Subspace Outlier Detection in Linear Time with
Randomized Hashing

Saket Sathe
IBM T. J. Watson Research Center
Yorktown Heights, New York 10598
Email: ssathe @us.ibm.com

Abstract—Outlier detection algorithms are often computation-
ally intensive because of their need to score each point in the
data. Even simple distance-based algorithms have quadratic com-
plexity. High-dimensional outlier detection algorithms such as
subspace methods are often even more computationally intensive
because of their need to explore different subspaces of the data.
In this paper, we propose an exceedingly simple subspace outlier
detection algorithm, which can be implemented in a few lines of
code, and whose complexity is linear in the size of the data set
and the space requirement is constant. We show that this outlier
detection algorithm is much faster than both conventional and
high-dimensional algorithms and also provides more accurate
results. The approach uses randomized hashing to score data
points and has a neat subspace interpretation. Furthermore, the
approach can be easily generalized to data streams. We present
experimental results showing the effectiveness of the approach
over other state-of-the-art methods.

I. INTRODUCTION

An outlier is a data point that deviates sufficiently from
other points to give rise to the suspicion that it was generated
by another mechanism. Outlier detection methods have been
used in a variety of application domains such as intrusion
detection, financial fraud, medical diagnosis, law enforcement,
and earth science. The most popular algorithms for outlier
detection include the use of distance-based methods [7], [11],
[15], [21], [23]; in spite of their antiquity, these algorithms
have endured as the most popular algorithms and provide
surprisingly robust results. Detailed discussions on various
outlier detection algorithms may be found in [1].

A particularly difficult case of outlier detection is the
high-dimensional case [2] in which irrelevant attributes hide
outliers. A pictorial example is used in [2] to show how
irrelevant attributes have a masking effect on the outliers.
Therefore, it is often helpful to explore different subsets of
dimensions in which the outliers are discovered. Subsequently,
a number of different methods such as feature bagging [17],
high-contrast methods [14], statistical subspace selection [19],
[20], and spectral methods [13], [24] have been used to score
points as outliers in the high-dimensional case. In spite of
these advances, both the complexity and the robustness of
these methods often turns out to be a challenge. For example,
each trial of the ensemble method in [17] requires O(n?)
time for a data set containing n points because the LOF
method is used for each trial. The techniques in [14], [19],
[20] require expensive subspace selection operations, and in

Charu C. Aggarwal
IBM T. J. Watson Research Center
Yorktown Heights, New York 10598
Email: charu@us.ibm.com

some cases [14] require multiple executions of an O(n?)
detector. The spectral methods in [13], [24] require the eigen-
decomposition of an O(n?) matrix, which has a complexity
of O(n? 1) time and O(n?) space, where [is the number of
extracted eigenvectors. This type of complexity is significant
because it restricts the use of these algorithms to only small
data sets. For example, even a data set containing 10,000 points
often requires significant time with an O(n?) algorithm.

In this paper, we propose an extremely simple and fast out-
lier detector that relies on randomized hashing. The complexity
of the detector scales linearly with the size of the data set, and
the constant factor seems to be relatively small. In our bench-
marking results, we show that the detector is one order of
magnitude faster than most of the competing detectors and
is sometimes more than two orders of magnitude faster than
high-dimensional methods. The outlier detector requires only
a few lines of code to implement, requires constant space, and
is extremely accurate. It is easy to generalize this detector to
the case of data streams. Furthermore, the results from the
detector are interpretable and provide a good description [5]
of the outliers.

This paper is organized as follows. Our approach for outlier
detection is introduced in section II. The extension of the ap-
proach to data streams is discussed in section III. Experimental
results are presented in section IV. Related work is discussed
in section V. The conclusions are discussed in section VI.

II. THE SUBSPACE HASHING APPROACH

Before describing the subspace hashing approach in detail,
we will introduce some notations and definitions. It is assumed
that we have a data set D, in which the ith row corresponds
to the ith data point. The data set contains n points and d
dimensions. The ith row is a d-dimensional vector denoted by
Xi = (:Cil ce .fid).

