Charu C. Aggarwal
IBM T J Watson Research Center

Yan Xie, Philip S. Yu University of Illinois at Chicago

Towards Community Detection in Locally Heterogeneous Networks

SIAM Conference on Data Mining, 2011

Introduction

- Community detection algorithms are used in a wide variety of social-networking applications
- Most social networks have varying levels of structural density in different parts of the network
- Global analysis can result in poor clustering when the heterogeneity in structural density is not accounted for
- In this paper we design a locally heterogeneous algorithm for community detection

Challenges of Local Heterogeneity

- The use of a uniform density criterion over the whole network will lead to imbalanced clusters
- Most nodes will be assigned to one or two super-clusters and the vast majority of communities may contain an insignificant number of nodes
- Established communities are often much more dense than emerging communities
- Since social networks are very large, it is challenging to perform local analysis on such a network

Local Community Detection: Goals

- The goal of local community detection is to design techniques which are sensitive to varying behavior of density in different parts of the network.
- Need to discover the relevant density at different parts of the network in parametric form and use it to discover important local regions

Contributions

- Design an effective algorithm for community detection in locally heterogeneous networks.
- Present the effects of local heterogeneity on community detection on real network data sets
- Illustrate advantages of local community detection over a global approach with case-studies

Some Observations

- Social networks are often quite sparse in terms of the number of links emanating from a particular node.
- The neighbors for a given node are also typically correlated with one another by linkage behavior.
 - Even in cases in which a node may have a large number of neighbors, these neighbors can be disjointed into a small number of correlated groups or communities.
 - The number of communities that a given node may belong to is usually quite small.
- We refer to this sparse and correlated property of social networks as the *local succinctness property*.

Illustration

• Illustration of local communities for users

Intuitions

- Communities are typically formed as a result of the interaction between particular entities during specific periods of time.
 - Different periods of time often lead to interactions with different geographical, interest, professional or student groups.
 - Often leads to communities which may have some overlap but are *largely* disjoint from one another.
- Friends within each of these categories tend have stronger ties with members of the same category, although cross-category ties are still possible.

Broad Approach

- Characterize the global structural behavior of the social network as a compact decomposition of the (succint) local behavior.
- Use a min-hash approach in order to determine a compact data structure representation which can be leveraged for finding a small number of local communities specific to each individual.
- The min-hash approach will exploit the local view of the social network for each node, and construct a *local projection* of that community for each individual.
- Merge the *local community projections* into a concise set of global communities.

Notations and Definitions

Symbol	Description
A, B	Node Sets.
i, j	Node indices.
$\mathcal{N}(i)$	Neighbor set of node i .
$\mathcal{N}(A)$	Neighbor set of node set A
J(A,B)	Pairwise Jaccard coefficient
	between A and B
$J(A_1 \dots A_n)$	Multi-way Jaccard similarity
	for $A_1 \dots A_n$
JN(A,B)	Pairwise Jaccard coefficient
	of neighbor sets, which is
	the same as $J(\mathcal{N}(A), \mathcal{N}(B))$
$JN(A_1 \dots A_n)$	Multi-way Jaccard similarity
	for neighbor sets of $A_1 \dots A_n$

Definitions

• Given a set of nodes $\mathcal{I} \equiv \{i_1, i_2, \dots, i_K\}$ the group affinity is defined as the multi-way Jaccard similarity of **their neighbor sets**. This similarity is defined as follows:

$$JN(\mathcal{I}) := |\cap_{i \in \mathcal{I}} \mathcal{N}(i)|/|\cup_{i \in \mathcal{I}} \mathcal{N}(i)|.$$

- For a given node i, let $p_1(i) \dots p_n(i)$ represent the pairwise group affinities for the n different 2-element sets containing i and each of the n different nodes.
 - The tail threshold T(i) for node i is defined by $\mu(i) = \sum_{r=1}^{n} JN(\{i,r\})/n$.

