
On Futuristic Query Processing in Data Streams

Charu C. Aggarwal

IBM T. J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532

charu@us.ibm.com

Abstract. Recent advances in hardware technology have resulted in the
ability to collect and process large amounts of data. In many cases, the
collection of the data is a continuous process over time. Such continuous
collections of data are referred to as data streams. One of the interesting
problems in data stream mining is that of predictive query processing.
This is useful for a variety of data mining applications which require us
to estimate the future behavior of the data stream. In this paper, we will
discuss the problem from the point of view of predictive summarization.
In predictive summarization, we would like to store statistical charac-
teristics of the data stream which are useful for estimation of queries
representing the behavior of the stream in the future. The example uti-
lized for this paper is the case of selectivity estimation of range queries.
For this purpose, we propose a technique which utilizes a local predictive
approach in conjunction with a careful choice of storing and summarizing
particular statistical characteristics of the data. We use this summariza-
tion technique to estimate the future selectivity of range queries, though
the results can be utilized to estimate a variety of futuristic queries. We
test the results on a variety of data sets and illustrate the effectiveness
of the approach.

1 Introduction

A number of technological innovations in recent years have facilitated the auto-
mated storage of data. For example, a simple activity such as the use of credit
cards or accessing a web page creates data records in an automated way. Such
dynamically growing data sets are referred to as data streams. The fast nature of
data streams results in several constraints in their applicability to data mining
tasks. For example, it means that they cannot be re-examined in the course of
their computation. Therefore, all algorithms need to be executed in only one pass
of the data. Furthermore, if the data stream evolves, it is important to construct
a model which can be rapidly updated during the course of the computation.
The second requirement is more restrictive, since it needs us to design the data
stream mining algorithms while taking temporal evolution into account. This
means that standard data mining algorithms on static data sets cannot be easily
modified to create a one-pass analogue for data streams. A number of data min-
ing algorithms for classical problems such as clustering and classification have
been proposed in the context of data streams in recent years [1–8, 14].



An important problem in data stream computation is that of query selec-
tivity estimation. Such queries include, but are not limited to problems such
as selectivity estimation of range queries. Some examples of such queries are as
follows:

– Find the number of data points lying in the range cube R. (Range Query)
– For a target point X, find the number of data points within a given radius

r. (Radius Query)

A more general formulation of the above queries is to find the number of data
points which satisfy a user-specified set of constraints U . While this includes all
standard selectivity estimation queries, it also allows for a more general model
in which the selectivity of arbitrary constraints can be determined. For example,
the constraint U could include arbitrary and non-linear constraints using some
combinations of the attributes. This model for selectivity estimation is signifi-
cantly more general than one which supports particular kinds of queries such as
range queries.

Consider an aggregation query on a data stream for a given window of time
(T1, T2). While the query processing problem has been explored in the context
of data streams [6, 7, 10, 11, 13, 15], these methods are designed for processing of
historical queries. These correspond to cases in which T1 and T2 are less than
the current time t0. In this paper, we examine the problem of predictive query
estimation. In the predictive query estimation problem, we attempt to estimate
the selectivity of queries in a future time interval by making use of the current
trends of the data stream. Thus, the generic data stream predictive selectivity
estimation problem is defined as follows:

Definition 1. Estimate the number of points in a data stream in the future
time interval (T1, T2), which satisfy the user-specified set of constraints U .

We note that predictive query processing is a significantly more difficult problem
than historical query processing. This is because the historical behavior of the
stream is already available, whereas the future behavior can only be estimated
from the evolution trends in the data stream. This creates significant challenges
in deciding on the nature of the summary information to be stored in order
to estimate the responses to predictive queries. Some work has been done on
performing high-level regression analysis to data cubes, but this work is designed
for finding unusual trends in the data, and cannot be used for estimation of the
selectivity of arbitrary user queries.

In order to solve the predictive querying problem, we use an approach in
which we utilize local regression analysis in conjunction with storage of the
summary covariance structure of different data localities. The local predictive
approach stores a sufficient amount of summary statistics that it is able to create
effective predictive samples in different data localities. These predictive samples
can then be used in order to estimate the accuracy of the underlying queries.
The sizes of the predictive samples can be varied depending upon the desired
level of accuracy. We will show that such a local approach provides significant



advantages over the technique of global regression. This is because the latter
cannot generate the kind of refined summary constructed by the local approach.
The refined summary from the local approach provides the ability to perform
significantly superior estimation of the future data points. Thus, this approach
is not only flexible (in terms of being able to handle arbitrary queries) but is also
more effective over a wide variety of data sets. Furthermore, the summaries can
be processed very efficiently because of the small size of the data stored. Thus,
the paper presents a flexible, effective and efficient approach to predictive data
summarization.

This paper is organized as follows. In the next section, we will discuss the
overall framework for the approach. We will also discuss the summary statistics
which are required to be stored in order to implement this framework. In section
3, we will discuss the algorithms in order to create the summary statistics, and
the process of performing the estimation. The empirical sections are discussed
in section 4. Section 5 contains the conclusions and summary.

