common notations and mathematical influence equations
which it shares with the forward maximization algorithm.

This allows for ease in exposition. We note however, that
the applications of these methods are for different scenarios,
and only the latter is directly comparable to the forward in-
fluence algorithm.

4.1 The Backward Influence Algorithm: Retrospective
Version In this section, we will present the retrospective
version of the backward algorithm. In this version, we
assume that the pattern of influence is already known, or a
specific pattern of influence is desired. Let us assume that
the set of the nodes which are influenced (or desired to be
influenced) at the time t0 + h is denoted by D ⊆ N(t0 + h).

As before, we assume that the time-interval (t0, t0+h) is
discretized into intervals with the use of segmentation points
at t0, t1 . . . tr = t0 + h. Since the goal is to find the most
likely release points, we will work the probabilities back
from t0 + h to t0 using these discretized intervals, and the
afore-mentioned relationship which relates two successive
discretized intervals tm and tm+1:

π(i, tm+1) = π(i, tm) + (1− π(i, tm)) · (1−
∏

j∈IN(i,tm,tm+1)

(1 − π(j, tm) · pji(tm, tm+1)))

We start off by setting π(i, tr) = π(i, t0 + h) to 1 − ε
if i ∈ D, and to ε if i �∈ D. Here ε is the smoothing
probability and is typically a small value in (0, 1). The
idea of the smoothing probability is to construct a set of
probability values at time t0 + h, which are highly biased
towards the set D. A natural question arises as to why a
smoothing probability is needed at all, and we do not simply
use the deterministic probability values at time t0 + h by
setting ε = 0. We note that if we set ε = 0, the system
of equations above would result in identical solutions for
π(i, tm) for all the different values of m. This does not
help in distinguishing the different nodes on the basis of
transmission, which is our goal in this paper. The use of
a small smoothing value of ε helps in distinguishing the
different nodes on the basis of transmission. The idea is to
start off with π(i, tr) and use it to derive π(i, tr−1). The
latter is used to derive π(i, tr−2). The process is repeated
for π(i, tr−3) . . . π(i, t0). The process of generatingπ(i, tm)
from π(i, tm+1) is referred to as a major iteration, and is
achieved by solving the system of equations above. As
we will discuss below, the process of solving for π(i, tm)
from π(i, tm+1) in each major iteration is a challenge in
of itself, as it requires us to solve a non-linear system of
equations. Once we have generated the set of probabilities
for π(i, t0), we have an estimate for the most likely set of
nodes which have resulted in the corresponding pattern of
influence. In that case, we report the k nodes with the highest
value of the probability π(i, t0) as the set of nodes at which
the information should be released. The overall algorithm is



Algorithm RetrospectiveSources(Transmission Matrix: F (·),
Influence Pattern: D, Time Horizon: (t0, t0 + h),

#InfluencePoints: k);
begin

Discretize the interval (t0, t0 + h) into
r different points t0, t1 . . . tr = t0 + h;

for each i ∈ D set π(i, tr) = 1− ε and ε otherwise;
for m = r − 1 down to 0 do
begin { Start Major Iteration }

Generate the system of probabilities π(·, tm) from π(·, tm+1) using
the relationships of probabilities between successive intervals with
the use of multiple minor iterations;

end; { End Major Iteration }
return k nodes with largest value of π(i, t0);

end

Figure 3: Backward Trace: Retrospective Version

illustrated in Figure 3. The input parameters to the algorithm
include the transmission matrix F (·), the influence pattern
D, the time horizon, and the number of influence points k.
We note that the influence pattern D is an additional input to
the algorithm, as compared to the forward algorithm.

One challenge in the approach discussed above is the
derivation of π(i, tm) from π(i, tm+1), since the system of
equations discussed relating the two highly non-linear in
terms of unknown variable π(i, tm), and it is linear only
in terms of the known variable π(i, tm+1). The solution
is to use successive approximations for the non-linear part
of the equation in order to solve for π(i, tm). Thus, each
major iteration of generating π(i, tm) from π(i, tm+1) con-
tains a set of minor iterations in which the value of π(i, tm)
is successively refined. We denote the sth approximation
(corresponding to the sth minor iteration) of π(i, tm) by
πs(i, tm). In the sth minor iteration, an improved approx-
imation πs+1(i, tm) is generated from πs(i, tm). In order
to derive π(i, tm) from π(i, tm+1), we start off by setting
the value of π1(i, tm) to π(i, tm+1) as the first approxima-
tion. This approximation is improved in successive itera-
tions, with the use of the following relationship between
πs(i, tm), πs+1(i, tm) and π(i, tm+1) in the sth iteration:

π(i, tm+1) = πs+1(i, tm) + (1− πs+1(i, tm)) · (1 −
∏

j∈IN(i,tm,tm+1)

(1− πs(j, tm) · pji(tm, tm+1)))

It is important to remember that the only unknown variable
in the sth iteration is πs+1(i, tm), since π(i, tm+1) is known
and the value of πs(i, tm) is known from the previous
iteration. We also note that the non-linear part of the above
equation, which is denoted by (1 − ∏

j∈IN(i,tm,tm+1)
(1 −

πs(j, tm) · pji(tm, tm+1))) is expressed in terms of the
(known) approximation πs(·, ·) from the sth iteration. This
results in a simple linear equation in πs+1(i, tm), which can

be easily solved. For brevity, let us denote the non-linear
part of the relationship between πs(·, ·) and πs+1(·, ·) by
γs(i, tm).
(4.4)
γs(i, tm) = (1−

∏

j∈IN(i,tm,tm+1)

(1−πs(j, tm)·pji(tm, tm+1)))

Therefore, we can express the relationship between
πs+1(·, ·) and πs(·, ·) as follows:
(4.5)
π(i, tm+1) = πs+1(i, tm) + (1− πs+1(i, tm)) · γs(i, tm)

This provides as simple solution for πs+1(i, tm) in the sth
minor iteration from known variables derived in the (s−1)th
minor iteration. In other words, we have:

(4.6) πs+1(i, tm) =
π(i, tm+1)− γs(i, tm)

1− γs(i, tm)

We repeat the above iterative solution continuously, until
the solution converges. Specifically, we compute the value
∑

i∈N(tm) |πs+1(i,tm)−πs(i,tm)|
∑

i∈N(tm) π
s(i,tm) , which reduces successively

as the probabilities are approximated better. We terminate
when the value falls below 0.01. We note that since the above
system of equations is approximate, it is possible for some
of the estimated probabilities to be mildly negative. In such
cases, we set these probability values to 0, and normalize the
other probability values, so that they sum to 1. The overall
algorithm RetrospectiveSources is illustrated in Figure 3.

4.2 Backward Influence Algorithm: Maximization Ver-
sion While the afore-mentioned approach is designed for
optimizing the distribution to a known ending pattern of
probabilities, we do not know what this known ending pat-
tern should be in order to optimize for the highest influence
spread. In this subsection, we will propose such an approach.
This serves the same function as the forward algorithm. ex-
cept that the results are achieved much more efficiently from
a computational perspective.

In order to maximize the spread of influence, we for-
mulate each iteration as an optimization problem. The ob-
jective function of this optimization problem maximizes the
increase in the probabilities from time period tm to tm+1.
Our approach is to determine the set of probabilities π(i, tm)
for each time period which maximize the increase in the ex-
pected number of infections from time period tm to time pe-
riod tm+1. Thus, each such set of probabilities is a local op-
timization problem between interval tm and tm+1 about the
value of π(i, tm) which leads to the maximum increase. The
local optimizations over the different intervals can be com-
bined in order to determine the most influential nodes for in-
formation release. Specifically, let π∗(i, tm) be the optimum
probability of node i at time period tm which leads to the
maximum increase between the time-periods tm and tm+1.



We note that each of these solutions is a local optimization
which does not relate the probabilities between the differ-
ent periods. Furthermore, we note that we cannot directly
control the probabilities in the later periods, though they are
correlated with the initial release probabilities. Therefore, in
order to account for this, we use an adjustment of the proba-
bility values in successive intervals.

We subtract from π∗(i, tj) the increase in influence val-
ues which result as a transmission from tj−1. This is because
if the node i already receives a lot of influence increase be-
cause of infection from previous iterations, we do not need to
add s large a component from tj . Ideally, we should use the
increase in influence from all previous iterations, but such
adjustments become less useful for earlier and earlier itera-
tions. Therefore, we just use the increase from the last itera-
tion as an approximation. Let Δ∗(i, tj) be in the increase in
influence value from tj−1 to tj with the use of π∗(i, tj−1) as
the probability at tj−1. This is the value which is subtracted
from π∗(i, tj). The value of Δ∗(i, tj) can be computed as
follows:
(4.7)
Δ∗(i, tj) = (1−π∗(i, tj−1))·

