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Introduction

• Uncertainty is everywhere

– Errors in Instrumentation

– Derived data sets

– Links between privacy and uncertain data mining

∗ Intentionally incorporated uncertainty

• The results of data mining algorithms are highly impacted by

the uncertainty

• The frequent pattern mining problem is one for which the

performance is significantly impacted by uncertain represen-

tations



Problem Definition for Uncertain Data

• Associate existential probabilities for items in transactions

• Probability of presence of item i in transaction Tk is p(i, Tk).

• Expected support of itemset I in Tk is p(I, Tk) = πi∈Ip(i, Tk)

• Expected support of itemset I is
∑

k p(I, Tk)

• Definition: Determine all frequent patterns with expected

support above user-defined threshold



Deterministic Algorithm Classes

• Candidate Generate-and-Test Algorithms

– Join based

– Tree based

• Pattern Growth Algorithms

– H-Mine

– FP-Growth



Contributions

• Discuss extensions of broad classes of frequent pattern min-

ing algorithms

• Compare the broad classes of frequent pattern mining algo-

rithms

• Stress-test on computationally difficult case: high uncer-

tainty probabilities

• Memory is an important resource in the uncertain case: test

for memory requirements



Key Take Aways

• Algorithms which work well on deterministic data (FP-

Growth) may not work as well on uncertain data

• Pruning tricks which work for low uncertainty probabilities

are an overhead for the case of high uncertainty probabilities

• The pattern-growth paradigm can be leveraged if it is used

in the proper context

– Extensions of the H-mine algorithm turn out to be the

most effective in terms of the combination of memory

and computational requirements



Apriori Extensions

• Standard candidate-generate-and-test can be extended di-

rectly with the main difference being in counting

• Chiu et al proposed several pruning techniques

– Transaction Trimming Methods: Key is in pruning in-

frequent items

– Support Pruning Methods: Compute upper bounds on

expected support of itemsets; prune when they fall below

minimum support



Tree Based Generate-and-Test
Algorithms

• Tree based algorithms generate a trie of candidate itemsets

• Can directly be generalized to the uncertain case

• Pruning conditions for deterministic case hold for uncertain

case

• Projected databases can be constructed as in deterministic

case, except that uncertainty probabilities also need to be

maintained



The FP-Tree Technique: Challenges

• The FP-Tree technique generates a compressed representa-

tion of the database by sharing information about prefixes

• Uncertain Challenge: The prefixes contain information

about probabilities which is specific to each transaction.

– Implies that effective sharing is not possible



Straightforward Solution

• Treat each distinct probability as a separate node (no sharing

between two transactions with the same item but distinct

probabilities) (Leung et al)

• Criticism:

– Effective only if a lot of items have exactly the same dis-

tinct probability

– Otherwise compression of FP-Tree is not good, and leads

to too much overhead

– In continuous domain of probability, the assumption of

exactly the same probability value is not reasonable



Our Solution

• Create cluster ranges of probabilities

• Construct a node for each clustered range (allows some node

sharing)

• Use FP-Tree algorithm to generate a close superset of the

frequent itemsets

– Key: Prove upper bound property of expected supports

• Remove irrelevant itemsets in a final pass



Two Variants

• UFP-growth algorithm: Adopts the recursively pattern-

growth method used in FP-growth

• UCFP-growth algorithm: Constructs only the conditional

FP-Tree for each frequent item at the first level and mines

frequent itemsets for each conditional tree.



Observations

• Key selling point of FP-Tree is transaction database com-

pression by information sharing: not effective in the uncertain

environment

• Another selling point is the use of the pattern growth

paradigm

• Is it possible to leverage the pattern-growth paradigm with-

out worrying about the node sharing issue of FP-Tree?

– Solution: Extend H-Mine



Uncertain Extension of H-Mine

• The H-mine structure uses the linkage behavior among trans-

actions corresponding to a branch of the FP-Tree without

actually creating a projected database

• Uncertain Extension: Maintains item probabilities in origi-

nal database, and uses linkage behavior to traverse database

efficiently

• Prefix probabilities can be computed on the fly by using the

information associated with original transaction



Observations (UH-Mine)

• Overall Effect: Uses the linkages to effectively traverse the

transaction set without worrying about information sharing

of the FP-Tree

• This approach is better than FP-Tree even in the determin-

istic case, when compression from FP-Tree is not high

• This will turn out to be particularly true for the uncertain

case



Experimental Results

• Use Connect4, kosarak, and T40.I10.D100K

• Generate dense uncertainty probabilities

• Difficult case where rapid fall off in probabilities with increas-

ing pattern length is not available



T40.I10.D100K
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• Running Time and Memory Requirements



Scalability
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Kosarak
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Conclusions

• Algorithms which work well on deterministic data (FP-

Growth) may not work as well on uncertain data

• Pruning tricks which work for low uncertainty probabilities

are an overhead for the case of high uncertainty probabilities

• Extensions of the H-mine algorithm turn out to be the most

effective in terms of the combination of memory and com-

putational requirements