2 The Overall Summarization Framework

In order to perform predictive selectivity estimation, we need to store a sufficient
amount of summary statistics so that the overall behavior of the data can be
estimated. One way of achieving this goal is the use of histograms in order to
store the summary information in the data. While traditional methods such as
histograms and random sampling are useful for performing data summarization
and selectivity estimation in a static data set, they are not particularly useful
for predicting future behavior of high dimensional data sets. This is because of
several reasons:
(1) Histograms are not very effective for selectivity estimation and summariza-
tion of multi-dimensional sets. It has been estimated in [12] that for higher
dimensional data sets, random sampling may be the only effective approach.
However, random sampling is not very effective for predictive querying because
the samples become stale very quickly in an evolving data stream.
(2) Since the data may evolve over time, methods such as histograms are not
very effective for data stream summarization. This is because when the behavior
of the data changes substantially, the summary statistics of the current his-
tograms may not effectively predict future behavior.
(3) In this paper, we propose a very general model in which queries of arbitrary

nature are allowed. Thus, the geometry of the queries is not restricted to partic-
ular kinds of rectangular partitions such as range queries. While summarization
methods such as histograms are effective for rectangular range queries,they are
not very effective for arbitrary queries. In such cases, random sampling is the
only effective approach for static data sets. However, our empirical results will
show that the random sampling approach is also not very useful in the context
of an evolving data stream.

The overall approach in this paper emphasizes predictive pseudo-data gen-

eration. The essential idea in predictive pseudo-data generation is to store a



sufficient amount of summary statistics so that representative pseudo-data can
be generated for the future interval (T1, T2). The summary statistics include
such parameters as the number of data points arriving, the mean along each
dimension as well as relevant second order statistics which encode the covari-
ance structure of the data. While such statistics are stored on a historical basis,
they are used to estimate the corresponding statistics for any future time hori-
zon (T1, T2). Such estimated statistics can then be used to generate the sample
pseudo-data records within the desired horizon (T1, T2). We note that while the
sample records (which are generated synthetically) will not represent the true
records within the corresponding future time horizon, their aggregate statistics
will continue to reflect the selectivity of the corresponding queries. In other
words, the aggregation queries can be resolved by determining the number of
pseudo-data points which satisfy the user query. The advantage of using pseudo-
data is that it can be leveraged to estimate the selectivity of arbitrary queries
which are not restricted to any particular geometry or form. This is not the
case for traditional methods such as histograms which work with only a limited
classes of queries such as rectangular range queries.

We will now describe the statistics of the data which are maintained by the
stream summarization algorithm. The summary statistics consist of the first
order statistics as well as the co-variance structure of the data. In order to in-
troduce these summary statistics, we will first introduce some further notations
and definitions. Let us consider a set of N records denoted by D, each of which
contains d dimensions. The records in the database D are denoted by X1 . . . XN .
The dimensions of each individual record Xi are denoted by (x1

i . . . xd
i ). For

a subset of records Q from the database D, we define the summary statistics
Stat(Q) = (Sc(Q), F s(Q), n(Q)), which defines the complete covariance struc-
ture of Q. Specifically, Sc(Q) corresponds to the second order statistics of Q,
Fs(Q) corresponds to the first order structure, and n(Q) corresponds to the
number of data points. Each of these statistics are defined as follows:
(1) Product Sum (Second Order Covariance) Statistics: For each pair of
dimensions i and j, we store the sum of the product for the corresponding di-
mension pairs. For the sake of convention (and to avoid duplication), we assume
that i ≤ j. The product sum for the dimension pairs i, j and record set Q is
denoted by Scij(Q). The corresponding value is defined as follows:

Scij(Q) =
∑

k∈Q

xk
i · xk

j (1)

The second order statistics is useful in computing covariance structure of the
data records in Q. We note that a total of d · (d + 1)/2 values (corresponding to
different values of i and j) need to be maintained in the vector Sc(Q).
(2) First Order Statistics: For each dimension i we maintain the sum of the
individual attribute values. Thus, a total of d values are maintained. The value
for the dimension i is denoted by Fsi(Q), and is defined as follows:

Fsi(Q) =
∑

k∈Q

xk
i (2)



We denote the vector (Fs1(Q) . . . F sd(Q)) by Fs(Q).
(3) Zero Order Statistics: The zero order statistics n(Q) contains one value
and is equal to the number of records in Q.

Thus, the total number of values which need to be stored in the vector
Stat(Q) is equal to d2/2 + 3 · d/2 + 1. We make the following observations
about the statistics which are stored:

Observation 21 Each of the statistical values in Stat(Q) can be expressed as

a linearly separable and direct sum of corresponding functional values over indi-

vidual records.

Observation 22 The covariance Cij between the dimensions i and j can be

expressed in the following form:

Cij = Scij(Q)/n(Q) − Fsi · Fsj/(n(Q) · n(Q)) (3)

The first observation is important because it ensures that these statistical values
can be efficiently maintained in the context of a data stream. This is because
Stat(Q) can be computed as the simple arithmetic sum over the corresponding
functional values over individual records. The second observation is important
because it ensures that the covariance between the individual dimensions can
be computed in terms of the individual statistical values. Thus, the statistical
values provide a comprehensive idea of the covariance structure of the data. This
is achieved by the method of principal component analysis. Since we will use this
technique in our paper, we will discuss this method in detail below.

Let us assume that the covariance matrix of Q is denoted by C(Q) = [Cij ].
Therefore, Cij is equal to the covariance between the dimensions i and j. This
covariance matrix is known to be positive-semidefinite and can be diagonalized
as follows:

C(Q) = P (Q) · ∆(Q) · P (Q)T (4)

Here the columns of P (Q) represent the orthonormal eigenvectors, whereas ∆(Q)
is a diagonal matrix which contains the eigenvalues. The eigenvectors and eigen-
values have an important physical significance with respect to the data points in
Q. Specifically, the orthonormal eigenvectors of P (Q) represent an axis system
in which the second order correlations of Q are removed. Therefore, if we were
to represent the data points of Q in this new axis system, then the covariance
between every pair of dimensions of the transformed data set would be zero.
The eigenvalues of ∆(Q) would equal the variances of the data Q along the
corresponding eigenvectors. Thus, the orthonormal columns of the matrix P (Q)
define a new axis system of transformation on Q, in which ∆(Q) is the new
covariance matrix.

