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Introduction

• Community detection algorithms are used in a wide variety

of social-networking applications

• Most social networks have varying levels of structural density

in different parts of the network

• Global analysis can result in poor clustering when the het-

erogeneity in structural density is not accounted for

• In this paper we design a locally heterogeneous algorithm for

community detection



Challenges of Local Heterogeneity

• The use of a uniform density criterion over the whole network

will lead to imbalanced clusters

• Most nodes will be assigned to one or two super-clusters and

the vast majority of communities may contain an insignificant

number of nodes

• Established communities are often much more dense than

emerging communities

• Since social networks are very large, it is challenging to per-

form local analysis on such a network



Local Community Detection: Goals

• The goal of local community detection is to design tech-

niques which are sensitive to varying behavior of density in

different parts of the network.

• Need to discover the relevant density at different parts of the

network in parametric form and use it to discover important

local regions



Contributions

• Design an effective algorithm for community detection in lo-

cally heterogeneous networks.

• Present the effects of local heterogeneity on community de-

tection on real network data sets

• Illustrate advantages of local community detection over a

global approach with case-studies



Some Observations

• Social networks are often quite sparse in terms of the number

of links emanating from a particular node.

• The neighbors for a given node are also typically correlated

with one another by linkage behavior.

– Even in cases in which a node may have a large number of

neighbors, these neighbors can be disjointed into a small

number of correlated groups or communities.

– The number of communities that a given node may belong

to is usually quite small.

• We refer to this sparse and correlated property of social net-

works as the local succinctness property.



Illustration
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• Illustration of local communities for users



Intuitions

• Communities are typically formed as a result of the inter-

action between particular entities during specific periods of

time.

– Different periods of time often lead to interactions with

different geographical, interest, professional or student

groups.

– Often leads to communities which may have some overlap

but are largely disjoint from one another.

• Friends within each of these categories tend have stronger

ties with members of the same category, although cross-

category ties are still possible.



Broad Approach

• Characterize the global structural behavior of the social net-

work as a compact decomposition of the (succint) local be-

havior.

• Use a min-hash approach in order to determine a compact

data structure representation which can be leveraged for find-

ing a small number of local communities specific to each

individual.

• The min-hash approach will exploit the local view of the

social network for each node, and construct a local projection

of that community for each individual.

• Merge the local community projections into a concise set of

global communities.



Notations and Definitions

Symbol Description
A, B Node Sets.
i, j Node indices.
N (i) Neighbor set of node i.
N (A) Neighbor set of node set A
J(A,B) Pairwise Jaccard coefficient

between A and B
J(A1 . . . An) Multi-way Jaccard similarity

for A1 . . . An

JN(A,B) Pairwise Jaccard coefficient
of neighbor sets, which is
the same as J(N (A),N (B))

JN(A1 . . . An) Multi-way Jaccard similarity
for neighbor sets of A1 . . . An



Definitions

• Given a set of nodes I ≡ {i1, i2, . . . , iK} the group affinity is

defined as the multi-way Jaccard similarity of their neighbor

sets. This similarity is defined as follows:

JN(I) := | ∩i∈I N (i)|/| ∪i∈I N (i)|.

• For a given node i, let p1(i) . . . pn(i) represent the pairwise

group affinities for the n different 2-element sets containing

i and each of the n different nodes.

– The tail threshold T(i) for node i is defined by µ(i) =
∑n

r=1 JN({i, r})/n.



Local Edge-based Communities

• A local edge-based community for node i is a maximal set

of nodes G which satisfy the following conditions:

– G contains node i

– The edge-based group affinity is above the tail threshold

T(i) for node i.

– In other words, we have JN(G) > T(i), and there is no

superset G′ ⊃ G such that JN(G′) > T(i).



Putting Together the Mosaic

• A compact set of communities is more useful for data mining

purposes by consolidating related communities.

– Example: In illustration, the local school-related com-

munity for any particular node may be pieced together in

order to create a more coherent community.

• Once the local communities have been determined, we work

with this set directly, and do not need to use edge-linkage

behavior within this set.

• We use the set relationships between the different local com-

munities in order to consolidate them.

• Determine patterns from the local communities which share a

large number of nodes and perform the consolidation process.



Local Min-Hash Scheme for Community
Detection

• Design a local min-hash scheme as a proxy for effective pat-

tern sampling in a way which is sensitive to network locality.

• Technique has been used before for:

– Frequent pattern mining

– Global community detection

• Adapt approach for local community detection.



Local Community Detection

• We create a small-size description of the underlying commu-

nities in the data.

• Such an approach is flexible enough to accommodate both a

local and global view.

• Provides a better understanding of how the communities re-

late both at the local and the global level.



Representation

• In order to represent the social network, we use the concep-

tual representation of a node-node adjacency matrix.

• For a network containing n nodes, we create a n× n matrix,

in which the entry (i, j) is 1 if the node i is linked to node j.

Otherwise the entry (i, j) is set to 0.

• All diagonal entries are always set to 1.

• Since we assume that “friendship linkages” are bi-directional,

this matrix is symmetric in nature.

• In practice, this representation cannot be used efficiently,

because the matrix is very sparse.



Min-Hash Approach: Broad Idea

• We sort the rows of this adjacency matrix, and determine

the index of the first row for each column for which any of

these entries are 1.

