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e Massive graph streams are created by underlying activity in
a number of network applications

e Examples include:
— Communication Networks
— Social Networks

— Web Applications

e Present algorithms for graph stream classification



Streaming Model
e Our model assumes a stream of graph objects
e Each object is labeled with a class

e Each object contains a set of nodes and edges from the same
pbase domain



A bibliographic object from the DBLP network may be ex-
pressed as a graph with nodes corresponding to authors, con-
ference, or topic area.

A movie object from IMDB can be represented as an entity-
relation graph, with edges corresponding to relationships be-
tween different elements.

Events in social networks may lead to local patterns of ac-
tivity, which may be modeled as streams of graph objects.

T he user browsing pattern at a web site is a stream of graph
objects.

— Edges = Path taken by the user across the different ob-
jects.



e Stream scenario creates constraints on algorithmic design.

e T he number of distinct edges is extremely large.

— A graph with more than 108 nodes may contain as many
as 101° distinct (potential) edges.

— Hard to store even summary information about distinct
edges or subgraphs.

e Additional Challenge: The edges of a given object may
occur out-of-order.

— Creates challenges for algorithms, which extract structural

characteristics for graphs, because all edges of a graph
object may not be available at a given time.



Denote node set by N (very large)

The individual graphs in the stream are denoted by
G]_...Gn....

Each graph G; is associated with the class label C; which is
drawn from {1...m}.

The edges of each graph G; may not be neatly received at
a given moment in time = May appear out of order in the
data stream.

— The edges are received as < Edgeld, Graphld >



e Design a rule-based classifier which relates subgraph patterns
to classes

— Left hand side contains the subgraph and right hand side
contains the class-label

e Rules are maintained indirectly in the form of a continuously
updatable and stream-friendly data structure.

e Use two criteria to mine subgraphs for rule-generation:

— Relative Presence: Determine subgraphs for which rel-
ative presence of co-occurring edges (as a group) is high.

— Class Distribution: Determine subgraphs which are dis-
criminative towards a particular class.



Modeling Relative Presence of
Subgraphs

e Determine subgraphs which have significant presence in
terms of the relative frequency of its constituent edges.

e fn(P) = Fraction of graphs in G1... Gy in which all edges
of subgraph P are present.

e fu(P) = Fraction of graphs in which at least one or more
of the edges of subgraph P are present.

e The edge coherence C(P) of the subgraph P is denoted by
fo(P)/ fu(P).



e [ he definition of edge coherence is focussed on relative pres-
ence of subgraph patterns rather than the absolute presence.

— This ensures that only significant patterns are found.
— Ensures that large numbers of irrelevant patterns with

high frequency but low significance are not considered.

e Computationally more challenging than direct support-based
computation.



e Among all graphs containing subgraph P, determine the frac-
tion belonging to class label r

— Also referred to as confidence of pattern P with respect
to the class r.

e The dominant class confidence DI(P) or subgraph P is de-
fined as the maximum class confidence across all the different
classes {1...m}.

e A significantly large value of DI(P) for a particular test in-
stance indicates that the pattern P is very relevant to clas-
sification.



Formal Definition (Significant Patterns)

e A subgraph P is said to be be («,0)-significant, if it satisfies
the following two edge-coherence and class discrimination
constraints:

— The edge-coherence C'(P) of subgraph P is at least «.
C(P) > « (1)

— The dominant class confidence DI(P) is at least 0.

DI(P) >0 (2)



e Aim: Design a continuously updatable synopsis data struc-
ture, which can be efficiently mined for the most discrimina-

tive subgraphs.

e Small size synopsis:

— Can be dynamically maintained and applied in online fash-
ion at any point during stream progression.

— The structural synopsis maintains sufficient information
which is necessary for classification purposes.



e \We describe a probabilistic min-hash approach for determin-
ing discriminative subgraphs.

e Technique has been used earlier for dense subgraph mining
applications.

— Cannot be easily adapted to this scenario because of the
large number of distinct edges and stream assumption.

e \We use a 2-dimensional compression technique in which a
min-hash function will be used in combination with a more
straightforward randomized hashing technique.



e T he min-hashing scheme corresponds to row-compression

and straightforward hashing corresponds to column compres-
sion

e First describe compression using rows only

— Subsequently describe how to add column compression to
the scheme

e Sequential description eases explanation of approach



e Coherence probability for edge set P is fn(P)/fu(P)

— Can be estimated by sampling rows in the Graphldsx FEdges
matrix

e Use random sort order on the rows and examine the first row
which contains at least one 1-bit in the columns for P.