Local Edge-based Communities

- A local edge-based community for node i is a **maximal** set of nodes \mathcal{G} which satisfy the following conditions:
 - $-\mathcal{G}$ contains node i
 - The edge-based group affinity is above the *tail threshold* T(i) for node i.
 - In other words, we have $JN(\mathcal{G}) > T(i)$, and there is no superset $\mathcal{G}' \supset \mathcal{G}$ such that $JN(\mathcal{G}') > T(i)$.

Putting Together the Mosaic

- A compact set of communities is more useful for data mining purposes by consolidating related communities.
 - Example: In illustration, the local school-related community for any particular node may be pieced together in order to create a more coherent community.
- Once the local communities have been determined, we work with this set directly, and do not need to use edge-linkage behavior within this set.
- We use the set relationships between the different local communities in order to consolidate them.
- Determine patterns from the local communities which share a large number of nodes and perform the consolidation process.

Local Min-Hash Scheme for Community Detection

- Design a local min-hash scheme as a proxy for effective pattern sampling in a way which is sensitive to network locality.
- Technique has been used before for:
 - Frequent pattern mining
 - Global community detection
- Adapt approach for local community detection.

Local Community Detection

- We create a small-size description of the underlying communities in the data.
- Such an approach is flexible enough to accommodate both a local and global view.
- Provides a better understanding of how the communities relate both at the local and the global level.

Representation

- In order to represent the social network, we use the *conceptual representation of a* node-node adjacency matrix.
- For a network containing n nodes, we create a $n \times n$ matrix, in which the entry (i,j) is 1 if the node i is linked to node j. Otherwise the entry (i,j) is set to 0.
- All diagonal entries are always set to 1.
- Since we assume that "friendship linkages" are bi-directional, this matrix is symmetric in nature.
- In practice, this representation cannot be used efficiently, because the matrix is very sparse.

Min-Hash Approach: Broad Idea

- We sort the rows of this adjacency matrix, and determine the index of the first row for each column for which *any of these entries* are 1.
- It can be shown that the probability that these indices are the same for a pair of columns i and j is equal to the Jaccard coefficient used to measure the affinity between two nodes.
 - The denominator of the Jaccard Coefficient corresponds to a union event on set membership.
 - The numerator corresponds to the intersection event.
- The intersection event occurs if and only if all the min-hash indices for that set of columns are the same.

Min-Hash Approach

- It is possible to estimate the Jaccard coefficient by computing the fraction of this event occurrence over k samples.
- In practice, the actual matrix is not used, but we can work with only the edges incident to a node.
- We construct k different random sort-orders of the nodes.
- For each node i and the pth sort-order $(p \in \{1...k\})$, we examine its links, and determine the node index Q(p,i) for the first node *linked* to i in this sort order.
- Thus, for each node i, we determine k different minimum indices, which are denoted by Q(1,i), Q(2,i) ... Q(k,i). \Rightarrow This creates a matrix \mathcal{M} of size $k \times n$.

Observations

• For a given set $S = \{i_1 \dots i_r\}$, the Jaccard-coefficient $\mathcal{AJ}(S)$ for the set is given by the fraction of rows from \mathcal{M} , such that each such row j satisfies the following relationship:

$$Q(j, i_1) = Q(j, i_2) = \dots = Q(j, i_r)$$

- The min-hash index is used in order to construct a *transac*-*tional representation* of the underlying data.
- For each row, we partition the set $Q(j,1) \dots Q(j,n)$ into groups for which the min-hash index values are the same.
- We can construct transactions $T_1 \dots T_h$ corresponding to the different equi-index partitions from a single row in order to create new data base \mathcal{T} .

Transactional Representation

ullet Let ${\mathcal T}$ be the transactions constructed from the min-hash index set.

• The group affinity of a set of nodes S is equal to the absolute support of S in $\mathcal T$ divided by k.

Determining Local Communities

• The local communities are defined based on a local threshold T(i).