∏

q∈IN(i,tj−1,tj)

(1−π∗(q, tj−1))

We note that the above relationship can be obtained by sim-
ple rearrangement of the infection equation introduced ear-
lier. Then, the adjusted probabilities are given by π ∗(i, tj)−
Δ∗(i, tj). Therefore, the initial release probability π(i, t0) is
defined as a composite of these release probabilities as fol-
lows:

(4.8) π(i, t0) =

r−1∑

j=0

·(π∗(i, tj)−Δ∗(i, tj))

Next, we describe how to determine the locally opti-
mized probabilities π∗(i, tm) at time period tm which re-
sults in the maximum increase in the underlying probability.
This increase for node i is equal to π(i, tm+1) − π(i, tm).
The overall increase for all nodes in N(tm+1) is given by∑

i∈N(tm+1)
(π(i, tm+1 − π(i, tm)). Therefore, the objec-

tive function F (πm, tm) of this problem can be written as
follows:

F (πm, tm) =
∑

i∈N(tm+1)

(π(i, tm+1)− π(i, tm))

=
∑

i∈N(tm+1)

(1 − π(i, tm)) · (1 −
∏

j∈IN(i,tm,tm+1)

(1−

−π(j, tm) · pji(tm, tm+1)))

We note that the second condition is directly derived
from the transmission equation discussed earlier. The ob-
jective function is simply the increase in the expected num-
ber of infections from time period tm to tm+1. We note that

F (πm, tm) is now expressed purely in terms of the probabil-
ities at period tm, since the transmission relationships have
been used in a backward way in order to eliminate the prob-
abilities at time period tm+1. Therefore, the expression for
F (πm, tm) is a non-linear objective function expressed in
terms of π(i, tm) which needs to be maximized. We further
note that the value of each π(i, tm) lies in the range (0, 1).
If we set all the values of π(i, tm) to 0 (or to 1), the value
of the objective function F (πm, tm) is 0, because such prob-
abilities at time tm lead to no improvement of the objective
function value at time tm+1. Clearly, the optimum value of
F (πm, tm) is achieved for values of π(i, tm) which are such
that at least some components are non-zero. Therefore, the
key question is how we can determine the value of the opti-
mum vector πm, which maximizes this increase. We achieve
this by using a steepest gradient ascent method.

As before, we use an iterative approach in which the
notation πs

m denotes the value of the probability vector in
the sth iteration. We start off by setting each π0(i, tm) to
m/|N(tm)|. We determine the gradient of the objective
function at this point and determine the step length (along
this gradient) which leads to the maximum increase in the
objective function value, while retaining the constraint that
each π(i, tm) lies in the range (0, 1). This step length
is determined by binary search. This approach is used to
estimate πs+1(i, tm) from πs(i, tm). In each iteration, we
determine the (partial) gradient ∇F (πs

m, tm) with respect to
each element of vector πs

m which is not already either 0 or 1.
We define the partial gradient as follows:

DEFINITION 2. (PARTIAL GRADIENT) The partial gradi-
ent ∇pF (πs

m, tm) of the objective function F (πs
m, tm) is de-

fined as a vector containing one element for each node in the
data. The ith element of this vector is defined as follows:

• If 0 < πs(i, tm) < 1, then the value of the ith element
is the partial derivative of F (πs

m, tm), with respect to
π(i, tm) and evaluated at πs(i, tm).

• if πs(i, tm) is 0 or 1, then the value of the ith element is
set to 0.

The value of πs+1(i, tm) is derived from πs(i, tm) by a
step along this vector of partial gradients which maximizes
the improvement in the objective function value, subject to
the constraint that the probability vectors must always lie in
[0, 1]. Thus, for step length a, we have:

(4.9) πs+1
m = πs

m + a · ∇pF (πs
m, tm)

The value of a is determined by binary search. In order to
perform the binary search, we start at a small step length
and keep doubling until either the π ∈ (0, 1) constraints
are violated, or the doubling did not lead to a greater
improvement than the second-last iteration. We use the step



length in the second-last iteration as the one to use. The
process of using partial gradients instead of gradients ensures
that once an element of the probability vector reaches either
0 or 1, it is no longer modified. This process continues
until the quality of the objective function can no longer be
improved.