The subspace hashing approach works by creating a hashed
representation of the data and is inherently defined as an
ensemble-centric approach, in which each individual detector
is extremely weak, but the overall performance is extraordinar-
ily good. Therefore, the approach works with a data sample
of size s in order to create a training model. Subsequently, all
data points (including those in the training sample) are scored
with respect to this training model. The data sample is used to
maintain counts of the number of training points in different

bounding regions in localized subspaces. To maintain these
counts efficiently, the approach uses the count-min sketch [12],
in which w pair-wise independent hash tables are used.

As discussed earlier, the approach uses m different exe-
cutions of the base subspace outlier detector. The scores of
each point over the m different components are averaged. The
approach is referred to as RS-Hash, corresponding to the fact
that it is a Randomized Subspace Hashing algorithm. In the
following, we describe the steps used in each execution of a
single component of the ensemble-centric RS-Hash method:

1) Select a value of the locality parameter f uniformly at
random from the range (1/4/5,1 —1/4/5).

2) Generate a d-dimensional random vector (aj...aq),
such that each «; is drawn uniformly at random from
(0, f). The parameter «; is referred to as the shift
parameter.

3) Select an integer value of r uniformly at random be-
tween 1+0.5- [logmax (2,173 (8)] and logmax 2.1/ 73(5)-
Select r dimensions from the data set and denote this
set of dimensions by V. Values of r larger than d are
set to d.

4) Randomly sample the data set D for a training sample
S of s points. Determine the minimum value min; and
maximum value max; of each dimension j in sample
S, and normalize each X; = (z;1 ... %;q) in the sample
as follows:)

Lij — MINy

2 e — (1
TTLCML’J' — man

For each of the s normalized points X! = (2ly...2),

create a new vector Y; and set y;; to —1, if that
dimension is not included in V. Otherwise, set y;; to
the integer value of |(z}; 4+ a;)/f]. Apply w different
hash functions h1(Y;)...h,(Y;) to Y, using the im-
plementation described in section II-A. Increment the
hi(Y;)th element of the kth hash table by 1.

5) Scoring step: Transform each point X € D to Y using
the same steps as used for transforming points in S in
step 4. The values of min; and max; computed on
sample S in step 4 must be used. Apply hash functions
h1(Y)...hy(Y) to the transformed point Y. Let the

value of the hji(Y)th cell in the kth hash table be
ci (zero if the cell is empty). If the point Y was
originally included in the training sample then report
log,(min{ecy . ..cw}) as the outlier score; otherwise,

report log,(min{c; ...c,} + 1) as the outlier score.

Lower values of the score are more indicative of a greater
degree of outlierness. The adjustment of the score in the last
step, depending on whether or not the point is included in the
training sample, is needed to avoid overfitting and differential
treatment of the training points. Note that in-sample points will
always map to a hash table entry of at least 1, and therefore,
their minimum score will always be log,(1) = 0 just like the
out-of-sample points.

This process is repeated multiple times over m samples,
and the scores are averaged to provide the final result. In

other words, if Score’(i) is the score of the ith point over
the jth ensemble component, then the final score RS Hash(7)
is defined as follows:

Z;"Zl Scorel (i)

m

RSHash(i) = (2)

Each execution of the base subspace outlier detector is com-
pletely independent of the previous ones, and we always start
off with the unmodified data set. Note that the use of the
logarithm in the final scoring step is important and it has a
significant effect on the final result. As we will discuss in
section II-B, the use of the logarithm in the scoring function
is related to the notion of a log-likelihood estimate. It is also
assumed that the intermediate data structures such as the hash
tables are always initialized at the beginning of the execution
of each base component.

The sample size s is typically a small constant number of
points. The basic idea here is that the size of the sample
required to build an approximate subspace model does not
depend on the size of the base data. Furthermore, since the
scores over different executions are averaged, the approximate
results over each ensemble component are significantly sharp-
ened [4]. In fact, the sampling process adds to the diversity of
the approach. We found that it was sufficient to set s to 1000
points. However, if the size of the data set was less than 1000,
then the entire data set was used. In other words, the value of
s was set to min{1000,n}.

Implementation Details: An important implementation detail
is that when max; = min; for some sampled dimension j in
V, such a dimension is dropped from V in step 4. Furthermore,
we can drop the dimensions not included in V' from the dis-
crete representation Y; for better efficiency, instead of setting
those values to —1. Note that the normalization (Equation 1),
integer conversion and hashing of a data point in step 4 should
be done in one shot for best efficiency. Furthermore, if enough
memory is available, it makes sense to build the hash tables
of all ensemble components simultaneously, and scan the test
data only once in the scoring step. It is also possible for all
ensemble components to share a single (larger) hash table. This
saves on computational time at the expense of space. In fact,
simultaneous construction of ensemble components is essential
in the streaming setting because of the one-pass requirement.

