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Abstract

In recent years, the size of many social networks such as

Facebook, MySpace, and LinkedIn has exploded at a rapid

pace, because of its convenience in using the internet in order

to connect geographically disparate users. This has lead

to considerable interest in many graph-theoretical aspects

of social networks such as the underlying communities, the

graph diameter, and other structural information which

can be used in order to mine useful information from the

social network. The graph structure of social networks is

influenced by the underlying social behavior, which can vary

considerably over different groups of individuals. One of

the disadvantages of existing schemes is that they attempt

to determine global communities, which (implicitly) assume

uniform behavior over the network. This is not very

well suited to the differences in the underlying density in

different regions of the social network. As a result, a global

analysis over social community structure can result in either

very small communities (in sparse regions), or communities

which are too large and incoherent (in dense regions). In

order to handle the challenge of local heterogeneity, we

will explore a simple property of social networks, which

we refer to as the local succinctness property. We will use

this property in order to extract compressed descriptions

of the underlying community representation of the social

network with the use of a min-hash approach. We will show

that this approach creates balanced communities across

a heterogeneous network in an effective way. We apply

the approach to a variety of data sets, and illustrate its

effectiveness over competing techniques.
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1 Introduction

Social networking has become an increasingly important
application in recent years, because of its unique ability
to enable social contact over the internet for geograph-
ically dispersed users. A social network can be repre-
sented as a graph, in which nodes represent users, and
links represent the connections between users. Increased
interest in the field of social networking has also resulted
in a revival of graph mining algorithms. Therefore, a
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number of techniques have recently been designed for
a wide variety of graph mining and management prob-
lems such as clustering, classification, frequent-pattern
mining and indexing [3, 4].

Since social networks are typically very large, it is
often challenging to develop effective community detec-
tion algorithms which work effectively for all parts of
the network. On the other hand, social networks have
a number of natural structural properties, which can be
leveraged for designing more effective algorithms. One
such property of social networks is that they are locally
heterogeneous. This means that the link densities in
different regions of the social network may be quite dif-
ferent. The heterogeneous nature of the social network
creates a number of challenges for community detection.
The use of global analysis can either construct very small
communities in sparse local regions, or report large and
incoherent communities in dense regions. Therefore, it
is important to use local structural analysis over the so-
cial network in order to examine the relevance of a com-
munity relative to the local structure of the network.

It is also well known that social networks are of-
ten quite sparse [14] in terms of the underlying network
structure. This means that the number of links ema-
nating from a particular node is relatively small com-
pared to the total number of nodes in the network. The
neighbors for a given node are also typically correlated
with one another by linkage behavior. Therefore, even
in cases in which a node may have a large number of
neighbors, these neighbors can be disjointed into a small
number of correlated groups or communities. This ef-
fectively means that the number of communities that a
given node may belong to is usually quite small. We
refer to this sparse and correlated property of social
networks as the local succinctness property. This prop-
erty can be leveraged in order to characterize the global
structural behavior of the social network as a compact
decomposition of the local behavior. We will use this
property in order to design an effective approach which
first determines the local communities specific to dif-
ferent portions of the network and then merges these
local mosaic of communities into a higher level global
view. This approach allows us the flexibility to treat
different portions of the network differently depending
upon their locality behavior. We will show that this



two phase approach is far more effective in the deter-
mination of the underlying community structure than
a global approach which determines all the global com-
munities from scratch.

We will use a min-hash approach in order to de-
termine a compact data structure representation which
can be leveraged for finding a small number of local
communities specific to each individual. This min-hash
approach will exploit the local view of the social net-
work for each node, and construct a local projection
of that community for each individual. Then, we will
merge the local community projections into a concise set
of global communities. We note that since each global
community maps onto multiple local community pro-
jections, we can achieve a high degree of compression
of the community representation with the use of this
approach. Furthermore, this provides a natural decom-
position and interpretation of the global communities
in the context of local characteristics of the data. We
will study our results in the context of a number of real
and synthetic data sets. We will examine the communi-
ties which are determined by using this approach, and
show that such communities are far more accurate than
those determined by well known global techniques such
as those discussed in [8].

This paper is organized as follows. In the next
section, we will introduce the quantification framework
used to define local communities. In section 3, we
will introduce a probabilistic min-hash approach which
uses the observations in section 2 in order to determine
the communities in the social network. In section 4,
we will study the application of these techniques on a
number of real and synthetic data sets. We will compare
our method to a popular baseline approach. Section 5
contains the conclusions and summary.

1.1 Related work The problem of community de-
tection related to that of finding dense regions in the
underlying graph [1, 11, 17, 22]. The problem of commu-
nity detection is generally defined in the form of a clus-
tering of the underling network [5, 7, 15, 8, 14, 13, 18,
19, 20]. A survey of a number of important algorithms
for community detection is provided in [20]. Discussion
of important statistical properties of web communities
is discussed in [14]. Evolutionary characteristics of dy-
namic communities are studied in [2, 6, 7, 12]. The
problem of community detection has also been studied
in the context of combining node content in order to
improve its effectiveness [21, 23].

One of the key shortcomings of social networks is
that they tend to treat the entire network in a uniform
way. This leads to imbalanced communities with ex-
tremely large (but meaningless) communities in dense

Symbol Description

A, B Node Sets.
i, j Node indices.