We note that the axis system of transformation represented by Q is a par-
ticularly useful way to regenerate a sample of the data from the distribution
represented by these statistics. This is because of the pairwise (second-order)
independence between the dimensions of the transformed system. As a result,
the data values along each of the transformed dimensions can also be generated



independently of one another.1 Thus, the covariance matrix serves the essential
purpose of summarizing the hidden structure of the data.

This structural description can be used to estimate and generate future sam-
ples of the data. In order to do so, we use the historical statistics in order to esti-
mate the future statistics. The aim of this approach is to effectively re-generate
the data samples, while taking into account the evolution of the data. In the
next section, we will discuss the details of the approach and its application to
the predictive query estimation problem. In order to actually store the statis-
tics, we use both a global and a local predictive approach. In the global approach,
the summary statistics of the entire data are stored at regular intervals. Let us
denote the data points which have arrived till time t by DS(t). As each data
point Xt arrives, we add the corresponding values of Fs({Xt}) and Scij({Xt})

to Fs(DS(t)) and Sc(DS(t)) respectively. The value of n(DS(t)) is incremented
by one unit as well. Thus, the additivity property of the statistics ensures that
they can be maintained effectively in a fast stream environment.

In order to improve the accuracy of prediction, we use a local approach in
which the prediction is performed separately on each data locality. In the local
predictive approach, the statistics are maintained separately for each data local-
ity. In other words, the data stream DS(t) is segmented out into q local streams
which are denoted by DS1(t), DS2(t), . . . DSq(t) respectively. We note that the
statistics for each local segment are likely to be more refined than the statistics
for the entire data stream. This results in more accurate prediction of the future
stream summaries. Correspondingly, we will show that the selectivity results are
also more accurate in the local approach. We note that the local predictive ap-
proach degenerates to the global case when the value of q is set to 1. Therefore,
we will simply present the predictive query estimation method for the local case.
The global case can be trivially derived from this description.

The process of maintaining the q local streams is illustrated in Figure 1.
The first step is to create the initial set of statistics. This is achieved by stor-
ing an initial portion of the stream onto the disk. The number of initial data
points stored on disk is denoted by Init. A k-means algorithm is applied to
this set of points in order to create the initial clusters. Once the initial clusters
DS1(t) . . .DSq(t) have been determined, we generate the corresponding statis-

tics Stat(DS1(t)) . . . Stat(DSq(t)) from these clusters. For each incoming data
point, we determine its distance to the centroid of each of the local streams. We
note that the centroid of each local stream DSi(t) can be determined easily by
dividing the first order statistics Fs(DSi(t)) by the number of points n(DSi(t)).
We determine the closest centroid to each data point. Let us assume that the
index of the closest centroid is min ∈ {1, . . . q}. We assign that data point to
the corresponding local stream. At the same time, we update Stat(DSmin(t))
by adding the statistics of the incoming data point to it. At regular intervals of
r, we also store the corresponding state of the statistics to disk. Therefore, the
summary statistics at times 0, r, 2 · r, . . . t · r . . . are stored to disk.

1 This results in a second-order approximation which is useful for most practical pur-
poses.



Algorithm MaintainLocalStream(Data Stream: DS(t),
TimeStamp: t);

begin

Store the first Init points from the data stream;
Apply k-means clustering to create l clusters;
Denote each cluster by DSi(t) for i ∈ {1, . . . q};

Compute Stat(DSi(t)) for i ∈ {1, . . . q};

for each incoming data point X do

begin

Compute centroid of each DSi(t) using Stat(DSi(t));
Compute closest centroid index min ∈ {1, . . . q};

Assign X to closest centroid and update
corresponding statistics DSi(t);

end

end

Fig. 1. Local Stream Maintenance

3 The Predictive Query Estimation Method

In this section, we will discuss the predictive query estimation technique. Let
us assume that the user wishes to find a response to the query R over the
time interval (T1, T2). In order to achieve this goal, a statistical sample of the
data needs to be generated for the interval (T1, T2). This sample needs to be
sufficiently predictive of the behavior of the data for the interval (T1, T2). For
this purpose, we also need to generate the summary statistics which are relevant
to the future interval (T1, T2).

Let us assume that the current time is t0 ≤ T1 < T2. In order to generate the
statistical samples in the data, we utilize a history of length T2 − t0. In other
words, we determine p evenly spaced snapshots in the range (t0 − (T2 − t0), t0).
These p evenly spaced snapshots are picked from the summary statistics which
are stored on disk. In the event that the length of the stream is less than (T2−t0),
we use the entire stream history and pick p evenly spaced snapshots from it. Let
us assume that the time stamps for these snapshots are denoted by b1 . . . bp.
These snapshots are also referred to as the base snapshots. Then, we would like
to generate a functional form for Stat(DSi(t)) for all values of t that are larger
than t0. In order to achieve this goal, we utilize a local regression approach for
each stream DSi(t). Specifically, each component of Stat(DSi(t)) is generated
using a polynomial regression technique.