A. Implementing the Hash Function

There are two different ways in which the hash function
can be implemented. The first method [12] can be used for
data streams, and is extremely fast but it allows collisions,
and therefore it can sometimes make mistakes. The second
(simplified) method, which is similar to a closed hash table
with linear probing, should be used in all static settings. The
second method cannot, however, be used in streaming settings;
it can only be used in settings in which we know the maximum
number of entries in the table in advance:

1) The first method RS-Hash(S) (i.e., the sketch variant)
is based on the idea of count-min sketches. The hash
function hy(Y") maps each point Y to an integer value

in the range (0,p — 1), where p is the number of
elements in the hash table. The value of p should be
selected based on memory availability in the streaming
setting, although the requirements are far more modest
in the static setting. After the hash functions have been
computed, the value of (Y)th element in the kth hash
table is incremented by 1, as discussed in the previous
section. It is noteworthy that one can use smaller values
of p, if memory is a serious constraint. This is the reason
that the approach can even be used in data streams
where there is no bound on the number of entries that
can be inserted into the hash table. Typical values of
p and w are p = 10,000 and w = 4, which leads to
a space requirement of less than 200KB for the sketch
structure. Because of this property, it can even be used
on specialized hardware like streaming outlier detection
in in-network sensor nodes, where the constraints on
memory are very severe.

2) The second method RS-Hash(E) (i.e., the exact variant)
maintains a single closed hash table and it cannot be
used for data streams. However, it is the recommended
approach in the static setting. Since at most s entries
are inserted in any ensemble component, one can use
any standard hash table (supporting linear probing) with
size p larger than s. The value of p should be set to at
least ten times the maximum sample size of s in order
to minimize the time spent in linear probing. Since the
maximum sample size is only 1000, this is a very modest
(constant space) requirement. However, in the streaming
setting, it is impossible to use such an approach.

Although the first method allows collisions, the error of the
approach is extremely low. We will provide a theoretical
explanation for this in the next section.

B. Why does the Approach Work?

The approach is essentially a sampling method that esti-
mates the (approximate) log-likelihood density of localized
rectangular regions in the subspaces associated with a point,
and then averages these density values over different localized
subspaces of different sizes. In other words, the localized
bounding boxes evaluated in different components are inher-
ently of different sizes, and this is a key factor underlying
the accuracy of the approach. As we will discuss later, the
shift parameters further help in exploring bounding boxes in
different regions of the data. Although errors are caused by
collisions in the count-min sketch, the effect of these errors is
smoothed out by using multiple ensemble components.

The step of selecting a subspace V' of dimensionality r
essentially identifies a localized subspace region for each
point. The boundaries of this localized region are defined by
the computation ¢ = [(z}; + «;)/f|. Because the value of
f is selected randomly, it will automatically test a bounding
box of different size in each execution of the base detector.
This automatically helps in testing local subspace regions of
different sizes for each point. Note that all points for which
the jth dimension lies between f-¢—c; and f- (¢ +1) —a;

will be mapped to the same value of the jth dimension. Two
points are mapped to the same hash cell entry if all of the
dimensions in V' are mapped to the same range. However,
there might be collisions caused by the contributions of other
subspaces mapping to the same cell.

It is noteworthy that the inclusion of the random vector (or
shift parameters) (o ...qq) in the computation of the range
is crucial for making this approach work. The inclusion of the
random shifts ensures that even when the same dimension is
sampled in a different ensemble component, the boundaries
tested for a given point are different. This provides more
diversity and tests different subspace localities of the data point
over different components.