N (i) Neighbor set of node i.
N (A) Neighbor set of node set A

J(A,B) Pairwise Jaccard coefficient
between A and B

J(A1 . . . An) Multi-way Jaccard similarity
for A1 . . . An

JN(A,B) Pairwise Jaccard coefficient
of neighbor sets, which is
the same as J(N (A),N (B))

JN(A1 . . . An) Multi-way Jaccard similarity
for neighbor sets of A1 . . . An

Table 1: Description of notation.

regions, and extremely small (but incomplete) commu-
nities in sparse regions. As this paper suggests, the
structure of social networks exhibits certain natural lo-
cality properties which allow for the effective decompo-
sition of the community detection problem into a num-
ber of smaller subproblems. This paper leverages these
locality properties of social networks in order to design
effective algorithms for community detection.

2 Intuition: Local Heterogeneity and
Succinctness

In this section we present a number of simple intuitions
that motivate our community detection approach. Two
key properties of most social networks are as follows:
(1) The social network is usually sparse, and the degree
of each node is small compared to the number of
nodes in the network. (2) The social network exhibits
considerable variations in the structure and local density
over different regions of the data. This is reflected
in the well known power-law behavior of node degree
distributions [10].

This variation in local density is a challenge to the
effective development of techniques for community de-
tection, especially when global statistics are used in or-
der to model the communities. This is because the nat-
ural density of different portions of the network is very
different. Therefore, the use of any uniform approach for
determining communities in different regions will either
result in the loss of the ability to detect communities
which are located in relatively sparse regions of the net-
work, or in the determination of irrelevant communities
in the network. Therefore, we will explore some of the
locality characteristics of social networks and design an
algorithm for community detection which is based upon
this local behavior.

In real life, communities are typically formed as a
result of the interaction between particular entities dur-
ing specific periods of time. Since different periods of
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Figure 1: Illustration of local community structure.

time often lead to interactions with different geograph-
ical, interest, professional or student groups, this often
leads to communities which may have some overlap but
are largely disjoint from one another. It has often been
observed that contacts belong in certain typical cate-
gories, such as friends from high-school, university or
work, as illustrated in Figure 1. Furthermore, friends
within each of these categories tend have stronger ties
with members of the same category compared to others,
although cross-category ties are still possible. In dense
regions, some highly-connected bridging members may
exist, which may connect unrelated communities, and
such regions create a challenge for community detection
algorithms. This is because such situations may result
in the creation of unbalanced super-communities con-
taining several unrelated members. A global approach
of changing parametric descriptions in order to forcibly
disconnect such communities may result in very small
communities in sparse regions of the social network.

The discussion on local succinctness also suggests
that each member belongs to a relatively small number
of communities in the network. This suggests that
it is possible to effectively decompose the analysis of
community structure in a node-specific way without
losing efficiency. In order to perform such a local
analysis, we need to construct a set-based similarity
measure, which characterizes the local cohesiveness of
a set of nodes in the social network.

A widely popular similarity measure which is used
for sets is the Jaccard coefficient.

Definition 1. (Jaccard similarity) Given two sets
A and B, the Jaccard similarity is defined as follows:

J(A,B) := |A ∩ B|/|A ∪ B|

Jaccard similarity can also be extended beyond
pairs of sets to the multi-set case:

Definition 2. (Multi-way jaccard similarity)

Given a collection of sets A1 . . .An, the multi-way
Jaccard similarity is defined as follows:

J(A1 . . .An) := | ∩i Ai|/| ∪i Ai|

This measure has often been used for frequent pattern
mining [9]. The case of social networks is particularly
challenging because of the local heterogeneity in the
underlying communities. Therefore, we will propose a
local-community definition for social networks.

2.1 Local Edge-based Communities The local
edge-based community is defined in terms of the Jaccard
coefficient of the neighbor set of that node. In order to
understand this measure, we first need to define the edge
group affinity in terms of the Jaccard coefficient. Note
that we distinguish this from the Jaccard coefficient on
the node sets themselves, since the neighbor sets of the
nodes are used for definition purposes. The neighbor set
of a given node is defined as the set of nodes which are
“linked to” by it, along with the node itself. We denote
the neighbor set of node i by N (i).

Definition 3. (Edge group affinity) Given a set
of nodes I ≡ {i1, i2, . . . , iK} the group affinity is defined
as the multi-way Jaccard similarity of their neighbor
sets. This similarity is defined as follows:

JN(I) := | ∩i∈I N (i)|/| ∪i∈I N (i)|.

We distinguish the group affinity JN() from the direct
set-based Jaccard J(), since the former is based on
the neighbor sets, whereas the latter is based on the
sets themselves. The group affinity satisfies the anti-
monotonicity property.

Corollary 2.1. (Anti-monotonicity) If J ⊂ I
then JN(I) ≤ JN(J ).

The above condition is easy to verify, since the nu-
merator of JN(I) is the cardinality of the set intersec-
tion, whereas the denominator is the cardinality of the
set union. The former reduces with increasing number
of sets in the intersection, whereas the latter increases
with increasing number of sets in the intersection. Thus
results in the anti-monotonicity property.

The group affinity of a set of nodes is clearly
dependent upon the behavior of its neighborhood. In
particular, the measure depends on the number of hub
nodes in its neighborhood. Therefore, we will formalize
the concepts of set-neighborhood and hub-nodes.