The generation of the zeroth order and first order statistics from Stat(DSi(t))
is done slightly differently from the generation of second order statistics. A bursty
data stream can lead to poor approximations of the covariance matrix. This is
because rapid changes in the covariance values could occur due to either changes
in the speed of arriving data points, or due to changes in inter-attribute corre-
lations. In order to improve the accuracy further, we use the correlation matrix



Algorithm EstimateQuery(Local Statistics: Stat(DSi(bj)),
Query Interval: (T1, T2), Query: U);

begin

Derive η(i, bj), µk(i, bj), σ2
k(i, bj), φkl(i, bj) from

Stat(DSi(bj));
Use local polynomial regression to generate
functional forms H(η, i, t), H(µ, i, t), H(σ, i, t),
and H(φ, i, t) for each stream i;

s(i, T1, T2) =
∫ T2

t=T1

H(η,i,t)
b2−b1

dt;

Generate s(i, T1, T2) pseudo-points for each stream
using statistics η, µ, σ and φ;

Let f(i,U) be the fraction of data points satisfying
predicate U from data stream DSi;

ES(U) =
∑q

i=1
s(i, T1, T2).f(i,U);

report(ES(U));
end

Fig. 2. The Query Estimation Algorithm

for the period between (t0 − (T2 − t0), t0) as a more usable predictor of future
behavior. We note that the correlation matrix is far less sensitive to the absolute
magnitudes and rate of arrival of the data points, and is therefore likely to vary
more slowly with time. The correlation between the dimensions i and j for a
set of data points Q is denoted by θij(Q) and is essentially equal to the scaled
covariance between the dimensions. Therefore, if Covij(Q) be the covariance
between the dimensions i and j, we have:

θij(Q) =
Covij(Q)

√

Covii(Q) · Covjj(Q)
(5)

We note that unlike the covariance, the correlation matrix is scaled with respect
the absolute magnitudes of the data values, and also the number of data points.
This ensures that the correlation between the data points remains relatively
stable for a bursty data stream with noise in it. The value of θij(Q) lies between
0 and 1 for all i, j ∈ {1, . . . d}.

The local predictive approach works on each local stream DSi(t) separately,
and determines the values of certain statistical variables at the base snapshot
times b1 . . . bp. These statistical variables are as follows:
(1) For each local stream DSi(t) and j ∈ {1 . . . p − 1} we determine the num-
ber of data points arriving in the time interval [bj, bj+1]. This can be derived
directly from the summary statistics stored in the snapshots, and is equal to
n(DSi(bj+1) − n(DSi(bj)). We denote this value by η(i, bj).
(2) For each local stream DSi(t), j ∈ {1 . . . p − 1}, and k ∈ {1 . . . d}, we de-
termine the mean of the data points which have arrived in the time interval
[bj , bj+1]. This can again be estimated from the summary statistics stored in the
snapshots at b1 . . . bp. The corresponding value is equal to (Fsk(DSi(bj+1)) −



Fsk(DSi(bj)))/(n(DS i(bj+1)) − n(DSi(bj))). We denote this value by µk(i, bj).
(3) For each local stream DSi(t), j ∈ {1 . . . p− 1}, and dimension k ∈ {1 . . . d},
we determine the variance of the data points which have arrived in the time
interval [bj , bj+1]. This is estimated by using a two step process. First we com-
pute the second order moment of dimension k in interval [bj , bj+1]. This second
order moment is equal to (Sckk(DSi(bj+1)) − Sckk(DS i(bj)))/(n(DS i(bj+1)) −
n(DSi(bj))). We denote this value by SquareMomentkk(i, bj). Then, the vari-
ance in interval [bj , bj+1] is equal to SquareMomentkk(i, bj) − µk(i, bj)

2. We
denote this variance by σ2

k(i, bj).
(4) For each local stream DSi(t), j ∈ {1 . . . p − 1}, and dimension pairs k, l ∈
{1 . . . d}, we determine the correlation between these dimension pairs. The cor-
relation is determined by the expression (SquareMomentkl(i, bj) − µk(i, bj) ∗
µl(i, bj))/(σk(i, bj) ∗ σl(i, bj)). The correlation is denoted by φkl(i, bj).

For each of the statistical values η(i, bj), µk(i, bj), σ2
k(i, bj), and φkl(i, bj), we

have (p− 1) different instantiations for different values of k and l. Therefore, for
each of the different values, we would like to define a functional form in terms
of the time t. In the following discussion, we will discuss the general approach
by which the functional form is that of the expression η. Let us assume that the
functional form is determined by the expression H(η, i, t). Note that the value
of H(η, i, t) refers to the number of data points in an interval of length (b2 − b1)
and starting at the point t for data stream DSi(t). We also assume that this
functional form H(η, i, t) is expressed polynomially as follows:

H(η, i, t) = am · tm + am−1 · t
m−1 + . . . + a1 · t + a0 (6)

The coefficients a0 . . . am define the polynomial function for H(η, i, t). These co-
efficients need to be approximated using known instantiations of the function
H(η, i, t). The order m is chosen based on the number (p−1) of known instanti-
ations. Typically, the value of m should be significantly lower than the number
of instantiations (p−1). For a particular data stream DSi(t), we know the value
of the function for (p − 1) values of t which are given by t = b1 . . . bp−1. Thus,
for each j = 1 . . . (p − 1), we would like H(η, i, bj) to approximate η(i, bj) as
closely as possible. In order to estimate the coefficients a0 . . . am, we use a linear
regression technique in which we minimize the mean square error of the approxi-
mation of the known instantiations. The process is repeated for each data stream
DSi(t) and each statistical 2 variable η, µk, σk, and φkl. Once these statistical
variables have been determined, we perform the predictive estimation process.
As mentioned earlier, it is assumed that the query corresponds to the future
interval (T1, T2). The first step is to estimate the total number of data points in
the interval (T1, T2). We note that the expression H(η, i, t) corresponds to the
number of points for data stream i in an interval of length3 (b2 − b1). Therefore,

2 We note that the fitting method need not have the same order for all the polynomials.
For the zeroth, first order, and second order statistics, we used second order, first
order and zeroth order polynomials respectively. This turns out to be more useful in
a bursty data stream in which these parameters can vary rapidly.