Note that if h1(Y) ... h,(Y) are the relevant counts of Y’
in the various hash tables, then the value of each c; = hy(Y)
is an overestimate on the count. Therefore, the minimum
min{c; ... ¢y} is still an overestimate on the count and the
local density p(Y") of that point can be estimated as:

1+ minf{cy ...cw}

Y) ~
p(Y) Tn

3)

Note that we have added a value of 1 up front to the counts
(as Laplacian smoothing) to incorporate the prior belief that
the point is an inlier and all points lie in its subspace locality.
The corresponding log-likelihood fit is given by:

— — 1 i . Cuw
Log-Fit(7) = log((¥)) = log (T minte; ¢ }) @)
1+n
The overall ensemble score of a given point is computed by the
average log-likelihood fits over the different base components.
Therefore, we have:

Score(Y) = AVGy) y/1log <1 + ml;lifln. . cw})

In the equation above, the counts ¢; . .. ¢, vary over the differ-
ent components, whereas the term (1 + n) in the denominator
remains constant. This term can be pulled out in an additive
way because of the use of the logarithm. Therefore, we have:

Score(Y') = Const. + AVG 4y y/jlog (1 + min{c; ... cu}))

It is easy to see that this equation is the same as Equation 2
except for the additive constant. The constant portion of the
summation, which depends only on the number of points in
the data, is dropped from the score, as it is not germane to
the relative values of the different scores. Therefore, the score
computation of Equation 2 is fully explained by the notion of
log-likelihood fits.

A natural question to ask is whether the level of approx-
imation in the sketch-based approximation causes significant
degradation. Therefore, we provide an expression for this error
and also substantiate this experimentally in a later section.

Theorem 1: Consider a sketch table with w hash functions
and p as the range of each hash function. Let s be the sample
size in each ensemble component. Then the probability P
that the approach provides exactly the same score for a test

instance X as an approach that maintains exact counts in a
given ensemble component is given by:

P21-[-(1-1/p)" 5)

Proof: The approach provides exact counts when no
collisions occur with respect to X in at least one of the
hash functions (in a given ensemble component). For a given
test instance X, the probability that any of the s samples
collides with it is given by 1/p. Therefore, the probability
of no collisions over all samples for a particular hash function
is given by (1—1/p)*. The probability that no collisions occur
in at least one hash function is given by 1 —[1— (1 —1/p)*]*.

|
In order to get a feel for the accuracy of this approach, let us
substitute a few typical numbers from our experimental setting.
The value of s was 1000 in our experiments, whereas the
value of p was 10000, and that of w was 4. First, we evaluate
(1 —1/p)*, which is (1 — 107%4)1900 ~ ¢=0-1 Therefore, we
have:

P>1—(1-e%H%=0.9999 (6)

In other words, a single base detector provides the correct
score with probability 99.99%. Furthermore, if we used m =
100 ensemble components, we can show that the sketch-based
approach provides the correct score over all 100 components
with at least 99% probability. Note that one can increase
this probability to 99.99% by increasing the tiny 200KB
memory requirement by another 50% to incorporate two more
hash functions. For all practical purposes, exact scores are
maintained by this approach. Even when the scores were
not exact, the errors were averaged over many ensemble
components and therefore the relative values of the scores
are usually not affected. Note that the performance metrics of
problems like outlier detection depend on the relative values
of the scores rather than absolute values.

Logic of Parameter Choices: The algorithmic description
in the previous section sets the values of the parameters r
and f in a particular way. There is a certain logic to these
choices. First, by always choosing f between 1/4/s and (1 —
1/4/s), we ensure that the dimensionality r of the subspace
explored is at least 2. This is because the value of r is at
least 1 4 0.5logmax(o,1/53(8) = 14 0.5log (s) = 2. The
dimensionality selected is such that the expected number of
points in the local region corresponding to each test point
varies between 1 and /s. This ensures that the local regions
are neither too small nor too large, and they vary enough over
different ensemble components to accurately estimate the local
density over different types of distributions.

C. Time and Space Complexity Analysis

The running time is divided into a training phase and a scor-
ing (testing) phase. The training phase requires w operations
for hashing each of the s training samples, where w is the
number of hash functions. Since w is a small constant such as
4, it can be assumed that the training phase of each ensemble
component requires O(s) time. Note that s &~ 1000 is typically

constant as well. Similarly, the testing phase requires constant
time for hashing each of the data points. Since each of the
O(n) points is a test point (whether it is included in the
training sample or not), the overall time for the testing phase
is O(n). Therefore, the entire process is linear in the number
of data points, and the constant factors involved are extremely
small. Even though the approach is run multiple times, our
experimental results will show that the running times are
often significantly faster as compared to competing methods
in addition to being more accurate.