Definition 4. (Neighborhood) A node j is in the
neighborhood of I, if it is connected to at least one node
of I. In other words, there exists i ∈ I such that j lies
in N (i).



Definition 5. (Hub Node) A node is a hub-node
with respect to I, if it is connected to all nodes of I.

The definitions of hub-node and neighborhood pro-
vide us with a natural and intuitive way of understand-
ing the edge-based group affinity.

Observation 1. The value of JN(I) is the fraction of
nodes from the neighborhood of I, which are also hub
nodes with respect to I.

A fully isolated clique with K nodes has a Jaccard
affinity of one. Any K ′-node subset of an isolated clique
has affinity of K ′/K < 1. A non-isolated clique also has
an affinity value less than one. Finally, if I contains no
hub node, then the affinity value is zero.

In practice, as the set size of a community increases,
the presence of a hub node becomes significantly less
likely. For example, let us compute the edge-based
group affinity for the set containing all the nodes in
Figure 1. The denominator of the corresponding group
affinity expression is equal to the eighteen depicted
nodes, plus the four nodes adjacent to the fringe outgo-
ing edges. This yields a total of twenty. However, the
numerator is zero, because the group has no hub node,
which is connected to all of these twenty nodes. There-
fore, the affinity of this group is zero. This is reasonable
to expect, since the set of nodes in Figure 1 contain a
multitude of different communities which are quite un-
related to one another. On the other hand, many of the
smaller communities are much more closely related to
one another. Such smaller community values will have
non-zero affinity values.

It is often the case in many real social networks,
that smaller communities tend to be more tightly knit
and have larger group affinities than larger communi-
ties. Therefore, it is important to construct the locally
relevant communities for each node. These locally rele-
vant communities are leveraged for the purpose of com-
munity detection. An important point is that we need
some way of quantifying the behavior within the local-
ity of a particular node. We do this by using a tail-
thresholding technique. The tail-thresholding technique
derives an appropriate Jaccard threshold within the lo-
cality of a node by examining the distribution of the
pairwise group affinities.

Definition 6. (Tail Thresholding) For a given
node i, let p1(i) . . . pn(i) represent the pairwise group
affinities for the n different 2-element sets containing
i and each of the n different nodes. In other words,
we have pr(i) = JN({i, r}), Let μ(i) =

∑n
r=1 pr(i)/n.

Then, the tail threshold T (i) for node i is defined by
μ(i).

The aim of defining tail thresholds separately for each
node is to make it sensitive to the behavior of that
locality. We can now use this threshold in order to define
local edge-based communities.

Definition 7. (Local Edge-based communities)

A local edge-based community for node i is a maximal
set of nodes G which satisfy the following conditions:

• G contains node i

• The edge-based group affinity is above the tail
threshold T (i) for node i. In other words, we have
JN(G) > T (i), and there is no superset G′ ⊃ G
such that JN(G′) > T (i).

The local communities are eventually converted
into a more consolidated set of communities. We will
describe the motivation of this process below.

2.2 Consolidating the Local Mosaic of Commu-
nities A more compact and consolidated set of commu-
nities is more useful for data mining purposes. Further-
more, the local community for a particular node may
not reflect all the members which are relevant to the
underlying base community. For example, in the case
of Figure 1, the local school-related community for any
particular node may be pieced together with the other
school-related nodes, in order to create a more coherent
and complete community.

Once the local communities have been determined,
we work with this set directly, and do not need to use
edge-linkage behavior within this set. Rather, we use
the set relationships between the different local com-
munities in order to consolidate them. Specifically, we
determine patterns from the local communities which
share a large number of nodes and perform the consol-
idation process. In order to achieve this goal, we use
the Jaccard coefficient between the different node sets.
Therefore, the measure is defined with the direct use of
the node set based Jaccard J() rather than the linkage
based Jaccard JN(). This is because we are interested
in the edge-linkage behavior only at the local level in or-
der to ensure that the differing density in different parts
of the graph is properly accounted for. At the end of
the first phase, the local heterogeneity has already been
accounted for in the min-hash sampling process. Thus,
we can work with the patterns obtained at the end of
the first phase in a global way, without fear of loss of
important communities. We further note that the local
succinctness property also implies that the social net-
work can be expressed in terms of a small number of
local communities. This implies that the second step of
consolidating the local communities is also tractable in
practice.



3 The Local Min-Hash Scheme for Community
Detection

In this section, we will discuss a local min-hash scheme
for community detection in social networks. We use this
approach as a proxy for effective pattern sampling in a
way which accounts for the heterogeneities in the under-
lying network structure. The min-hash technique [9] is
very useful in determining the normalized correlations
between sets of nodes. It was first used [9] in the context
of determining normalized associations between sets of
items. Subsequently, it was used for characterizing the
underlying structure of large dense graphs [11] by exam-
ining link correlations. This min-hash scheme works by
first summarizing the entire social network in a single
data structure of compressed size. This data structure
can typically be held in main memory. Then, we create
a small-size description of the underlying communities
in the data. We will see that such an approach is flexible
enough to accommodate both a local and global view.
This provides a better understanding of how the com-
munities relate both at the local and the global level.
We will also see that this leads to a balanced clustering
in which the heterogeneous nature of the community
across the network is properly accounted for.

