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Introduction

• Massive graph streams are created by underlying activity in

a number of network applications

• Examples include:

– Communication Networks

– Social Networks

– Web Applications

• Present algorithms for graph stream classification



Streaming Model

• Our model assumes a stream of graph objects

• Each object is labeled with a class

• Each object contains a set of nodes and edges from the same

base domain



Examples

• A bibliographic object from the DBLP network may be ex-

pressed as a graph with nodes corresponding to authors, con-

ference, or topic area.

• A movie object from IMDB can be represented as an entity-

relation graph, with edges corresponding to relationships be-

tween different elements.

• Events in social networks may lead to local patterns of ac-

tivity, which may be modeled as streams of graph objects.

• The user browsing pattern at a web site is a stream of graph

objects.

– Edges ⇒ Path taken by the user across the different ob-

jects.



Challenging Assumptions

• Stream scenario creates constraints on algorithmic design.

• The number of distinct edges is extremely large.

– A graph with more than 108 nodes may contain as many

as 1015 distinct (potential) edges.

– Hard to store even summary information about distinct

edges or subgraphs.

• Additional Challenge: The edges of a given object may

occur out-of-order.

– Creates challenges for algorithms, which extract structural

characteristics for graphs, because all edges of a graph

object may not be available at a given time.



Notations and Definitions

• Denote node set by N (very large)

• The individual graphs in the stream are denoted by

G1 . . . Gn . . ..

• Each graph Gi is associated with the class label Ci which is

drawn from {1 . . .m}.

• The edges of each graph Gi may not be neatly received at

a given moment in time ⇒ May appear out of order in the

data stream.

– The edges are received as < EdgeId,GraphId >



Classification Modeling Approach

• Design a rule-based classifier which relates subgraph patterns

to classes

– Left hand side contains the subgraph and right hand side

contains the class-label

• Rules are maintained indirectly in the form of a continuously

updatable and stream-friendly data structure.

• Use two criteria to mine subgraphs for rule-generation:

– Relative Presence: Determine subgraphs for which rel-

ative presence of co-occurring edges (as a group) is high.

– Class Distribution: Determine subgraphs which are dis-

criminative towards a particular class.



Modeling Relative Presence of
Subgraphs

• Determine subgraphs which have significant presence in

terms of the relative frequency of its constituent edges.

• f∩(P) ⇒ Fraction of graphs in G1 . . . Gn in which all edges

of subgraph P are present.

• f∪(P) ⇒ Fraction of graphs in which at least one or more

of the edges of subgraph P are present.

• The edge coherence C(P) of the subgraph P is denoted by

f∩(P)/f∪(P).



Observations

• The definition of edge coherence is focussed on relative pres-

ence of subgraph patterns rather than the absolute presence.

– This ensures that only significant patterns are found.

– Ensures that large numbers of irrelevant patterns with

high frequency but low significance are not considered.

• Computationally more challenging than direct support-based

computation.



Class Confidence

• Among all graphs containing subgraph P , determine the frac-

tion belonging to class label r

– Also referred to as confidence of pattern P with respect

to the class r.

• The dominant class confidence DI(P) or subgraph P is de-

fined as the maximum class confidence across all the different

classes {1 . . .m}.

• A significantly large value of DI(P) for a particular test in-

stance indicates that the pattern P is very relevant to clas-

sification.



Formal Definition (Significant Patterns)

• A subgraph P is said to be be (α, θ)-significant, if it satisfies

the following two edge-coherence and class discrimination

constraints:

– The edge-coherence C(P) of subgraph P is at least α.

C(P) ≥ α (1)

– The dominant class confidence DI(P) is at least θ.

DI(P) ≥ θ (2)



Broad Approach

• Aim: Design a continuously updatable synopsis data struc-

ture, which can be efficiently mined for the most discrimina-

tive subgraphs.

• Small size synopsis:

– Can be dynamically maintained and applied in online fash-

ion at any point during stream progression.

– The structural synopsis maintains sufficient information

which is necessary for classification purposes.



Probabilistic Synopsis

• We describe a probabilistic min-hash approach for determin-

ing discriminative subgraphs.

• Technique has been used earlier for dense subgraph mining

applications.

– Cannot be easily adapted to this scenario because of the

large number of distinct edges and stream assumption.

• We use a 2-dimensional compression technique in which a

min-hash function will be used in combination with a more

straightforward randomized hashing technique.



Two Phase Description

• The min-hashing scheme corresponds to row-compression

and straightforward hashing corresponds to column compres-

sion

• First describe compression using rows only

– Subsequently describe how to add column compression to

the scheme

• Sequential description eases explanation of approach



Min-hash Approach

• Coherence probability for edge set P is f∩(P)/f∪(P)

– Can be estimated by sampling rows in the GraphIds×Edges

matrix

• Use random sort order on the rows and examine the first row

which contains at least one 1-bit in the columns for P .