The space complexity of the approach is also constant. This
is because the space taken by the hash table is p - w, where
p is the range of the hash function and w is a small constant
such as 4. The value of p is typically a constant value such
as 10,000, although it should typically be selected as a small
multiplicative factor of s.

D. Interpretability of Discovered Outliers

The approach provides a high level of interpretability to the
discovered outliers. For each predicted outlier, we examine
the subspaces in which the score is particularly small. This
provides a sparse bounding region within a subset of attributes.
The bounding region is naturally defined by the computation
q = |(2};+a;)/f], which maps all the data values x;; within
a particular range to the same value. For example, if the jth
dimension is the Age attribute, then all points for which the
Age lies between f-g—a; and f-(g+1)—a; will be mapped to
the same value of the jth dimension. Two points are mapped
to the same hash cell entry if all of the dimensions in V are
mapped to the same range. This provides natural insights as
to why a data point should be considered an outlier.

ITII. EXTENSION TO DATA STREAMS

Because of its straightforward hashing approach, the
methodology can be easily extended to data streams. In the
streaming setting, the patterns in the data may change over
time, and the discovered outliers should be sensitive to the
changes in these patterns. There are two common ways of
discounting past history:

1) One can compute the outlier scores based on only a

sliding window of data points.

2) One can compute the log-likelihood density model using

time-decayed scores.
It is almost trivial to implement the sliding-window approach
because the count-min sketch allows both the insertion and
deletion of items. Incoming points are added to the sketch,
and the points falling off from the trailing end of the sliding
window are removed from the sketch. The performance of the
approach is also similar to the static case.

Therefore, we will focus on the more difficult setting
of time-decayed scores. Time-decayed scores are sometimes
more desirable because of their smooth discounting of the
underlying data points. Most of the known streaming methods
do not work in this time-decayed setting because of the
difficulty of maintaining the statistics of score computation
in time-decayed fashion. However, the hash-based technique

is able to achieve this goal with relative ease because of its use
of frequency-based scores, which can easily be constructed in
a time-decayed fashion.

First, we define the notion of a time-decayed score based
on a decay rate). The decay rate defines the rate at which
the weight of each point is reduced after the arrival of an
additional data point. Specifically, the weight of each point is
2= after ¢ points have arrived in the data stream. Therefore,
the half-life ¢;, of each point is 1/), and is intuitively equal
to the number of points that arrive after which the weight of
the point drops by a factor of 2. One key difference in the
implementation of the streaming setting and the static setting
is that the counts for all ensemble components need to be
maintained simultaneously in the same sketch structure. As we
will see later, this can lead to some additional inaccuracies.
Therefore, a few parameters are set up in a preprocessing
phase:

1) The values of min; and max;, which are the mini-
mum and maximum ranges of the jth dimension, are
estimated over an initial sample of the data. Although
it is recognized that the minimum and maximum values
might change with more incoming points, only rough
estimates are required for the approach to work.

2) The effective number of points in each ensemble compo-
nent depends on the decay rate. Specifically, the effective
weight of all the data points is given by the geometric se-
ries Y, 27 = 1/(1—27?). Therefore, we assume that
the effective sample size s is max{1000,1/(1 —27*)}.
This effective sample size is only a theoretical construct
that we need for selecting subsequent parameters and is
otherwise not used.

3) If there are a total of m ensemble components, we
sample m different locality parameters f ... f,, up front
from the range (1/y/s,1—1/4/s). Note that all locality
parameters are selected up front because the counts
for all ensemble components need to be maintained
simultaneously.

4) For each r € {1...m} the subset of dimensions V;. is
sampled up front. The number of dimensions is selected
in the same way as the static case, except that the
theoretical value of s from step 2 above is used in the
formula for selecting the number of dimensions.

5) For each r € {1...m} and j € V,, the shift parameter
a,; is sampled uniformly at random from (0, f.) and
stored.

Once these parameters have been set up, an online approach
is used at the arrival of each data point with these stored
parameters. The main problem with the time-decayed approach
is that all counts decay by a factor of 2 at the arrival of
each point. If we explicitly maintain time-decayed counts, the
approach will be too slow. Therefore, we use a lazy approach
in which the decay portion is updated only as needed. The
basic idea is to have a hash table in which one additional
piece of information is maintained in addition to the counts.
The last time-stamp (i.e., arrival index of data point) at which

that sketch cell was updated is maintained. Let ¢; be that value
and t. be the current time-stamp. We make the following two
changes to the access and update of the sketch table:

1) For accessing the counts, we multiply the entry with
2= Ate=t) and report it.