In order to represent the social network, we use
the conceptual representation of a node-node adjacency
matrix. For a network containing n nodes, we create a
n× n matrix, in which the entry (i, j) is 1 if the node i
is linked to node j. Otherwise the entry (i, j) is set to 0.
All diagonal entries are always set to 1. Since we assume
that “friendship linkages” are bi-directional, this matrix
is symmetric in nature. In practice, this representation
cannot be used efficiently, because the matrix is very
sparse, and the number of nodes may be too large to
maintain the entire n× n matrix explicitly.

In order to explain the approach further, we will
first introduce the min-hash scheme for community
detection. We sort the rows of this adjacency matrix,
and determine the index of the first row for each
column for which any of these entries are 1. It can
be shown that the probability that these indices are
the same for a pair of columns i and j is equal to the
Jaccard coefficient used to measure the affinity between
two nodes. This is because the denominator of the
Jaccard Coefficient corresponds to a union event on set
membership, whereas the numerator corresponds to the
intersection event. The intersection event occurs if and
only if all the min-hash indices for that set of columns
are the same. Thus, by repeating this approach k
times, it is possible to estimate the Jaccard coefficient by
computing the fraction of times (in the sample) that the
Jaccard coefficient is the same between the two columns.
In practice, the actual matrix is not used in order to

perform the estimation, because we can work with only
the edges incident to a node, as discussed below.

We construct k different random sort-orders of the
nodes. For each node i and the pth sort-order (p ∈
{1 . . . k}), we examine its links, and determine the node
index Q(p, i) for the first node linked to i in this sort
order. Thus, for each node i, we determine k different
minimum indices, which are denoted by Q(1, i), Q(2, i)
. . . Q(k, i). This creates a matrix M of size k × n.
For modest values of the sample factor k, this matrix
can be held in main memory. This is because we make
the assumption that k is much smaller than n. All
subsequent computations will be performed with the
use of this summary structure which is held in main
memory. We make the observation, that the Jaccard
coefficient for a set of nodes S can be estimated by
determining the fraction of the k rows in M for which
all columns corresponding to S take on the same value.
We summarize as follows:

Observation 2. For a given set S = {i1 . . . ir}, the
Jaccard-coefficient AJ (S) for the set is given by the
fraction of rows from M, such that each such row j
satisfies the following relationship:

(3.1) Q(j, i1) = Q(j, i2) = . . . = Q(j, ir)

The min-hash index is used in order to construct
a transactional representation of the underlying data.
For each row, we partition the set Q(j, 1) . . .Q(j, n)
into groups for which the min-hash index values are the
same. For each such partition, we create a categorical
transaction containing the indices of the corresponding
columns. For example, if a partition contains {Q(j, 3),
Q(j, 104), Q(j, 232), Q(j, 723)}, then we create the
transaction Tj = {3, 104, 232, 723}. We can construct
transactions T1 . . . Th corresponding to the different
equi-index partitions from a single row. This process
is repeated for each value of j ∈ {1 . . . k}, and the
transactions from each set are added to T . We make
the following observation:

Observation 3. Let T be the transactions constructed
from the min-hash index set. Then, the group affinity
of a set of nodes S is equal to the absolute support of S
in T divided by k.

The absolute support of set S is defined as the raw
number of transactions which contain the set S. We
note that the above transformation converts the first
stage of the problem of local community pattern mining
to a version of the frequent pattern mining problem.
However, the standard frequent pattern mining problem
uses a single global support in order to mine the
patterns. This is not helpful for the case of our problem,



because we need to determine communities which are
locally relevant. However, in this case, we need node-
specific supports in order to determine the relevant
patterns. In the next section, we will study this problem
and a possible solution.

3.1 Determining Local Communities As dis-
cussed earlier, the local communities are defined based
on a local threshold T (i) which is used in order to de-
fine the importance of the community specific to node i.
This threshold T (i) translates into an item-specific (or
more accurately node-specific) support for the frequent
pattern mining problem. A straight forward solution
is to determine the frequent patterns for node i inde-
pendently with the support value of T (i), by consider-
ing only the portion of the database containing node i.
This is however not an efficient solution to the problem,
since it requires us to solve the frequent pattern min-
ing problem as many times as the number of nodes in
the data. For a large social network, this may lead to
unacceptable running time. Therefore, we would like to
create a pattern mining algorithm which can efficiently
determine the underlying frequent patterns in the data.
Therefore, we formalize this problem as follows:

Problem 1. (Local Frequent Patterns)

Determine any locally frequent pattern P from transac-
tion set T with respect to local supports T (1), . . . , T (n),
such that the support of P in T is at least mini∈PT (i).

In practice, there are tremendous numbers of over-
laps in the local frequent patterns for different nodes,
especially if the values of T (i) for different nodes are
close together. In the extreme case, when all values of
T (i) are the same, the problem translates to one appli-
cation of the standard frequent pattern mining problem.
A better solution is to consolidate the determination of
frequent patterns. An important property of this for-
mulation is that it continues to satisfy a weak version of
the downward closed property. In [16], it has been shown
how the problem of finding frequent patterns with mul-
tiple minimum supports can be solved effectively. We
use this approach in order to mine the local frequent
patterns from the underlying data.