3 Since the intervals are evenly spaced, we note that (bj − bj−1) is equal to (b2 − b1)
for each value of j ∈ {1, . . . (p − 1)}.



the number of data points s(i, T1, T2) in stream i for the interval (T1, T2) is given
by the following expression:

s(i, T1, T2) =

∫ T2

t=T1

H(η, i, t)

b2 − b1

dt (7)

The value of (b2 − b1) is included in the denominator of the above expression,
since the statistical parameter η has been estimated as the number of data points
lying in an interval of length (b2 − b1) starting at a given moment in time. Once
the number of data points in the time interval (T1, T2) for each stream DSi(t)
have been estimated, the next step is to generate Nsamp(i) sample points using
the statistics η, µ, σ, and φ. The value of Nsamp(i) is chosen proportionally to
s(i, T1, T2) and should at least be equal to the latter. Larger values of Nsamp(i)
lead to greater accuracy at the expense of greater computational costs. We will
discuss the process of generating each sample point slightly later. Each of these
sample points is tested against the user-defined query predicate, and the fraction
of points f(i,U) which actually satisfy the predicate U from data stream DSi(t)
is determined. The final estimation ES(U) for the query U is given by the sum
of the estimations over the different data streams. Therefore, we have:

ES(U) =

q
∑

i=1

s(i, T1, T2) · f(i,U) (8)

It now remains to describe how each sample point from stream i is generated
using the summary statistics.

The first step is to generate the time stamp of the sample point from stream
DSi(t) . Therefore, we generate a sample time ts ∈ (T1, T2) from the relative
density distribution η(i, T ). Once the sample time has been determined, all the
other statistical quantities such as mean, variance, and correlation can be instan-
tiated to µk(i, ts), σ2

k(i, ts), and φkl(i, ts) respectively. The covariance σkl(i, ts)
between each pair of dimensions k and l can be computed as:

σkl(i, ts) =
√

σ2
k(i, ts) · σ2

l (i, ts) · φkl(i, ts) (9)

The equation 9 relates the covariance with the statistical correlation by scaling
appropriately with the product of the standard deviation along the dimensions
k and l. This scaling factor is given by

√

σ2
k(i, ts) · σ2

l (i, ts). Once the covariance
matrix has been computed, we generate the eigenvectors {e1 . . . ed} by using the
diagonalization process. Let us assume that the corresponding eigenvalues are
denoted by {λ1 . . . λd} respectively. We note that λi denotes the variance along
the eigenvector ei. Since the eigenvectors represent the directions of zero corre-
lation4, the data values can be generated under the independence assumption
in the transformed axis system denoted by {e1 . . . ed}. We generate the data in
each such dimension using the uniform distribution assumption. Specifically, the

4 We note that the eigenvectors represent the directions of zero second-order correla-
tion. However, a second-order approximation turns out be effective in practice.



offset from the mean µ(i, ts) of stream DSi(t) along ej is generated randomly
from a uniform distribution with standard deviation equal to

√

λj . While the
uniform distribution assumption is a simplifying one, it does not lead to an ad-
ditional loss of accuracy. Since each data stream DSi(t) represents only a small
locality of the data, the uniform distribution assumption within a locality does
not affect the global statistics of the generated data significantly. Once the data
point has been generated using this assumption, we test whether it satisfies the
user query constraints U . This process is repeated over a number of different data
points in order to determine the fraction f(i,U) of the data stream satisfying the
condition U . The overall process of query estimation is illustrated in Figure 2.
It is important to note that the input set of constraints U can take on any form,
and are not restricted to any particular kind of query. Thus, this approach can
also be used for a wide variety of problems that traditional selectivity estimation
methods cannot solve. For example, one can use the pseudo-points to estimate
statistical characteristics such as the mean or sum across different records. We
note that we can reliably estimate most first order and second order parameters
because of the storage of second-order covariance structure. A detailed descrip-
tion of these advanced techniques is beyond the scope of this paper and will be
discussed in future research. In the next section, we will discuss the effectiveness
and efficiency of the predictive summarization procedure for query selectivity
estimation.

4 Empirical Results

We tested our predictive summarization approach over a wide variety of real
data sets. We tested our approach for the following measures:
(1) We tested the accuracy of the estimation procedure. The accuracy of the
estimation was tested in various situations such as that of a rapidly evolving data
stream or a relatively stable data stream. The aim of testing different scenarios
was to determine how well these situations adjusted to the predictive aspect of
the estimation process.
(2) We tested the rate of summarization of the stream processing framework.
These tests determine the workload limits (maximum data stream arrival rate)
that can be handled by the pre-processing approach.
(3) We tested the efficiency of the query processing approach for different data
sets. This is essential to ensure that individual users are able to process offline
queries in an efficient manner.