2) For updates, we multiply the current count entry in the
sketch table by 2~*(*<=*) and then add 1. Furthermore,
the time-stamp of that entry is updated to ¢..

The online portion of the approach proceeds as follows. When
a data point X; = (21 ...%q) arrives, we normalize it using
Equation 1 and the values of min;j/max; computed during
the preprocessing phase. We first compute its outlier score
using the current state of the hash table (testing step) and
then update the counts in the underlying entries (training
update). Therefore, the training and testing steps proceed
simultaneously as follows:

1) For each r € {1...m} and j € V, compute y;; =
[(wij + arj)/fr]. Set all other yj; to —1. Let the
resulting data points be Y;!...Y].

2) For each r € {1...m} and k € {1...w} compute
hi(Y;") and then adjust the counts of each of the entries
by using the decay-centric approach above. Let the
decay-adjusted counts be cj, for the kth hash table and
rth ensemble component. Compute the score for each
ensemble component 7 as the log(1 4+ min{c} ...c,}).
These scores are averaged over r € {1...m} to provide
the score of the data point.

3) Update the counts in each of the w entries using the
decay-centric update above. Update the time-stamps of
these entries as the current time-stamp.

The approach continuously reports outlier scores of new data
points as they arrive, which are then used to update the model.
The approach is referred to as RS-Stream. Note that a small
constant number of operations are required for each data
point, and therefore the approach is extremely efficient. This
is particularly convenient in the streaming setting.

IV. EXPERIMENTAL RESULTS

In this section, we will extensively compare the accuracy
and efficiency of RS-Hash(E) and RS-Hash(S) with state-of-
the-art outlier detectors on both static and streaming data sets.
We will first introduce the data sets and metrics. Then, we
will present the experiments for static data sets, followed by
streaming data.

A. Data sets

All data sets in this paper were obtained from the UCI
Machine Learning Repository! after some preprocessing to
make them suitable for outlier detection. A summary of the
data sets is shown in Table 1. Many of these data sets contain
more than one class label and the data set has variable overall
class distribution. We created outlier detection data sets by
following some commonly used principles in the literature. If
the data set already contained rare classes, they were included

Uhttp://archive.ics.uci.edu/ml/datasets.html

as outliers and the remaining points were inliers. When the
classes were almost balanced, we significantly downsampled
one of the classes as outliers, while the non-sampled classes
were included as inliers. Overall, we created 8 static data sets
and 2 streaming data sets.

Table T
SUMMARY OF THE DATA SETS.

Data set Points Attribute Percent
Outliers (%)
STATIC DATA SETS
LYMPHOGRAPHY 148 18 3.4
EcoLl 336 7 2.7
YEAST 1,364 8 4.8
CARDIO 1,831 21 9.6
MUuskK 3,062 166 3.1
WAVEFORM 3,509 21 4.7
OPTDIGITS 5,216 64 2.9
KDDCupr99 25,000 41 0.7
STREAMING DATA SETS
ACTIVITY 21,383 51 10.0
KDDCupr99-T 25,000 41 0.7

Specifically, for the LYMPHOGRAPHY data set, classes 1 and
4 were outliers while the others were inliers. The ECOLI data
set contained 8 classes, out of which we used classes omL, imL
and imS as outliers and the rest were included as inliers. The
YEAST data set contained 10 classes. The classes ME3, MIT,
NUC and CYT were included as inliers, while 5% of the total
number of inliers were replaced by randomly sampling points
from the remaining classes and are included as outliers. The
CARDIO data set contained measurements of fetal heart rate
signals. The classes in the data set were normal, suspect, and
pathologic. We discarded the suspect class. The normal class
was marked as inliers, while the pathologic class formed the
outliers. The MUSK data set contained several descriptors of
musk and non-musk molecules. Non-musk classes j146, j147,
and 252 were combined to form the inliers, while the musk
classes 213 and 211 were added as outliers without down-
sampling. The WAVEFORM data set contained three classes
(namely 0,1, and 2) of waves. We sampled 10% of the points
from class 0 and included them as outliers, while all instances
of the other classes were included as inliers. OPTDIGITS was
a data set that contained digits in the range of 0-9. The
instances of digits 1-9 were inliers, whereas instances of digit
0 were down-sampled to 150 points and treated as outliers. The
KDDCUP99 data set was a network intrusion data set from
the KDD Cup Challenge, 1999. We took a contiguous subset
of 25,000 data points and marked all data points corresponding
to intrusion attacks as outliers while excluding the DDoS
(Denial-of-Service) attacks from the data set because of their
copious nature. The other packets were marked as inliers.