- This threshold T(i) translates into an *item-specific* (or more accurately *node-specific*) support for the frequent pattern mining problem.
- Determine any locally frequent pattern P from transaction set \mathcal{T} with respect to local supports $T(1), \ldots, T(n)$, such that the support of P in \mathcal{T} is at least $\min_{i \in P} T(i)$.

Local Communities with Pattern Mining

- There are tremendous numbers of overlaps in the local frequent patterns for different nodes, especially if the values of T(i) for different nodes are close together.
- Not efficient to use frequent pattern mining for individual thresholds. A better solution is to consolidate the determination of frequent patterns.
- Approach proposed in Liu (KDD 1999).

Theoretical Results

- A set of nodes P is a δ -false positive, if the Jaccard affinity in the original data is less than $\min_{i \in P} T(i)$, but it is reported as a valid local community by the min-hash approximation with an estimated affinity of at least $\min_{i \in P} T(i) \cdot (1 + \delta)$.
- A set of nodes P is a δ -false negative, if the Jaccard affinity in the original data is larger than $\min_{i\in P}T(i)$, but it is not reported as a valid local community by the min-hash approximation scheme, since the estimated affinity is less than $\min_{i\in P}T(i)\cdot (1-\delta)$.

Theoretical Results

• The probability that a given set of nodes P is a δ -false positive for a min-hash sample of size k is given by at most $e^{-\delta^2 \cdot k \cdot \min_{i \in P} T(i)/4}$.

• The probability that a given set of nodes P is a δ -false negative for a min-hash sample of size k is given by at most $e^{-\delta^2 \cdot k \cdot \min_{i \in P} T(i)/2}$.

Consolidating Local Communities

- The local communities determined in the previous section need to be consolidated into a final set of compact communities.
- The min-hash technique of the previous section will create a large number of overlapping communities which need to be consolidated into a coherent set of communities.
- We use a two phase approach:
 - The first phase pieces together local communities in order to create the cores of the locally relevant communities.
 - The second phase then re-constructs these cores in a more comprehensive way with an iterative approach.

Experimental Results

- Tested on real and synthetic data sets
 - DBLP, Condensed Matter Physics (arxiv) and synthetic data set generated by RMAT
- Tested with effectiveness measures
- Tested with case studies for real data set

Effectiveness Measures

- We remove some of the nodes and their incident edges from the data, and perform the clustering on the remaining data set.
- We test how well their links relate to the different clusters which were created without the use of these nodes.
- ullet The dominant purity p_i of node i is defined as the fraction of the links of node i which are incident on its dominant community.
- We define the *dominant interest ratio* I_i of a node i as the ratio of the dominant purity of node i to the fraction of the total number of network nodes which are contained in the dominantly linked community of node i.

Case Studies

• For the DBLP data set, the Newman algorithm created two very large communities each of which contained about 20% of the DBLP authors (400 communities in total).

• One of these large communities generated by the Newman algorithm contained the following set of authors:

Jiawei Han, Mani Srivastava, Rajeev Alur, Donald Towsley, Barbara Liskov ...

Mixes communities of researchers from different areas

Case Studies

- Each of these authors was placed in a different community by the local community detection algorithm.
- The community for Jiawei Han contained less than 1% of the total authors, and contained the following individuals:

 Jiawei Han, HongJiang Zhang, Lei Zhang, ChengXiang Zhai, ...
- Much more coherent set of researchers

Distribution of points in clusters

• Distribution of data points in clusters

Effectiveness Results on DBLP Data Set

• Increasing min-hash sample size and number of communities

Effectiveness Results on Condensed Matter Data Set

• Increasing min-hash sample size and number of communities

Effectiveness Results on Synthetic Data Set

• Increasing min-hash sample size and number of communities

Conclusions and Summary

 New method for local community detection in heterogeneous networks

• Uses a min-hash scheme for local community detection

• Determines more robust communities than a global approach