5 Experimental Results

We tested both the maximization and retrospective versions
of the influence analysis algorithm. We used two real data
sets in order to validate the effectiveness of our approach.
The following performance measures were used.

5.1 Performance Measures and Baselines We used dif-
ferent performance measures for the maximization and retro-
spective versions of the algorithm. For the forward and back-
ward maximization versions of the algorithm, we used the
total influence flow value as the effectiveness measure. The
influence flow value for a particular starting set of k nodes
is calculated by simulating the the total flow for that set of
starting nodes and corresponding dynamic set of edges. This
simulation is performed by a sequential use of the infection
equation on the dynamic set of edges. The larger the total
flow value, the better the quality of the result.

For the case of the retrospective version of the backward
algorithm, we used the plot of precision versus recall in or-
der to determine the effectiveness results. In order to gen-
erate the precision-recall tradeoff, we picked a ground truth
influence set of fixed size, and simulated a final infection
pattern at the different nodes. The infection pattern was sim-
ulated by using the probabilities of infection of edges over
the entire period of infection in the network. The final infec-
tion pattern was used in conjunction with the retrospective
algorithm in order to estimate the source infection points in
comparison to the ground truth. The estimated set was com-
pared to the ground truth in order to generate the precision
and recall. The precision was defined as the percentage of
the found set which was truly a part of the most influential
set. The recall was defined as the percentage of the ground
truth which was a part of the most influential set determined
by the algorithm. Specifically, if SG and SF be the ground-
truth sets and found sets respectively, then the precision and
recall were defined as follows:

Precision =
|SG ∩ SF |

|SF |
Recall =

|SG ∩ SF |
|SG|

In order to test the retrospective algorithm, we work with
a fixed ground-truth k0 and vary the value of the algorithm
input parameter k in order to determine the most influential
nodes. Clearly, for larger values of k the recall (typically)
increases, and precision reduces. The tradeoff curve between

precision and recall was used as the effectiveness measure.
In addition, we also reported the running times of the

different algorithms for different variations of parameters.
Since the primary goal of this paper is to design the first
algorithm for dynamic influence algorithm, we used a version
of the forward algorithm in which the evolution threshold
was set to 1 as a baseline. We note that this special case of
our forward dynamic algorithm actually reduces to a static
baseline algorithm which is equivalent to the RankedReplace
algorithm [1]. The goal here was to determine the advantages
of using a dynamic algorithm for this problem over a direct
application of previously designed static algorithms.

5.2 Data Sets We used two data sets in order to test the
approach.
DBLP Data Set: This data set2 corresponds to the DBLP
data, in which the nodes correspond to authors and the edges
correspond to the co-authorship interaction between authors.
The temporal order of the edges is derived from the year of
publication. The time that an edge exists is generated from
an exponential distribution with a mean of one year. The
probability of information spread along an edge is given by
the Equation 2.2, in which λij represents the infection pa-
rameter, and a was set to 0.8. For each edge, the param-
eter for the transmission rate λij is generated by picking
a random value from the uniform distribution in [0, 1], and
then dividing it by the time for which the edge is present
in the network. The data set contained 934,672 nodes and
8,850,502 edges, and it spans from 1938 to 2011 in terms of
time.
Arnetminer Citation Data Set: This data set3[18] corre-
sponds to a graph structure of citations from Arnetminer, in
which nodes correspond to authors, and edges correspond to
citation relation. For every citation, there exists an edge be-
tween the first author of the paper which is cited to the first
author of the paper in which the citation occurs. The time of
arrival of an edge is determined by the time at which the cita-
tion took place. The method for generating the time of edge
presence and the transmission probabilities was the same as
the DBLP data set. The data set contained 916,979 nodes
and edges, and it spans in time from 1960 to 2011.

5.3 Effectiveness Results for Influence Maximization
In this section, we will present the effectiveness results of
the maximization versions by varying different parameters.
We used a static baseline which was a special case of our
forward algorithm, when no dynamic analysis was used, and
the evolution threshold was set to 1. This corresponds to
the RankedReplace algorithm discussed in [1]. In Figures
4(a) and (d), we have illustrated the variation in influence

2http://dblp.uni-trier.de/xml/
3http://arnetminer.org/citation
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Figure 4: Effectiveness Results for DBLP and Citation Data set
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Figure 5: Efficiency Results for DBLP and Citation Data set



flow value with increasing number of seed starting points for
the DBLP and Citation data sets respectively. The evolution
threshold η was fixed to 0.9 in both these cases. The number
of starting points are illustrated on the X-axis, and the total
influence flow value is illustrated on the Y -axis. In each case,
the total influence flow value increases with the number of
starting points for both data sets. In each case, the forward
algorithm performed the best. The backward algorithm was
superior to the static baseline for the case of the DBLP
data set throughout the entire range of the X-axis. As we
will see later, the backward algorithm has a tremendous
efficiency advantage over the forward algorithm. Therefore,
the two algorithms have different advantages in terms of
effectiveness and efficiency. For the case of the Citation data
set, the backward algorithm did not perform as well, though
it will still superior to the static algorithm for a portion of the
X-axis range.

