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Community detection algorithms are used in a wide variety
of social-networking applications

Most social networks have varying levels of structural density
in different parts of the network

Global analysis can result in poor clustering when the het-
erogeneity in structural density is not accounted for

In this paper we design a locally heterogeneous algorithm for
community detection



The use of a uniform density criterion over the whole network
will lead to imbalanced clusters

Most nodes will be assigned to one or two super-clusters and
the vast majority of communities may contain an insignificant
number of nodes

Established communities are often much more dense than
emerging communities

Since social networks are very large, it is challenging to per-
form local analysis on such a network



Local Community Detection: Goals

e The goal of local community detection is to design tech-
niques which are sensitive to varying behavior of density in
different parts of the network.

e Need to discover the relevant density at different parts of the
network in parametric form and use it to discover important
local regions



e Design an effective algorithm for community detection in lo-
cally heterogeneous networks.

e Present the effects of local heterogeneity on community de-
tection on real network data sets

e Illustrate advantages of local community detection over a
global approach with case-studies



e Social networks are often quite sparse in terms of the number
of links emanating from a particular node.

e T he neighbors for a given node are also typically correlated
with one another by linkage behavior.

— Even in cases in which a node may have a large number of
neighbors, these neighbors can be disjointed into a small
number of correlated groups or communities.

— The number of communities that a given node may belong

to is usually quite small.

e \We refer to this sparse and correlated property of social net-
works as the local succinctness property.



Illustration

e Illustration of local communities for users



e Communities are typically formed as a result of the inter-
action between particular entities during specific periods of
time.

— Different periods of time often lead to interactions with
different geographical, interest, professional or student
groups.

— Often leads to communities which may have some overlap
but are largely disjoint from one another.

e Friends within each of these categories tend have stronger
ties with members of the same category, although cross-
category ties are still possible.



Characterize the global structural behavior of the social net-
work as a compact decomposition of the (succint) local be-
havior.

Use a min-hash approach in order to determine a compact
data structure representation which can be leveraged for find-
ing a small number of local communities specific to each
individual.

The min-hash approach will exploit the local view of the
social network for each node, and construct a local projection
of that community for each individual.

Merge the local community projections into a concise set of
global communities.



Notations and Definitions

Symbol Description

A, B Node Sets.

1, J Node indices.

N (7) Neighbor set of node ;.
N(A) Neighbor set of node set A
J(A, B) Pairwise Jaccard coefficient

between A and B
J(A1...Ap) Multi-way Jaccard similarity
for Al . An
JN(A, B) Pairwise Jaccard coefficient
of neighbor sets, which is
the same as J(N(A),N(B))
JN(A;...A,) Multi-way Jaccard similarity
for neighbor sets of A;... A,




e Given a set of nodes 7 = {iq,ip,...,i1x} the group affinity is
defined as the multi-way Jaccard similarity of their neighbor
sets. This similarity is defined as follows:

JN(I) == | Niez N(@)|/]| Ujez N (3)].

e For a given node i, let p1(7)...pn(7) represent the pairwise
group affinities for the n different 2-element sets containing
¢ and each of the n different nodes.

— The tail threshold T'(i) for node i is defined by u(i) =
> =1 JIN{i,r})/n.



Local Edge-based Communities

e A local edge-based community for node 7 is a maximal set
of nodes G which satisfy the following conditions:

— G contains node 1

— The edge-based group affinity is above the tail threshold
T(7) for node 1.

— In other words, we have JN(G) > T'(4), and there is no
superset G’ D G such that JN(G") > T'(3).



A compact set of communities is more useful for data mining
purposes by consolidating related communities.

— Example: In illustration, the local school-related com-
munity for any particular node may be pieced together in
order to create a more coherent community.

Once the local communities have been determined, we work
with this set directly, and do not need to use edge-linkage
pbehavior within this set.

We use the set relationships between the different local com-
munities in order to consolidate them.

Determine patterns from the local communities which share a
large number of nodes and perform the consolidation process.



Local Min-Hash Scheme for Community
Detection

e Design a local min-hash scheme as a proxy for effective pat-
tern sampling in a way which is sensitive to network locality.

e [echnique has been used before for:
— Frequent pattern mining

— Global community detection

e Adapt approach for local community detection.



Local Commmunity Detection

e \We create a small-size description of the underlying commu-
nities in the data.

e Such an approach is flexible enough to accommodate both a
local and global view.

e Provides a better understanding of how the communities re-
late both at the local and the global level.



In order to represent the social network, we use the concep-
tual representation of a node-node adjacency matrix.

For a network containing n nodes, we create a n X n matrix,
in which the entry (4,7) is 1 if the node i is linked to node j.
Otherwise the entry (4,7) is set to 0.

All diagonal entries are always set to 1.

Since we assume that “friendship linkages” are bi-directional,
this matrix is symmetric in nature.

In practice, this representation cannot be used efficiently,
because the matrix is very sparse.



e \We sort the rows of this adjacency matrix, and determine
the index of the first row for each column for which any of
these entries are 1.

e It can be shown that the probability that these indices are
the same for a pair of columns ¢ and j is equal to the Jaccard
coefficient used to measure the affinity between two nodes.

— The denominator of the Jaccard Coefficient corresponds
to a union event on set membership.

— T he numerator corresponds to the intersection event.

e [ he intersection event occurs if and only if all the min-hash
indices for that set of columns are the same.