Since the min-hash scheme is a randomized ap-
proach for determination of the communities, a natu-
ral question which arises is about the accuracy of the
determination of the local communities. If the local
communities are determined accurately, then the final
set of communities will also be extremely accurate. In
general, we would like to determine the probability of
a false positive and false negative with the use of this
approach. Therefore, we define the concept of δ-false

positives and δ-false negatives.

Definition 8. A set of nodes P is a δ-false positive,
if the Jaccard affinity in the original data is less than
mini∈PT (i), but it is reported as a valid local commu-
nity by the min-hash approximation with an estimated
affinity of at least mini∈PT (i) · (1 + δ).

Similarly, we can define the concept of a δ-false negative.

Definition 9. A set of nodes P is a δ-false negative,
if the Jaccard affinity in the original data is larger
than mini∈PT (i), but it is not reported as a valid
local community by the min-hash approximation scheme,
since the estimated affinity is less than mini∈PT (i) ·(1−
δ).

We note that the concept of δ-false negatives and δ-
false positives are a generalization of the concept of false
negatives and false negatives. If the probability of δ-
false positives and δ-false negatives is extremely low for
small values of δ, then we can practically obtain high
quality approximations of the corresponding patterns,
since we are assured that only false positives which are
close to the threshold support have any chance of being
erroneous, and the missed patterns can also be recovered
by resetting thresholds appropriately. Furthermore, we
can reset the thresholds by (1 + δ) and (1 − δ) to
determine approximate subsets and supersets of the true
patterns, and then use one more pass over the data in
order to determine the exact set of patterns with high
probability. We can show the following results:

Theorem 3.1. The probability that a given set of nodes
P is a δ-false positive for a min-hash sample of size k

is given by at most e−δ2·k·mini∈PT (i)/4.

Proof. Let Zi be a 0-1 indicator variable which de-
termines whether or not the ith sample of the min-
hash contains the pattern P . Then, the random vari-
able which denotes the value reported by the min-hash
scheme is given by Y =

∑k
i=1 Zi. Let v be the ex-

pected value of the random variable Y . Since v is at
most k ·mini∈PT (i), we can pick some value of φ > 0,
so that v = mini∈PT (i)/(1 + φ). Therefore, the prob-
ability that a pattern is a δ-false positive is given by
P (Y > k · (1 + δ) · (1 + φ) · v). Therefore, by using the
Chernoff bound, we have:

P (Y > k · (1 + δ) · (1 + φ) · v) ≤ e−v·(δ+φ+δ·φ)2/4

≤ e−v·(δ+δ·φ)2/4 ≤ e−k·δ2·(1+φ)2·v/4

= e−k·δ2·(1+φ)·mini∈PT (i)/4 ≤ e−k·δ2·mini∈PT (i)/4

The result follows.



Algorithm ConsolidateCommunities(Local Communities: L;
Number of Communities: ng);

begin
R = Set of ng randomly sampled patterns from L;
Phase I
repeat
Assign each pattern in P ∈ L to the seed S ∈ R for
which J(P, S) is as large as possible;

Let Qi ⊆ L be the set of patterns assigned
to the ith seed (where i ∈ {1 . . . ng})

Determine the nodes which occur in at least
fmin × |Qi| patterns of Qi and
let Pi be the set of such nodes;

Reset R by replacing the ith seed by Pi;
Eliminate any centroid in R to which fewer
than nthresh data points were assigned
and replace by randomly sampled patterns from L;

until(termination criterion1);
Phase II
repeat
Assign each node in the graph to the pattern Pi

from R so that the node has the maximum
number of incident links to Pi;

Redefine the set Pi as the set of nodes assigned
to the corresponding cluster;

{ The sets P1 . . . Png define disjoint
communities at this point }

Redefine R with the new values
of P1 . . . Png ;

until(termination criterion2);
report the sets P1 . . . Png as the set of
communities in the data;

end

Figure 2: Consolidating Local Communities

We can prove a similar result for the case of δ-false
negatives. In this case we use the lower tail Chernoff
bound.

Theorem 3.2. The probability that a given set of nodes
P is a δ-false negative for a min-hash sample of size k

is given by at most e−δ2·k·mini∈PT (i)/2.

3.2 Consolidating Local Communities The local
communities determined in the previous section need
to be consolidated into a final set of compact commu-
nities. This is because the min-hash technique of the
previous section will create a large number of overlap-
ping communities which need to be consolidated into a
coherent set of communities. For this purpose, we use
the parameter ng which determines the number of com-
munities into which we wish to summarize the patterns.
The choice of a smaller value of ng leads to a higher
level of summarization, whereas larger values of ng lead
to better granularity and detail. We use a two phase
approach in which the first phase pieces together local
communities in order to create the cores of the locally

relevant communities, whereas the second phase then
re-constructs these cores in a more comprehensive way
with an iterative approach. For the first phase, we use
a partitional methodology in which we start off with ng

different seeds denoted by R, which are sampled from
the local community set. These seeds are then used to
successively re-group the local patterns by using iter-
ative assignment of the local patterns to the different
centroids. Each pattern is assigned to the centroid with
which it has the largest Jaccard similarity. In the sec-
ond phase, nodes are assigned to communities to which
they have the largest link-based similarity.