We also tested the influence flow value with different
values of the evolution threshold η. A smaller value of
the evolution threshold results in a better discretization of
the network and therefore creates more accurate results.
On the other hand, this accuracy comes at the expense of
slower running times. The results for different values of the
evolution threshold for the DBLP and Citation data sets are
illustrated in Figures 4(b) and (e) respectively. The influence
set size k was set to 20 for both algorithms. In each case, the
evolution threshold is illustrated on the X-axis in decreasing
order (or better granularity), and the influence flow value
is illustrated on the Y -axis. The performance of the static
algorithm is a horizontal line in this case, because the
evolution threshold parameter is relevant only to the dynamic
algorithms. It is evident that the effectiveness of both
the forward and backward algorithms increase with lower
evolution threshold, because of the accuracy advantages of
a more fine grained temporal representation of the network.
As in the previous case, the forward algorithm is superior
to the backward algorithm in terms of the total influence
spread. Both algorithms are superior to the static algorithm
over a majority of the range of the evolution threshold, and
the forward algorithm is always superior.

We also tested the effectiveness of the method with
networks of different size. In order to generate networks
of different sizes, we sampled nodes from the DBLP and
Citation networks respectively. The results for the DBLP
and Citation networks are illustrated in Figures 4(c) and
(f) respectively. In the both cases, the influence set size
k was set to 5, and the evolution threshold η was set to
0.9. The network size is illustrated on the X-axis, and the
influence flow value is illustrated on the Y -axis. It is evident
that the flow value increases with increasing network size
because of the greater conductance of a larger network. As
in the previous algorithms, the forward algorithm performed
the best, followed by the backward algorithm, and then

the static baseline algorithm. Thus, our methods provide a
definite advantage over the use of a purely static influence
maximization approach.

5.4 Efficiency Results for Influence Maximization All
experiments were executed on 2.7GHz computer with Intel
Pentium Dual Core Processor, 4GB memory, and running
Windows 7 Home Premium. The program was implemented
in Java. We tested the efficiency of the different methods
with increasing influence set size. The results for the DBLP
and Citation networks are illustrated in Figures 5(a) and (d)
respectively. The evolution threshold η was set to 0.9. The
number of starting points are illustrated on the X-axis, and
the running time is illustrated on the Y -axis. It is evident
that the backward algorithm is significantly more efficient
as compared to the forward algorithm. It is important to
note that the Y -axis is drawn on a logarithmic scale, and
the backward algorithm is between 2 and 3 orders of mag-
nitude faster than the forward algorithm. For example, for
an influence set size of 50, the forward algorithm requires
more than 27519 seconds, whereas the backward algorithm
requires only about 7 seconds. Thus, while the backward al-
gorithm does not provide quite as accurate results as the for-
ward method, it provides an excellent and fast approximation
with the use of the gradient-based method. The backward al-
gorithm is also faster than the static baseline algorithm in
most cases, and unlike the other algorithms, its efficiency is
essentially insensitive to the influence set size. This is be-
cause the gradient-based method uses an interior point ap-
proach in which the efficiency of each iteration does not de-
pend upon the influence set size, and the the number of iter-
ations also does not seem to depend upon the influence set
size.

We also tested the efficiency for different values of the
evolution threshold. The efficiency results for the DBLP and
Citation data sets are illustrated in Figures 5(b) and (e) re-
spectively. The influence set size k was set to 20. The evo-
lution threshold is illustrated (in decreasing order) on the X-
axis, and the running time is illustrated on the Y -axis. As
in the case of the effectiveness results, the static baseline is
shown as a horizontal line, because it does not depend upon
the evolution threshold. As in the previous chart, the back-
ward algorithm was more than 2 orders of magnitude effi-
cient than the forward algorithm over the entire range of the
evolution threshold. Both the forward and backward algo-
rithms require more time with reducing value of the evolu-
tion threshold (or higher temporal granularity). This is be-
cause the use of higher temporal granularity resulted in a
larger number of iterations for both algorithms. While the
static algorithm was more efficient than the backward algo-
rithm for high temporal granularities, it is also important to
note that the backward algorithm always provided more ac-
curate results than the static algorithm in this range. Thus,
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Figure 6: Results for Retrospective Algorithm

the forward and backward algorithms provide different trade-
offs in terms of effectiveness and efficiency.

