Frequent Pattern Mining with Uncertain Data

ACM KDD Conference, 2009
Introduction

• Uncertainty is everywhere

 – Errors in Instrumentation

 – Derived data sets

 – Links between privacy and uncertain data mining

 ∗ Intentionally incorporated uncertainty

• The results of data mining algorithms are highly impacted by the uncertainty

• The frequent pattern mining problem is one for which the performance is significantly impacted by uncertain representations
Problem Definition for Uncertain Data

- Associate *existential probabilities* for items in transactions

- Probability of presence of item \(i \) in transaction \(T_k \) is \(p(i, T_k) \).

- Expected support of itemset \(I \) in \(T_k \) is \(p(I, T_k) = \pi_{i \in I} p(i, T_k) \)

- Expected support of itemset \(I \) is \(\sum_k p(I, T_k) \)

- **Definition:** Determine all frequent patterns with expected support above user-defined threshold
Deterministic Algorithm Classes

- Candidate Generate-and-Test Algorithms
 - Join based
 - Tree based

- Pattern Growth Algorithms
 - H-Mine
 - FP-Growth
Contributions

• Discuss extensions of broad classes of frequent pattern mining algorithms

• Compare the broad classes of frequent pattern mining algorithms

• Stress-test on computationally difficult case: high uncertainty probabilities

• Memory is an important resource in the uncertain case: test for memory requirements
Key Take Aways

- Algorithms which work well on deterministic data (FP-Growth) may not work as well on uncertain data.

- Pruning tricks which work for low uncertainty probabilities are an overhead for the case of high uncertainty probabilities.

- The pattern-growth paradigm can be leveraged if it is used in the proper context.
 - Extensions of the H-mine algorithm turn out to be the most effective in terms of the combination of memory and computational requirements.
Apriori Extensions

- Standard candidate-generate-and-test can be extended directly with the main difference being in counting

- Chiu et al proposed several pruning techniques

 - **Transaction Trimming Methods**: Key is in pruning infrequent items

 - **Support Pruning Methods**: Compute upper bounds on expected support of itemsets; prune when they fall below minimum support
Tree Based Generate-and-Test Algorithms

- Tree based algorithms generate a trie of candidate itemsets
- Can directly be generalized to the uncertain case
- Pruning conditions for deterministic case hold for uncertain case
- Projected databases can be constructed as in deterministic case, except that uncertainty probabilities also need to be maintained
The FP-Tree Technique: Challenges

- The FP-Tree technique generates a compressed representation of the database by sharing information about prefixes.

- **Uncertain Challenge:** The prefixes contain information about probabilities which is specific to each transaction.
 - Implies that effective sharing is not possible.
Straightforward Solution

- Treat each distinct probability as a separate node (no sharing between two transactions with the same item but distinct probabilities) (Leung et al)

Criticism:

- Effective only if a lot of items have exactly the same distinct probability

- Otherwise compression of FP-Tree is not good, and leads to too much overhead

- In continuous domain of probability, the assumption of exactly the same probability value is not reasonable
Our Solution

- Create cluster ranges of probabilities
- Construct a node for each clustered range (allows some node sharing)
- Use FP-Tree algorithm to generate a close *superset* of the frequent itemsets
 - **Key:** Prove upper bound property of expected supports
- Remove irrelevant itemsets in a final pass
Two Variants

- **UFP-growth algorithm**: Adopts the recursively pattern-growth method used in FP-growth

- **UCFP-growth algorithm**: Constructs only the conditional FP-Tree for each frequent item *at the first level* and mines frequent itemsets for each conditional tree.
Observations

- Key selling point of FP-Tree is transaction database compression by information sharing: not effective in the uncertain environment

- Another selling point is the use of the pattern growth paradigm

- Is it possible to leverage the pattern-growth paradigm without worrying about the node sharing issue of FP-Tree?

 - Solution: Extend H-Mine
Uncertain Extension of H-Mine

- The H-mine structure uses the linkage behavior among transactions corresponding to a branch of the FP-Tree without actually creating a projected database.

- **Uncertain Extension:** Maintains item probabilities in original database, and uses linkage behavior to traverse database efficiently.

- Prefix probabilities can be computed on the fly by using the information associated with original transaction.
Observations (UH-Mine)

- Overall Effect: Uses the linkages to effectively traverse the transaction set without worrying about information sharing of the FP-Tree

- This approach is better than FP-Tree even in the deterministic case, when compression from FP-Tree is not high

- This will turn out to be particularly true for the uncertain case
Experimental Results

- Use Connect4, kosarak, and T40.I10.D100K
- Generate dense uncertainty probabilities
- Difficult case where rapid fall off in probabilities with increasing pattern length is not available
- Running Time and Memory Requirements
Scalability

- Running Time and Memory Requirements with increasing number of transactions
• Running Time and Memory Requirements
- Running Time and Memory Requirements
Conclusions

- Algorithms which work well on deterministic data (FP-Growth) may not work as well on uncertain data.

- Pruning tricks which work for low uncertainty probabilities are an overhead for the case of high uncertainty probabilities.

- Extensions of the H-mine algorithm turn out to be the most effective in terms of the combination of memory and computational requirements.