Let L be the set of local patterns determined with
the use of local frequent-pattern mining algorithms. We
sample ng patterns from the set L in order to create the
seed set R. This seed set R is successively refined in
two phases. In the first phase, we compute the Jaccard
similarity between each pattern in L, and each of the
seed sets in R. For each pattern P ∈ L and seed
S ∈ R, we compute the Jaccard coefficient J(P, S),
and assign pattern P to the seed for which it has the
largest such similarity value. The set of patterns from
L which are assigned to the ith seed are denoted by Qi.
Once the assignment is performed, we recompute the set
R, by using a frequency-truncated centroid of the data
points assigned to a given pattern in R. The frequency-
truncated centroid of the set of patterns Qi is a set of
nodes Pi. The set Pi is computed by determining the
set of nodes which occur in at least a fraction fmin of
the patterns in Qi.

Some seeds from R may not be assigned many
patterns from L. Such seeds are outlier patterns, and
can be discarded. Specifically, we discard all those
centroids (or community cores) from R for which fewer
than nthresh members1 are assigned. These cores are
replaced by randomly chosen patterns from the set
L. The repeated use of the above approach results in
successively refined community cores. This approach
is repeated iteratively. The termination criterion is
that the average Jaccard coefficient between assigned
patterns and their cluster seeds does not change by more
than 1% from the last iteration. This is the end of the
first phase, which provides the “core” of the different
communities. However such cores may have overlap
with one another, and may also miss some of the nodes
entirely. In the second phase, we use these cores in order
to re-define a crisper set of communities.

While the first phase is based on the use of the
Jaccard Coefficient between patterns and seeds, the
second phase is based on comparing the link behavior of
nodes to individual seeds. The aim of the second phase

1For the purpose of implementation, we use nthresh = 3.



is to re-organize the cores in a more comprehensive way
with the use of link behavior. The cores of the second
phase is inherited from the cores at the end of the first
phase. As in the case of the first phase, the approach is
iterative, in which the cores are successively refined, and
the overlap between the different seeds are eliminated.
Each node is assigned to the core which shares the
maximum number of nodes in its linked neighborhood.
Since the initial cores may be missing many nodes, it
is possible that some nodes may not be assigned to
any pattern at all. However, more and more nodes
will be included in the cores in successive iterations,
because of the use of linkage based assignment. As in
the previous case, we keep track of the average objective
function which is implicit in the assignment of nodes to
the different communities. In this case, the objective
function is defined as the average fraction of links of
a node which point to the assigned community. The
second phase is terminated, when this objective function
does not improve by more than 1% in any particular
iteration. The overall approach for consolidating local
communities is illustrated in Figure 2.

4 Experimental evaluation

We tested the effectiveness of our approach on a number
of real and synthetic data sets. As a baseline, we used
the well known Newman algorithm [8].2 We will first
demonstrate the effectiveness of our approach with the
use of a case-study on the DBLP data set. Then, we will
use concrete quantitative measures in order to illustrate
the superiority of our scheme. We will show that the
local community-detection approach is able to adjust
well to the varying density in different parts of the
network and generate more balanced clusters which are
qualitatively superior.

4.1 Data Sets The algorithm was tested on three
data sets: two real data sets and one synthetic data
set. In particular, the two real data sets we used were
the well-known DBLP data set 3 and a Condensed Mat-
ter Collaboration Network data set 4. The DBLP data
set models co-author relationship among researchers,
in which nodes correspond to authors, and edges cor-
respond to co-author relationships between nodes. In
the experiment, only those researchers who have no less
than 5 papers were used for experimental purposes. The
other real data set is the Condensed Matter Collabora-
tion Network data set which models scientific collabora-
tions between authors with papers in the topic of Con-

2http://www.cs.unm.edu/ aaron/research/fastmodularity.htm
3http://dblp.uni-trier.de/xml/
4http://snap.stanford.edu/data/ca-CondMat.html

densed Matter Physics in arXiv. It has 21,363 nodes
and 182,628 edges. Besides the two real data sets, one
synthetic data set was generated by the R-Mat data
generator 5. In order to generate this data set, we used
input parameters to be a = 0.25, b = 0.25, c = 0.25,
S = 16, and E = 200000 (using the CMU NetMine
notations). For community detection purposes, all the
data sets were pre-processed in a way that only the
largest single connected component was kept. This is
also a basic input requirement of Newman algorithm.
In the next sections, we will examine the relative ef-
fectiveness of the local community detection algorithm
with the Newman algorithm with the use of both case
studies and some more concrete effectiveness measures
which are discussed below.

4.2 Effectiveness Measures In order to measure
the effectiveness of the approach we used an interest-
ratio based link purity measure. The idea was to remove
some of the nodes and their incident edges from the
data, and perform the clustering on the remaining data
set. In practice, about 10% of nodes were removed for
testing purposes. We test how well their links relate to
the different clusters which were created without the
use of these nodes. The nodes which were removed
from the data during the clustering phase are referred
to as test nodes. Ideally, we would like the links of
a given (test) node to belong to a single community
as far as possible. Therefore, for a given test node i,
we determine the dominantly linked community as the
community to which the node i links the most. The
dominant purity pi of node i is defined as the fraction of
the links of node i which are incident on the dominant
community. While this may seem like a good measure,
it has the flaw that it is not very sensitive to the
distribution of points among communities. For example,
a trivial solution in which most nodes belong to a single
community would result in a dominant purity value of
1 for most nodes. In order to deal with the issue of
group cardinality distributions, we define the dominant
interest ratio Ii of a node i as the ratio of the dominant
purity of node i to the fraction of the total number of
network nodes which are contained in the dominantly
linked community of node i. Let N be the total nodes
in the entire network, and Ci be the total number of
nodes in the dominant community of node i. Then the
dominant interest ratio Ii can be defined as follows:

(4.2) Ii =
pi

Ci/N

The idea here is that the denominator of the expres-
sion (fraction of nodes in the dominantly linked cluster

5http://www.cs.cmu.edu/̃ deepay/



of node i) would define the expected cluster purity in a
completely random partitioning of the nodes. The over-
all effectiveness measure is the average of all the dom-
inant interest ratios of the different test nodes. Thus,
we average the value of Ii for all test nodes i.