Next, we describe the streaming data sets. The ACTIV-
ITY? data set was a temporally ordered data set, which de-

Zhttps://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+
Monitoring

scribed several subjects performing different activities (walk-
ing, running, nordic walking, etc.) and several parameters
were measured using body-mounted sensors. Thus the data
is a multidimensional time series. For constructing an outlier
detection data set, we took a subject’s walking data and
replaced 10% of the instances with nordic walking data, which
were designated as outliers. The KDDCUP99-T (streaming
version) was the same data set as KDDCuUP99, with the only
difference that temporal ordering information was included.
Including temporal ordering information was necessary for
streaming outlier detection.

B. Performance Metrics

For measuring performance, the standard method used for
evaluating (score-wise) outlier detectors is the area under the
curve (AUC) of the Receiver Operating Characteristics (ROC)
curve. This metric is described in detail in [1]. The same metric
was used for the static and streaming data sets. For measuring
efficiency, we computed the total time in seconds for each
detector in the static case. In the streaming case, we measure
the performance of each detector in terms of the number of
tuples processed per second.

C. Experiments on Static Data

In this section we will discuss the accuracy and effi-
ciency experiments on the static data sets. As baselines we
used several outlier detection techniques such as LOF [11],
AvgKNN [7]), FastABOD [16], iForest [18] and HiCS [14].
Note that three of these techniques [14], [16], [18] are specif-
ically designed for high-dimensional outlier detection and are
intentionally chosen to be different types of methods. We
compared the baselines with the proposed exact method RS-
Hash(E) and sketch-based method RS-Hash(S). The param-
eter denoting the number of k-nearest neighbors is used in
many techniques (LOF, AvgKNN, HiCS, and FastABOD).
For consistency, we set its value as k¥ = 10. The number of
components is set as m = 300 for RS-Hash(E), RS-Hash(S),
and iForest. RS-Hash(S) used w = 4 hash tables of range
p = 10,000. The remaining parameters were set as follows.
In HiCS, the number of Monte Carlo trials was set to 100,
«a = 0.1, and candidate cutoff was set to 50.

1) Accuracy Analysis: We executed all the baselines and
the proposed methods with the aforementioned parameter
setting on the static data sets in Table I. The AUC obtained
from all these runs is shown in Table II. We also show the
detailed ROC curves for three of these data sets in Figure 1.
It is evident that RS-Hash(E) and RS-Hash(S) consistently
outperformed the remaining methods on all the data sets,
although the iForest method came close in some cases. For
analyzing which data sets show promising performance, we
compute the improvement in AUC (over the average per-
formance of the baselines) for each of the data sets. The
largest average improvement of 53% is observed on the MUSK
data set, while the least improvement of 4.8% is observed
on the ECOLI data set. MUSK a very high dimensional data
set. This demonstrates the effectiveness of randomized feature

Table II
COMPARISON OF AUC. THE TOP-2 AUCS ARE IN BOLDFACE.

Data set RS-Hash(E) RS-Hash(S) AvgKNN LOF iForest HiCS FastABOD
LYMPHOGRAPHY 100.0 99.85 98.16 97.18 99.71 86.78 52.32
EcoL1 88.41 88.44 87.62 86.29 8531 73.72 84.66
CARDIO 91.61 91.78 70.47 59.67 9152 53.04 58.74
MUSK 100.0 100.0 24.48 39.99 100.0 47.77 23.95
OPTDIGITS 76.04 76.14 39.59 61.54 72.66 39.05 72.07
YEAST 80.87 80.80 66.47 55.06 79.44 61.23 66.91
WAVEFORM 74.42 73.85 66.98 61.08 7247 62.61 5891
KDDCuP99 99.97 99.98 13.6 46.43 9998 79.94 13.71

selection strategy of the RS-Hash method. The consistency
of the approach is particularly notable because many of the
baselines performed extremely poorly in at least one or more
data sets, whereas the hashing method did not perform poorly
on any of the data sets. This is particularly desirable in
unsupervised problems like outlier detection, where robustness
is paramount. Another important observation is that there is
virtually no difference between the sketch-based [RS-Hash(S)]
and exact version [RS-Hash(E)] of the randomized hashing
method, and the differences between them can be primarily
attributed to small random variations. This is an issue that we
will revisit in a later section.