Finally, we tested the efficiency with increasing network
size. The results for the DBLP and Citation data sets
are illustrated in Figures 5(c) and (f) respectively. The
influence set size k was set to 5, and the evolution threshold
was set to 0.9. The network size is illustrated on the X-
axis and the running time is illustrated on the Y -axis. It
is clear that larger networks require more running times.
This is natural to expect, because larger networks require
more steps at each stage of the processing. The backward
algorithm is significantly more efficient than the forward
algorithm, and this is especially the case for larger networks.
The static baseline is only marginally more efficient than
the backward algorithm. Thus, the backward algorithm
provides an excellent and efficient alternative, which retains
its effectiveness, and can also be utilized efficiently for larger
networks.

5.5 Precision-Recall Results for Retrospective Algo-
rithm We also tested the retrospective algorithm for its
precision-recall tradeoff. The retrospective algorithm deter-
mines the most likely source set for a given pattern of attack.
In order to generate the precision-recall tradeoff, we picked
a ground truth influence set of fixed size, and simulated a
final infection pattern at the different nodes. The infection
pattern was simulated by using the probabilities of infection

of edges over the entire period of infection in the network.
The final infection pattern was used in conjunction with the
retrospective algorithm in order to estimate the source infec-
tion points in comparison to the ground truth. We varied the
size of the influence set determined by the algorithm.

With increasing size of this determined influence set (for
a fixed ground truth size), the precision reduces but the recall
increases. We plotted this tradeoff by varying the influence
set size reported by the algorithm. We tested the approach for
three different ground truth sizes corresponding to k = 5,
k = 20 and k = 50 respectively. The results for the
DBLP and Citation data sets are illustrated in Figures 6(a)
and (d) respectively. The recall is illustrated on the X-axis
and the precision is illustrated on the Y -axis. The evolution
threshold η was set to 0.1 in this case. It is evident from
the figures that the the precision-recall tradeoff is superior
for smaller ground truth sizes. This is because smaller
ground truth sizes correspond to instances which are easier to
solve in terms of tracing back to the source of the infection.
The absolute precision-recall tradeoff was also quite strong,
especially for the Citation data set, in which a precision of
0.70 was achieved at a recall point of 0.84.

We also tested the precision recall trade-off with differ-
ent values of the evolution threshold. The ground truth size
k was set to 20. The results for different evolution thresholds
for the DBLP and Citation data sets are illustrated in Figures
6(b) and (e) respectively. The ground truth set size k was



set to 20. It is evident that the precision-recall tradeoff was
better for the use of lower evolution thresholds. This corre-
sponds to a better granularity of representation. A higher
granularity of temporal representation improves the effec-
tiveness of the algorithm.

Finally, we tested the precision-recall tradeoff for dif-
ferent network sizes. The results for the DBLP and Citation
data sets are illustrated in Figures 6(c) and (f) respectively.
The ground truth influence set size k was set to 20, and the
evolution threshold η was set to 0.1. The precision-recall
tradeoff was usually better for smaller and sparser networks
because it was easier to trace an infection pattern to a par-
ticular set of sources in such cases. For larger and denser
networks, many different sets of starting points result in a
similar infection pattern. Therefore, the problem is funda-
mentally more difficult in those cases. However, in all cases
a very robust precision-recall tradeoff was achieved by the
algorithm. This suggests the consistent effectiveness of our
approach.

6 Conclusions and Summary

This paper presents methods for influential node discovery
in dynamic networks. While the problem of influential
node discovery has been widely studied in the case of static
networks, the problem of influence analysis in a dynamic
case with transient and rapidly evolving interactions is a
much more difficult and challenging problem. The patterns
of social interactions between a pair of entities may rapidly
evolve and change over time. This paper designs a first set
of methods for temporally sensitive algorithms in influence
analysis. We present experimental results presenting the
advantages of the approach over the static scenario.
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