• It can be shown that the probability that these indices are

the same for a pair of columns i and j is equal to the Jaccard

coefficient used to measure the affinity between two nodes.

– The denominator of the Jaccard Coefficient corresponds

to a union event on set membership.

– The numerator corresponds to the intersection event.

• The intersection event occurs if and only if all the min-hash

indices for that set of columns are the same.



Min-Hash Approach

• It is possible to estimate the Jaccard coefficient by computing

the fraction of this event occurrence over k samples.

• In practice, the actual matrix is not used, but we can work

with only the edges incident to a node.

• We construct k different random sort-orders of the nodes.

• For each node i and the pth sort-order (p ∈ {1 . . . k}), we

examine its links, and determine the node index Q(p, i) for

the first node linked to i in this sort order.

• Thus, for each node i, we determine k different minimum

indices, which are denoted by Q(1, i), Q(2, i) . . . Q(k, i). ⇒
This creates a matrix M of size k × n.



Observations

• For a given set S = {i1 . . . ir}, the Jaccard-coefficient AJ (S)

for the set is given by the fraction of rows from M, such that

each such row j satisfies the following relationship:

Q(j, i1) = Q(j, i2) = . . . = Q(j, ir)

• The min-hash index is used in order to construct a transac-

tional representation of the underlying data.

• For each row, we partition the set Q(j,1) . . . Q(j, n) into

groups for which the min-hash index values are the same.

• We can construct transactions T1 . . . Th corresponding to the

different equi-index partitions from a single row in order to

create new data base T .



Transactional Representation

• Let T be the transactions constructed from the min-hash

index set.

• The group affinity of a set of nodes S is equal to the absolute

support of S in T divided by k.



Determining Local Communities

• The local communities are defined based on a local threshold

T(i).

• This threshold T(i) translates into an item-specific (or more

accurately node-specific) support for the frequent pattern

mining problem.

• Determine any locally frequent pattern P from transaction

set T with respect to local supports T(1), . . . , T(n), such that

the support of P in T is at least mini∈PT(i).



Local Communities with Pattern Mining

• There are tremendous numbers of overlaps in the local fre-

quent patterns for different nodes, especially if the values of

T(i) for different nodes are close together.

• Not efficient to use frequent pattern mining for individual

thresholds. A better solution is to consolidate the determi-

nation of frequent patterns.

• Approach proposed in Liu (KDD 1999).



Theoretical Results

• A set of nodes P is a δ-false positive, if the Jaccard affinity

in the original data is less than mini∈PT(i), but it is reported

as a valid local community by the min-hash approximation

with an estimated affinity of at least mini∈PT(i) · (1 + δ).

• A set of nodes P is a δ-false negative, if the Jaccard affin-

ity in the original data is larger than mini∈PT(i), but it is

not reported as a valid local community by the min-hash ap-

proximation scheme, since the estimated affinity is less than

mini∈PT(i) · (1− δ).



Theoretical Results

• The probability that a given set of nodes P is a δ-false pos-

itive for a min-hash sample of size k is given by at most

e−δ2·k·mini∈PT(i)/4.

• The probability that a given set of nodes P is a δ-false neg-

ative for a min-hash sample of size k is given by at most

e−δ2·k·mini∈PT(i)/2.



Consolidating Local Communities

• The local communities determined in the previous section

need to be consolidated into a final set of compact commu-

nities.

• The min-hash technique of the previous section will create a

large number of overlapping communities which need to be

consolidated into a coherent set of communities.

• We use a two phase approach:

– The first phase pieces together local communities in order

to create the cores of the locally relevant communities.

– The second phase then re-constructs these cores in a more

comprehensive way with an iterative approach.



Experimental Results

• Tested on real and synthetic data sets

– DBLP, Condensed Matter Physics (arxiv) and synthetic

data set generated by RMAT

• Tested with effectiveness measures

• Tested with case studies for real data set



Effectiveness Measures

• We remove some of the nodes and their incident edges from

the data, and perform the clustering on the remaining data

set.

• We test how well their links relate to the different clusters

which were created without the use of these nodes.

• The dominant purity pi of node i is defined as the fraction

of the links of node i which are incident on its dominant

community.

• We define the dominant interest ratio Ii of a node i as the

ratio of the dominant purity of node i to the fraction of the

total number of network nodes which are contained in the

dominantly linked community of node i.



Case Studies

• For the DBLP data set, the Newman algorithm created two

very large communities each of which contained about 20%

of the DBLP authors (400 communities in total).

• One of these large communities generated by the Newman

algorithm contained the following set of authors:

Jiawei Han, Mani Srivastava, Rajeev Alur, Donald Towsley, Barbara

Liskov . . .

• Mixes communities of researchers from different areas



Case Studies

• Each of these authors was placed in a different community

by the local community detection algorithm.

• The community for Jiawei Han contained less than 1% of

the total authors, and contained the following individuals:

Jiawei Han, HongJiang Zhang, Lei Zhang, ChengXiang Zhai, . . .

• Much more coherent set of researchers



Distribution of points in clusters
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Effectiveness Results on DBLP Data
Set
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• Increasing min-hash sample size and number of communities



Effectiveness Results on Condensed
Matter Data Set
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Effectiveness Results on Synthetic Data
Set
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Conclusions and Summary

• New method for local community detection in heterogeneous

networks

• Uses a min-hash scheme for local community detection

• Determines more robust communities than a global approach