– Sorting approach is simply a way of randomly sampling

relevant rows ⇒ Those which have at least one 1-bit for

columns of P

– What fraction of samples have all 1-bits for P , if repeated

random sorts are used?



Min-hash Approach

• Simulate the sort by using a random-hash function on the

row-identifiers, and keep track of first (or minimum hash

value) row index for which the corresponding bit is 1 in each

column.

• Check if minimum hash index is same across all columns of

set P ⇒ Probability same as Jaccard Coefficient (or coher-

ence probability C(P))

• Repeat approach with k independent hash functions ⇒ Com-

pute fraction of k samples for which the minimum hash-index

of the k columns of P are the same.

• Key: Create a data structure of minimum hash indices.



Dynamic Maintenance

• Store running minimum hash values and indices for each col-

umn.

• For each incoming edge, we generate k random hash values,

and compare to current minimum value for that column.

• Update the running min-hash index (row index) and value if

the min-hash value is lower.

• For a problem with L distinct edges, this creates a data

structure of size k × L



Creating Transaction Set from
Min-hash sample

• For each row, determine the column identifiers for which the

min-hash indices are the same.

• Create a set of transactions T , such that each transaction

contains the set of column identifiers for which the min-hash

indices are the same.

• Claim: The coherence probability C(P) of an edge set P

can be estimated as the absolute support of that set in the

transaction set T , divided by k.



Columnwise Compression

• Min-hash size of k×L is still quite large, if number of distinct

edges L are large

• Apply an additional layer of compression by applying a hash-
function to the different columns.

• The hash function maps all columns to the range [1, n] ⇒
Apply same approach after mapping

– Creates a many-to-one mapping between original and
compressed column set

– Improves space efficiency at the expense of reduced accu-

racy

– Accuracy reduction is modest, if average size a of stream

graphs is much less than n (a << n)



Determining Discriminative Patterns

• Keep track of the class labels during the min-hashing scheme.

• Assume that class labels of the graphs are appended to the

identifier Id(G) for each graph G.

• Note that the global distribution of class labels in the min-

hash summary may not be the same as the original data

stream, because of its inherent bias in representing graph

identifiers with larger number of edges in the summary trans-

action set T .

• How do we estimate class confidences?



Observation

• For a particular pattern containing a fixed number of edges,

the following is true:

– The class fraction for any particular pattern P and class

computed over the transaction set T is an unbiased esti-

mate of its true value.



Classification Approach

• Approach can use synopsis structure to classify a graph at

any time during the computation process.

• Determine the patterns relevant to a particular test instance.

• Pick highest frequency class among the first r relevant sub-

graphs with highest dominant confidence.



Accuracy of Approach (Row
Compression/Coherence Probability)

• First estimate accuracy of min-hash portion (without column

compression).

• The probability of a pattern P determined from T to be a

false positive (based on coherence probability), when using a

coherence threshold of α ·(1+γ) and k samples is given by at

most e−α·k·γ2/3, where e is the base of the natural logarithm.

• The number of samples k required in order to guarantee a

probability at most δ for any of the determined patterns to

be a false positive is given by 3 · ln(1/δ)/(α · γ2).



Accuracy of Approach (Column
Compression)

• Let f ′∪(P) be the estimated support of P on the column-

compressed data with the use of a uniform hash functions.

Then, the expected value of f ′∪(P) satisfies the following

relationship:

f∪(P) ≤ E[f ′∪(P)] ≤ f∪(P) +
a · |P |

n
(3)

• Let f ′∩(P) be the estimated support of P on the column-

compressed data with the use of a uniform hash functions.

Then, the expected value of f ′∩(P) approximately satisfies

the following relationship:

f∩(P) ≤ E[f ′∩(P)] ≤ f∩(P) +
a · |P |

n
(4)



Accuracy of Approach (Class
Discrimination)

• The probability of a pattern P determined from T to be

a false positive (based on class-confidence), when using a

dominant confidence threshold of θ · (1 + γ) and k samples

for the min-hash approach is given by at most e−α·θ·k·γ2/3,

where e is the base of the natural logarithm.

• The number of samples k required in order to guarantee a

probability at most δ for any of the determined patterns to

be a false positive (based on dominant class confidence) is

given by 3 · ln(1/δ)/(α · θ · γ2).



Experimental Results

• Tested on real data sets

– DBLP and IBM Sensor Stream data set

• Compared against a disk-based baseline NN classifier

– Accuracy of technique.

– Efficiency of technique.

– Sensitivity over a wide variety of parameters.



Classification Accuracy Results
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• Classification Accuracy with increasing min-hash size for (a)

DBLP data set (b) Sensor data set



Classification Accuracy Results
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Classification Accuracy Results
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Classification Accuracy Results
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Efficiency Results
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Efficiency Results
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Conclusions and Summary

• New method for classification of graph streams.

• Capable of handling graph streams which are drawn from

massive domains.

• Provides more effective results than a disk-based NN classi-

fier, while maintaining efficiency.