It is possible to estimate the Jaccard coefficient by computing
the fraction of this event occurrence over k samples.

In practice, the actual matrix is not used, but we can work
with only the edges incident to a node.

We construct k different random sort-orders of the nodes.

For each node ¢ and the pth sort-order (p € {1...k}), we
examine its links, and determine the node index Q(p,i) for
the first node linked to ¢ in this sort order.

Thus, for each node 7, we determine k different minimum
indices, which are denoted by Q(1,7), Q(2,7) ... Q(k,7). =
This creates a matrix M of size k£ X n.



For a given set S = {i1 ...}, the Jaccard-coefficient A7 (S)
for the set is given by the fraction of rows from M, such that
each such row j satisfies the following relationship:

The min-hash index is used in order to construct a transac-
tional representation of the underlying data.

For each row, we partition the set Q(j,1)...Q(j,n) into
groups for which the min-hash index values are the same.

We can construct transactions 77 ...1} corresponding to the
different equi-index partitions from a single row in order to
create new data base T.



Transactional Representation

e Let 7 be the transactions constructed from the min-hash
index set.

e [ he group affinity of a set of nodes S is equal to the absolute
support of S in 7 divided by k.



e [ he local communities are defined based on a local threshold

T().

e This threshold T'(z) translates into an item-specific (or more

accurately node-specific) support for the frequent pattern
mining problem.

e Determine any locally frequent pattern P from transaction
set T with respect to local supports T'(1),...,T(n), such that
the support of P in T is at least min;cpT'(4).



Local Communities with Pattern Mining

e [ here are tremendous numbers of overlaps in the local fre-
quent patterns for different nodes, especially if the values of
T'(7) for different nodes are close together.

e Not efficient to use frequent pattern mining for individual
thresholds. A better solution is to consolidate the determi-
nation of frequent patterns.

e Approach proposed in Liu (KDD 1999).



e A set of nodes P is a o-false positive, if the Jaccard affinity
in the original data is less than min,cpT'(i), but it is reported
as a valid local community by the min-hash approximation
with an estimated affinity of at least min;cpT'(i) - (1 + §).

e A set of nodes P is a ¢-false negative, if the Jaccard affin-
ity in the original data is larger than min;cpT'(i), but it is
not reported as a valid local community by the min-hash ap-
proximation scheme, since the estimated affinity is less than
min,epT' (i) - (1 —9).



e T he probability that a given set of nodes P is a d-false pos-

itive for a min-hash sample of size k is given by at most
o—0%-k-Min;cpT(i)/4

e T he probability that a given set of nodes P is a ¢-false neg-

ative for a min-hash sample of size k is given by at most
e—0%k-Min;cpT(i) /2



e [ he |local communities determined in the previous section
need to be consolidated into a final set of compact commu-
nities.

e [ he min-hash technique of the previous section will create a
large number of overlapping communities which need to be
consolidated into a coherent set of communities.

e \\We use a two phase approach:

— The first phase pieces together local communities in order
to create the cores of the locally relevant communities.

— T he second phase then re-constructs these cores in a more
comprehensive way with an iterative approach.



Experimental Results

e [ested on real and synthetic data sets

— DBLP, Condensed Matter Physics (arxiv) and synthetic
data set generated by RMAT

e [ested with effectiveness measures

e JTested with case studies for real data set



We remove some of the nodes and their incident edges from
the data, and perform the clustering on the remaining data
set.

We test how well their links relate to the different clusters
which were created without the use of these nodes.

The dominant purity p; of node ¢ is defined as the fraction
of the links of node 2 which are incident on its dominant
community.

We define the dominant interest ratio I; of a node ¢ as the
ratio of the dominant purity of node 7 to the fraction of the
total number of network nodes which are contained in the
dominantly linked community of node 1.



e For the DBLP data set, the Newman algorithm created two
very large communities each of which contained about 20%
of the DBLP authors (400 communities in total).

e One of these large communities generated by the Newman
algorithm contained the following set of authors:
Jiawei Han, Mani Srivastava, Rajeev Alur, Donald Towsley, Barbara
Liskov ...

e Mixes communities of researchers from different areas



e Each of these authors was placed in a different community
by the local community detection algorithm.

e The community for Jiawei Han contained less than 1% of
the total authors, and contained the following individuals:
Jiawei Han, HongJiang Zhang, Lei Zhang, ChengXiang Zhai, ...

e Much more coherent set of researchers
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e Distribution of data points in clusters



Effectiveness Results on DBLP Data
Set
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e Increasing min-hash sample size and number of communities



Effectiveness Results on Condensed
Matter Data Set

" LOCAL MIN-HASH —+— | - ' ' " LOCAL MIN-HASH —+— |
NEWMAN ALGORITHM - 1 NEWMAN ALGORITHM -

o ' — o
= 2 1000 |
< 1000 | < . /_///‘
5 5 :
hd hd
1] 1]
= =
P P
ORI L T e w o 100F
: :
> >
< <

10 1 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1

0O 200 400 600 800 1000 1200 1400 1600 1800 0O 200 400 600 800 1000 1200 1400 1600 1800
NUMBER OF COMMUNITIES MIN-HASH SAMPLE SIZE

e Increasing min-hash sample size and number of communities



Effectiveness Results on Synthetic Data
Set
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e Increasing min-hash sample size and number of communities



Conclusions and Summary

e New method for local community detection in heterogeneous
networks

e Uses a min-hash scheme for local community detection

e Determines more robust communities than a global approach