4.3 Case Studies In order to provide an intuitive
idea of why the local community detection scheme per-
formed well, we studied the communities created by the
scheme on the DBLP data set. In both cases, we gen-
erated 400 communities. It turned out that the sizes of
the communities were much more skewed in the case of
the Newman algorithm, as compared to the local com-
munity detection algorithm. Many of the larger com-
munities in the case of the Newman algorithm were
putting together dense regions of the DBLP collabo-
ration graph in order to create communities which cor-
respond to completely unrelated topic areas. For ex-
ample, the Newman algorithm created two very large
communities each of which contained about 20% of the
DBLP authors, when we ran the algorithm with an in-
put parameter of 400 communities. On the other hand,
for the same input parameter, the largest community
in the case of the local community detection algorithm
contained less than 1% of the total authors. One of
these large communities generated by the Newman al-
gorithm contained the following set of authors:
Jiawei Han, Mani Srivastava, Rajeev Alur, Donald

Towsley, Barbara Liskov . . .
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Figure 3: Distribution of Social Network Population in
Communities

These authors work in very diverse areas. Jiawei
Han is a well known expert in data mining, Mani Sri-
vastava in communications networking, mobile and sen-
sor networks, Donald Towsley in performance analy-
sis (with some emphasis on networking), Rejeev Alur
in model checking and verification systems, and Bar-
bara Liskov in programming methodology. Such chained
communities were created because of a number of bridge

authors which created dense communities in certain re-
gions of the DBLP graph. This created a chain of pro-
lific authors from diverse areas. A global approach is
unable to distinguish these aggregate trends from true
community behavior. On the other hand, each of these
authors was placed in a different community by the lo-
cal community detection algorithm, each of which was
itself much more coherent. For example, the commu-
nity for Jiawei Han contained less than 1% of the total
authors, and contained the following individuals:
Jiawei Han, HongJiang Zhang, Lei Zhang, ChengX-

iang Zhai, . . .

All of these authors are well recognized in various
areas of data, text or web mining. In addition, the
community also contained a number of students of
these faculty members. Most communities which were
determined by the local approach were typically of
balanced size, and contained a tightly knit community
of core members. In order to understand this better,
we will examine the distribution of the data points in
different communities by the two schemes, when we used
an input parameter of 400 communities. The results
are illustrated in Figure 3. The histogram illustrates
the number of communities, each of which contains
a particular (range of) percentage of the entire social
network population. All communities determined by the
local algorithmwere modestly sized, and most contained
between 0.2% to 1% of the base population. There was
no community with more than 1% of the population. On
the other hand the Newman algorithm constructs two
communities with more than 20% of the data points,
and another pair with between 10% and 20% of the
data points. These four communities contained more
than 70% of the overall social network population on
the aggregate. As discussed in the examples above the
members in this 70% of the population are often quite
diverse, and do not provide an interesting overview of
the community behavior in the social network. At the
same time, the Newman algorithm constructed a very
large number of extremely small communities with less
than 0.2% of the social network population. These two
extremes correspond to the dense and sparse regions of
the social network, which are treated in a very different
way by the Newman algorithm, because of its uniform
approach to inherently heterogeneous data. Neither
of these extremes is helpful in determining interesting
communities. On the other hand, as we will show with
the help of quantitative measures in the next section,
the local algorithm was able to determine interesting
and coherent communities of modest size.

4.4 Quantitative Effectiveness Results In addi-
tion to the case study discussed above, we also tested
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Figure 4: Quality Variations with Increasing Number of
Communities (DBLP)
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Figure 5: Quality Variations with Increasing Min-Hash
Sample Size (DBLP)

our approach with the use of more concrete quantitative
measures. Specifically, we used the statistical interest-
based quantitative measures which are described in an
earlier subsection. In each case, we will show that our
approach is able to significantly outperform Newman’s
well known technique in terms of the interest measures.
Thus, this provides a more concrete validation of what
we have already demonstrated with the use of the case-
studies discussed above.