The accuracy of our approach was tested against two techniques:
(1) We tested the technique against a random sampling approach. In this method,
we estimated the query selectivity of U corresponding to future interval (T1, T2)
by using a sample of data points in the most recent window of size (T2 − T1).
This technique can work poorly in a rapidly evolving data stream, since the past
window may not be a very good reflection of future behavior.
(2) We tested the local technique against the global technique in terms of the
quality of query estimation. The results show that the local technique was sig-



nificantly more effective on a wide variety of data sets and measures. This is
because the local technique is able to estimate parameters which are specific to
a given segment. This results in more refined statistics which can estimate the
evolution in the stream more effectively.

4.1 Test Data Sets

We utilized some real data sets to test the effectiveness of the approach. A good
candidate for such testing is the KDD-CUP’99 Network Intrusion Detection
stream data set. The Network Intrusion Detection data set consists of a series
of TCP connection records from two weeks of LAN network traffic managed
by MIT Lincoln Labs. Each record can correspond to a normal connection, an
intrusion or an attack. This data set evolves rapidly, and is useful in testing
the effectiveness of the approach in situations in which the characteristics of the
data set change rapidly over time.

Second, besides testing on the rapidly evolving network intrusion data stream,
we also tested our method over relatively stable streams. The KDD-CUP’98
Charitable Donation data set shows such behavior. This data set contains 95412
records of information about people who have made charitable donations in re-
sponse to direct mailing requests, and clustering can be used to group donors
showing similar donation behavior. As in [9], we will only use 56 fields which can
be extracted from the total 481 fields of each record. This data set is converted
into a data stream by taking the data input order as the order of streaming and
assuming that they flow-in with a uniform speed.

The last real data set we tested is the Forest CoverType data set and was
obtained from the UCI machine learning repository web site [16]. This data
set contains 581012 observations and each observation consists of 54 attributes,
including 10 quantitative variables, 4 binary wilderness areas and 40 binary soil
type variables. In our testing, we used all the 10 quantitative variables.

4.2 Effectiveness results

We first tested the prediction accuracy of the approach with respect to the global
approach and a random sampling method. In the sampling method, we always
maintained a random sample of the history of the data stream. When a query
was received, we used the random sample from the most recent history of the
stream in order to estimate the effectiveness of the queries. The queries were
generated as follows. First, we randomly picked k′ = d/2 dimensions in the
data with the greatest standard deviation. From these dimensions, we picked k
dimensions randomly, where k was randomly chosen from (2, 4). The aim of pre-
selecting widely varying dimensions was to pick queries which were challenging
to the selectivity estimation process. Then, the ranges along each dimension were
generated from a uniform random distribution. In each case, we performed the
tests over 50 such randomly chosen queries and presented the averaged results.

In Figure 3, we have illustrated the predictive error of the Network Intrusion
data set with stream progression. In each group of stacked bars in the chart,



1 2 3 4 5

x 10
4

0

5

10

15

20

25

30

Progression of Stream

P
er

ce
nt

 E
rr

or
 in

 P
re

di
ct

io
n

Local Prediction
Global Prediction
5% sampling
2% sampling

Fig. 3. Predictive Error of Different
Methods with Stream Progression (Net-
work Intrusion Data Set)

1 2 3 4 5

x 10
4

0

5

10

15

20

25

30

Progression of Stream

P
er

ce
nt

 E
rr

or
 in

 P
re

di
ct

io
n

Local Prediction
Global Prediction
5% sampling
2% sampling

Fig. 4. Predictive Error of Different
Methods with Stream Progression (Char-
itable Donation Data Set)

we have illustrated the predictive error of each method. Different stacks corre-
spond to different time periods in the progression of the stream. The predictive
accuracy is defined as the difference between the true and predictive selectivity
as a percentage of the true value. On the X-axis, we have illustrated the pro-
gression of the data stream. The predictive error varied between 5% and 20%
over the different methods. It is clear that in each case, the local predictive es-
timation method provides the greatest accuracy in prediction. While the local
method is consistently superior to the method of global approach, the latter is
usually better than pure random sampling methods. This is because random
sampling methods are unable to adjust to the evolution in the data stream. In
some cases, the 5% random sampling method was slightly better than global
method. However, in all cases, the local predictive estimation method provided
the most accurate result. Furthermore, the 2% sampling method was the least
effective in all cases. The situations in which the 5% sampling method was su-
perior to global method were those in which the stream behavior was stable and
did not vary much over time.

In order to verify this fact, we also performed empirical tests using the char-
itable donation data set which exhibited much more stable behavior than the
Network Intrusion Set. The results are illustrated in Figure 4. The stable be-
havior of the charitable donation data set ensured that the random sampling
method did not show much poorer performance than the predictive estimation
methods. However, in each case, the local predictive estimation method contin-
ued to be significantly superior to other techniques. In some cases, the 5% sam-
pling method was slightly better than the global estimation method. Because of
the lack of evolution of the data set, the sampling method was relatively more
robust. However, it was still outperformed by the local predictive method in all
cases.