— Sorting approach is simply a way of randomly sampling
relevant rows = Those which have at least one 1-bit for
columns of P

— What fraction of samples have all 1-bits for P, if repeated
random sorts are used?



Simulate the sort by using a random-hash function on the
row-identifiers, and keep track of first (or minimum hash
value) row index for which the corresponding bit is 1 in each
column.

Check if minimum hash index is same across all columns of
set P = Probability same as Jaccard Coefficient (or coher-
ence probability C(P))

Repeat approach with k independent hash functions = Com-
pute fraction of kK samples for which the minimum hash-index
of the k£ columns of P are the same.

Key: Create a data structure of minimum hash indices.



Store running minimum hash values and indices for each col-
umn.

For each incoming edge, we generate k£ random hash values,
and compare to current minimum value for that column.

Update the running min-hash index (row index) and value if
the min-hash value is lower.

For a problem with L distinct edges, this creates a data
structure of size k x L



Creating Transaction Set from
Min-hash sample

e For each row, determine the column identifiers for which the
min-hash indices are the same.

e Create a set of transactions 7, such that each transaction
contains the set of column identifiers for which the min-hash
indices are the same.

e Claim: The coherence probability C(P) of an edge set P
can be estimated as the absolute support of that set in the
transaction set 7, divided by k.



e Min-hash size of k x L is still quite large, if number of distinct
edges L are large

e Apply an additional layer of compression by applying a hash-
function to the different columns.

e The hash function maps all columns to the range [1,n] =
Apply same approach after mapping

— Creates a many-to-one mapping between original and
compressed column set

— Improves space efficiency at the expense of reduced accu-
racy

— Accuracy reduction is modest, if average size a of stream
graphs is much less than n (a << n)



Keep track of the class labels during the min-hashing scheme.

Assume that class labels of the graphs are appended to the
identifier I1d(G) for each graph G.

Note that the global distribution of class labels in the min-
hash summary may not be the same as the original data
stream, because of its inherent bias in representing graph
identifiers with larger number of edges in the summary trans-
action set T.

How do we estimate class confidences?



e For a particular pattern containing a fixed number of edges,
the following is true:

— The class fraction for any particular pattern P and class
computed over the transaction set 7 is an unbiased esti-
mate of its true value.



e Approach can use synopsis structure to classify a graph at
any time during the computation process.

e Determine the patterns relevant to a particular test instance.

e Pick highest frequency class among the first r relevant sub-
graphs with highest dominant confidence.



Accuracy of Approach (Row
Compression/Coherence Probability)

e First estimate accuracy of min-hash portion (without column
compression).

e The probability of a pattern P determined from 7 to be a
false positive (based on coherence probability), when using a
coherence threshold of a-(14+~) and k£ samples is given by at
most e—a'k‘72/3, where e is the base of the natural logarithm.

e T he number of samples k required in order to guarantee a
probability at most § for any of the determined patterns to
be a false positive is given by 3-In(1/8)/(a - v2).



Accuracy of Approach (Column
Compression)

o Let f/,(P) be the estimated support of P on the column-
compressed data with the use of a uniform hash functions.
Then, the expected value of f/,(P) satisfies the following
relationship:

IPI (3)

fu(P) < E[fi(P)] <

e Let fL(P) be the estimated support of P on the column-
compressed data with the use of a uniform hash functions.
Then, the expected value of fL(P) approximately satisfies
the following relationship:

IPI (4)

fn(P) < E[fR(P)] <



Accuracy of Approach (Class
Discrimination)

e The probability of a pattern P determined from 7T to be
a false positive (based on class-confidence), when using a
dominant confidence threshold of 8- (1 4+ ~) and k samples
for the min-hash approach is given by at most e—®0%7°/3
where e is the base of the natural logarithm.

e T he number of samples k£ required in order to guarantee a
probability at most 6 for any of the determined patterns to
be a false positive (based on dominant class confidence) is
given by 3-1n(1/8) /(e -6 -~+2).



Experimental Results

e [ested on real data sets

— DBLP and IBM Sensor Stream data set

e Compared against a disk-based baseline NN classifier
— Accuracy of technique.
— Efficiency of technique.

— Sensitivity over a wide variety of parameters.



Classification Accuracy Results
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e Classification Accuracy with increasing min-hash size for (a)
DBLP data set (b) Sensor data set
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e Classification Accuracy with increasing column sample size
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e Classification Accuracy with increasing coherence parameter
for (a) DBLP data set (b) Sensor data set
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Efficiency Results
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Conclusions and Summary
e New method for classification of graph streams.

e Capable of handling graph streams which are drawn from
massive domains.

e Provides more effective results than a disk-based NN classi-
fier, while maintaining efficiency.