In Figure 4, we have illustrated the variation in
quality with an increasing number of communities.
The number of communities is illustrated on the X-
axis, whereas the interest ratio is illustrated on the
Y -axis. The number of communities on the X-axis
varied between 200 and 1600. The size of the min-
hash sample was fixed at 400. It is clear that our local
community detection scheme is significantly superior
to the Newman algorithm in terms of the statistical
interest ratio. It is important to note that the Y-axis is
on a logarithmic scale, and the local min-hash technique
outperforms the Newman method by between one and
two orders of magnitude. For example, when we set the
number of communities at 400, the average interest ratio
for the local min-hash scheme was 2621.38, whereas
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Figure 6: Quality Variations with Increasing Number
of Communities (Condensed Matter Collaboration Net-
work)
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Figure 7: Quality Variations with Increasing Min-
Hash Sample Size (Condensed Matter Collaboration
Network)

that for the Newman method was 83.5063. A second
broad trend which we observed was that the interest
ratios increased with the number of communities. This
is because the use of a larger number of communities
is able to separate out the distinct communities (and
sub-communities) much better. It is also evident from
Figure 4, that this trend is more pronounced for the
local min-hash technique, as compared to the Newman
algorithm. For example, when we tested the scheme
with an input community cardinality parameter which
was set at 200 communities, the average interest ratios
for the min-hash and Newman schemes were 871.771
and 81.9612 respectively. When we used an input
parameter of 1600 communities, the average interest
ratios for the min-hash scheme increased to 4525.42,
whereas that for the Newman scheme increased to
87.1342. Thus, the effectiveness of the local min-hash
technique increased by a factor of 5.19, whereas that
of the Newman algorithm increased by a factor of only
1.06. The difference in trends with increasing number
of communities for the two schemes is because the
min-hash technique is able to discriminate among the
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Figure 8: Quality Variations with Increasing Number of
Communities (RMAT Generated Set)
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Figure 9: Quality Variations with Increasing Min-Hash
Sample Size (RMAT Generated Set)

different communities better over different parts of the
network as the number of communities increases. The
effect of locality becomes even more crucial for the case
of fine-grained community construction. This is not
quite as true for the Newman algorithm in which some
of the coarser communities in some local portions of the
network do not get discriminated better with increasing
number of communities.

In Figure 5, we have illustrated the variation in the
effectiveness of the schemes with increasing min-hash
size. In this case, we fixed the number of communities
at 400. We note that the Newman technique does not
use a min-hash approach, and therefore its effectiveness
is simply a horizontal line on the chart as a baseline.
The min-hash size is illustrated on the X-axis, whereas
the effectiveness in terms of the average interest ratio
is illustrated on the Y -axis. The results show that
while it is possible to increase the effectiveness of
the scheme by increasing the min-hash sample size,
the results of the local community detection algorithm
are quite robust to the use of different sample sizes.
Furthermore, the local community detection technique
outperforms the Newman algorithm over all ranges of
the min-hash sample sizes. Even, at the lower-end of

the min-hash sample size of 200, the local community
detection technique outperforms the Newman algorithm
by a factor of about 30.87. The robustness of the min-
hash sample size suggests that it may be possible to
work effectively at the lower end of the sample sizes in
order to achieve very good results.

The trends with increasing number of communities
for the Condensed Matter Collaboration Network Data
Set are illustrated in Figure 6. The min-hash sample-
size was fixed at 200. In this case, the trends with the
increasing number of communities are even more pro-
nounced. For example, at the lower end, when only
100 communities are used, the local community detec-
tion outperforms the local min-hash technique by a fac-
tor of about 1.69. On the other hand, at the higher
end, when we use 1600 communities, the local min-hash
scheme outperforms the Newman algorithm by a much
greater factor of 18.00. With an increase in the number
of communities, the importance of heterogeneity in lo-
cality increases, and therefore the local scheme performs
much more effectively than the global scheme. The vari-
ations in effectiveness with increasing min-hash sample
size for this data set are illustrated in Figure 7. The
number of communities was fixed at 200. In this case,
there was more variation in effectiveness with the sam-
ple size for the local community detection, as compared
to the DBLP data set. However, even in this case, the
local community detection was very robust and signif-
icantly outperformed the Newman algorithm over the
entire range of sample sizes.

The results for the R-MAT synthetic data set with
increasing number of communities are illustrated in Fig-
ure 8. The min-hash sample size was fixed at 400. In
this case, the Newman algorithm was almost completely
invariant on quality with increasing number of commu-
nities. On the other hand, the local community de-
tection approach improved significantly with increasing
number of communities. The variation with increasing
sample-size is illustrated in Figure 9. The number of
communities was fixed at 800. As in previous cases, the
min-hash scheme was extremely robust to the use of
different sample-sizes, and was significantly superior to
the Newman algorithm over the entire range of tested
parameters. Thus, the results suggest that the use of
the local approach offers significant advantages for com-
munity detection in heterogeneous social networks, and
this advantage increases when more fine grained com-
munities are determined. In many cases, our approach
provides orders of magnitude advantage in the quality
of the underlying communities, because it focuses on
determining interesting local variations with a carefully
designed min-hash technique.



5 Conclusions and Summary

In this paper, we examined the problem of community
detection in social networks from the perspective of the
heterogeneity of the link density in the social networks.
Such heterogeneous densities can result in an inability
of global algorithms to behave in a balanced way across
dense and sparse regions of the network. For example,
this could result in a global algorithm either chaining
together irrelevant members in a single community, or it
could result in very small communities in sparse regions
of the network. As an example, we studied a well
known algorithm by Newman, and showed (both by case
studies and aggregate quantitative results), that the
local approach proposed by our method is significantly
superior to this algorithm. This is because our method
uses carefully designed local methods in order to extract
interesting patterns from all parts of the network. This
can adapt well to local variations in density and provide
coherent and balanced clusters over the entire social
network.
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