1 2 3 4 5

x 10
4

0

5

10

15

20

25

30

Progression of Stream

P
er

ce
nt

 E
rr

or
 in

 P
re

di
ct

io
n

Local Prediction
Global Prediction
5% sampling
2% sampling

Fig. 5. Predictive Error of Different
Methods with Stream Progression (Forest
Cover Data Set)

1 2 3
0

5

10

15

20

25
1. KDDCup99 Data
2. KDDCup98 Data
3. ForestCover Data

P
er

ce
nt

 E
rr

or
 in

 P
re

di
ct

io
n 

(A
vg

. o
ve

r 
ev

ol
ut

io
na

ry
 c

as
es

)

Local Prediction
Global Prediction
5% sampling
2% sampling

Fig. 6. Predictive Error of Different
Methods with Stream Progression (High
Evolution Cases)

Finally, the results for the forest cover data set are illustrated in Figure
5. This data set showed similar relative trends between the different methods.
However, the results were less skewed than the network intrusion data set. This
is because the network intrusion data set contained sudden bursts of changes in
data behavior. These bursts correspond to the presence of intrusions in the data.
These intrusions also show up in the form of sudden changes in the underlying
data attributes. While the forest cover data set evolved more than the charitable
donation data set, it seemed to be more stable than the network intrusion data
set. Correspondingly, the relative performance of the sampling methods improved
over that for the network intrusion data set, but was not as good as the charitable
donation data set. As in the previous cases, the predictive estimation approach
dominated significantly over other methods.

We also tested the effectiveness of the approach in specific circumstances
where the data was highly evolving. In order to model such highly evolving data
sets, we picked certain points in the data set at which the class distribution of
the data stream showed a shift. Specifically, when the percentage presence of
the dominant class in successive blocks of 1000 data points showed a change of
greater than 5%, these positions in the data stream were considered to be highly
evolving. All queries to be tested were generated in a time interval which began
at a lag of 100 data points from the beginning of the shift. This ensured that the
queries followed a region with a very high level of evolution. For each data set,
ten such queries were generated using the same methodology described earlier.
The average selectivity error over the different data sets was reported in Figure 6.
Because of the greater level of evolution in the data set, the absolute error values
are significantly higher. Furthermore, the random sampling method performed
poorly for all three data sets. The results were particularly noticeable for the
network intrusion data set. This is because the random sampling approach uses
only the history of past behavior. This turned out to be poor surrogate in this



case. Since the random sampling approach relied exclusively on the history of
the data stream, it did not provide very good results in cases in which the stream
evolved rapidly. These results show that the predictive estimation technique was
a particularly useful method in the context of a highly evolving data stream.

1 5 10 20 30 40
0

2

4

6

8

10

12

14

16

18

20

Number Of Local Segments

P
er

ce
nt

 E
rr

or
 in

 P
re

di
ct

io
n

Fig. 7. Predictive Error with Increasing
Number of Local Segments (Network In-
trusion Data Set)

1 5 10 20 30 40
0

2

4

6

8

10

12

14

16

18

20

Number Of Local Segments

P
er

ce
nt

 E
rr

or
 in

 P
re

di
ct

io
n

Fig. 8. Predictive Error with Increasing
Number of Local Segments (Charitable
Donation Data Set)

We also tested the effectiveness of the predictive estimation analysis with
increasing number of segments in the data stream. The results for the network
intrusion data set are presented in Figure 7. These results show that the error
in estimation reduced with the number of segments in the data stream, but lev-
elled off after the use of 7 to 8 segments. This is because the use of an increasing
number of segments enhanced the power of data locality during the parame-
ter estimation process. However, there was a limit to this advantage. When the
number of clusters was increased to more than 20, the error rate increased sub-
stantially. In these cases, the number of data points from each cluster (which
were used for the polynomial fitting process) reduced to a point which leads to
a lack of statistical robustness. The results for the charitable donation data set
are presented in Figure 8. While the absolute error numbers are slightly lower
in each case, the trends are quite similar. Therefore, the results show that it
is a clear advantage to use a large number of segments in order to model the
behavior of each data locality.

4.3 Stream Processing and Querying Efficiency

In this section, we will study the processing efficiency of the method, and its
sensitivity with respect to the number of segments used in the data stream.
The processing efficiency refers to the online rate at which the stream can be
processed in order to create and store away the summary statistics generated
by the method. The processing efficiency was tested in terms of the number of



data points processed per second with stream progression. The results for the
case of the network intrusion and charitable donation data sets are illustrated in
Figure 9. On the X-axis, we have illustrated the progression of the data stream.
The Y-axis depicts the processing rate of the stream in terms of the number
of data points processed every minute. It is clear that the algorithm was stable
throughout the execution of the data stream. The processing rate for the network
intrusion data set was higher because of its lower dimensionality. Furthermore,
the execution times were relatively small, and several thousand data points were
processed per minute. This is because the stream statistics can be updated using
relatively straightforward additive calculations on each point. We have drawn
multiple plots in Figure 9 illustrating the effect of using the different data sets.

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

600

800

1000

1200

1400

1600

Progression of data stream

D
at

a 
po

in
ts

 p
ro

ce
ss

ed
 p

er
 m

in
ut

e

Network Intrusion Data Set
Charitable Donation Data Set

Fig. 9. Stream Processing Time with
Data Stream Progress

5 10 15 20 25 30 35 40

600

800

1000

1200

1400

1600

Progression of data stream

D
at

a 
po

in
ts

 p
ro

ce
ss

ed
 p

er
 m

in
ut

e

Network Intrusion Data Set
Charitable Donation Data Set

Fig. 10. Stream Processing Time with In-
creasing Number of Local Segments

In order to illustrate the effect of using different number of segments, we have
illustrated the variation in processing rate with the number of stream segments in
Figure 10. Both data sets are illustrated in this figure. As in the previous case,
the lower dimensionality of the network intrusion data set resulted in higher
processing efficiency. It is clear that the number of data points processed per
second reduces with increasing number of segments. This is because of the fact
that the time for finding the closest stream segment (in order to find which set
of local stream segment statistics to update) was linear in the number of local
stream segments. However, the majority of the time was spent in the (fixed) cost
of updating stream statistics. This cost was independent of the number of stream
segments. Correspondingly, the overall processing rate was linear in the number
of stream segments (because of the cost of finding the closest stream segment),
though the fixed cost of updating stream statistics (and storing it away) tended
to dominate. Therefore, the results of Figure 10 illustrate that the reduction in
processing rate with increasing number of stream segments is relatively mild.

Finally, we studied the efficiency of querying the data stream. We note that
the querying efficiency depends upon the number of segments stored in the data



5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

Number of Segments

A
ve

ra
ge

 Q
ue

ry
 P

ro
ce

ss
in

g 
T

im
e 

(s
ec

on
ds

)

Network Intrusion Data Set
Charitable Donation Data Set

Fig. 11. Stream Query Time with Increasing Number of Local Segments

stream. This is because the statistics need to be estimated separately for each
stream segment. This requires separate processing of each segment and leads
to increased running times. We have presented the results for the Charitable
Donation and Network Intrusion Data data set in Figure 11. In order to improve
the accuracy of evaluation, we computed the running times over a batch of one
hundred examples and reported the average running times per query on the Y -
axis. On the X-axis, we have illustrated the number of stream segments used.
It is clear that in each case, the running time varied between 0.3 and 8 seconds.
A relevant observation is that the most accurate results for query responses is
obtained when about 7-10 segments were used in these data sets. For these cases,
the query response times were less than 2 seconds in all cases. Furthermore, we
found the running time to vary linearly with the number of stream segments. The
network intrusion and the charitable donation data sets showed similar results
except that the running times were somewhat higher in the latter case. This is
because of the higher dimensionality of the latter data set which increased the
running times as well.

5 Conclusions and Summary

In this paper, we discussed a method for predictive query estimation of data
streams. The approach used in this paper can effectively estimate the changes
in the data stream resulting from the evolution process. These changes are in-
corporated in the model in order to perform the predictive estimation process.
We note that the summarization approach in this paper is quite general and can
be applied to arbitrary kinds of queries as opposed to simple techniques such as
range queries. This is because the summarization approach constructs pseudo-
data which can be used in conjunction with an arbitrary query. While this scheme



has been developed and tested for query estimation, the technique can be used
for any task which requires predictive data summarization. We tested the scheme
on a number of real data sets, and compared it against an approach based on
random sampling. The results show that our scheme significantly outperforms
the method of random sampling as well as the global approach. The strength
of our approach arises from its careful exploitation of data locality in order to
estimate the inter-attribute correlations. In future work, we will utilize the data
summarization approach to construct visual representations of the data stream.

References

1. Aggarwal C. C.: A Framework for Diagnosing Changes in Evolving Data Streams,
ACM SIGMOD Conference, (2003) 575–586.

2. Aggarwal C. C., Han J., Wang J., Yu P.: A Framework for Clustering Evolving Data
Streams, VLDB Conference, (2003) 81–92.

3. Babcock B., Babu S., Datar M., Motwani R., Widom J.: Models and Issues in Data
Stream Systems, ACM PODS Conference, (2002) 1–16.

4. Chen Y., Dong G., Han J., Wah B., Wang J.: Multi-Dimensional Regression Analysis
of Time Series Data Streams, VLDB Conference, (2002) 323–334.

5. Cortes C., Fisher K., Pregibon D., Rogers A., Smith F.: Hancock: A Language for
Extracting Signatures from Data Streams, ACM KDD Conference, (2000) 9–17.

6. Dobra A., Garofalakis M., Gehrke J., Rastogi R.: Processing Complex Aggregate
Queries over Data Streams, ACM SIGMOD Conference, (2002) 61–72.

7. Dobra A., Garofalakis M., Gehrke J., Rastogi R.: Sketch Based Multi-Query Pro-
cessing Over Data Streams, EDBT Conference, (2004) 551–568.

8. Domingos P., Hulten G.: Mining High-Speed Data Streams, ACM KDD Conference,
(2000) 71–80.

9. Farnstrom F., Lewis J., Elkan C.: Scalability for Clustering Algorithms Revisited,
ACM SIGKDD Explorations, Vol. 2(1), (2000) 51–57.

10. Gilbert A. C., Kotidis Y., Muthukrishnan S., Strauss M. J.: Surfing Wavelets on
Streams: One-pass Summaries for Approximate Aggregate Queries, VLDB Confer-
ence, (2001) 79–88.

11. Gilbert A. C., Kotidis Y., Muthukrishnan S., Strauss M. J.: How to Summarize the
Universe: Dynamic Maintenance of Quantiles. VLDB Conference, (2002) 454–465.

12. Gunopulos D., Kollios G., Tsotras V., Domeniconi C.: Approximating Multi-
Dimensional Aggregate Range Queries over Real Attributes. ACM SIGMOD Confer-
ence, (2000) 463–474.

13. Manku G. S., Motwani R.: Approximate Frequency Counts over Data Streams.
VLDB Conference, (2002), 346–357.

14. O’Callaghan L., Mishra N., Meyerson A., Guha S., Motwani R.: Streaming-Data
Algorithms For High-Quality Clustering, IEEE ICDE Conference, (2002) 685–696.

15. Vitter J., Wang M.: Approximate Computation of Multidimensional Aggregates of
Sparse Data using Wavelets. ACM SIGMOD Conference, (1999) 193–204.

16. http://www.ics.uci.edu/∼mlearn.