2) Efficiency Comparison: The next set of experiments
analyze the efficiency of the proposed methods RS-Hash(E)
and RS-Hash(S) with increasing size of the data set. We use
both real and synthetic data sets for these experiments. Note
that the outlier detectors studied in this paper are generally
not very sensitive to data characteristics in terms of efficiency.
Any minor differences are not significant enough to make any
real dent in the relative performance over different data sets.

We sampled the KDDCUP99 data set to create real data sets
of varying sizes. To ascertain that this particular choice of the
data set has little influence on the execution time, we used
two synthetic data sets with the same dimensionality and the
number of points as this data set, but with completely different
distributions. The first data set (denoted by NORMAL(O,1))
contains features drawn from a standard normal distribution
with zero mean and unit variance, whereas the second data
set (denoted by UNIFORM(O0, 1)) contains features drawn from
a uniform distribution in [0, 1]. The results for all these data
sets are shown in Figure 2. Note that most of the performance
differences between various data sets can be attributed to
the fact that the KDDCUP99 data contained many integer-
valued attributes, whereas the two synthetic data sets contained
real-valued attributes (which increased distance computation
time). Since our algorithm was orders of magnitude faster than
many methods, the only way we could meaningfully show
these results was to use a logarithmic scale for the Y -axis.
The differences were staggering. First, the difference between
our method and competing methods almost always increased

with increasing data size because our approach has linear
scalability in contrast to the quadratic scalability of methods
like LOF. For example, RS-Hash(S) is between 20 and 100
times faster than LOF for data sets containing 25,000 points.
Furthermore, our approach is nearly 400 times faster than
HiCS at this data size. This difference only increases with data
size, and the only reason we have not shown the performance
for larger data sizes is that it was not possible to execute
the baselines in a reasonable amount of time. This means
that the baselines are truly constrained at larger data sizes,
and in these same situations the randomized hashing method
is able to obtain the results in a few seconds. Therefore,
these performance differences have an impact on the actual
usability of our technique (versus the baseline techniques) in
real settings. Notice that the choice and distribution of the
data set has no influence on the efficiency ordering of these
methods. RS-Hash(E) and RS-Hash(S) are always efficient by
orders of magnitude than state-of-the-art distance based and
subspace methods. A key driver of the superior efficiency of
the RS-Hash(E) and RS-Hash(S) algorithms is its simplicity
and carefully controlled linear complexity.

3) Parameter Sensitivity Analysis: In this section we will
analyze the parameter sensitivity of our approach with the
range and number of hash functions. The memory require-
ments increase linearly with these two parameters. Note that
the accuracy always improves by using larger values of these
parameters, but their choice is often governed by external
constraints like the amount of available memory or compu-
tational resources. Note that all experiments in this paper
(including the streaming results in the next section) use a
hash range of 10,000 and 4 hash functions, which amounts to
less than one megabyte of memory requirement. Nevertheless,
we show that we can obtain high accuracy with even less
memory requirement than this. This means that the approach
can even be used in specialized hardware architectures like in-
network sensor outlier detection. Due to space constraints, all
the parameter sensitivity results are only shown on YEAST and
OPTDIGITS data sets. We chose these two data sets because
YEAST is a smaller and low dimensional data set, while
OPTDIGITS is a larger and high-dimensional data set.

1.007 1.00 FastABOD — iForest— AvgKNN — RS-Hash(E
—HICS —LOF — RS-Hash(S)
@ o) 1.00
T 075 & 0757
@ o Q
]] © 0.75 S
2 050 FastABOD 2 0501 FastABOD =
3 — HiCs 3 — HiCcs 2 0.50
o — iForest o — iForest g JJ e
© 025 — LOF L 0.5 — LOF /,—lf
0.25 0.25 o
= — AVgKNN Z — AVgKNN © 0.25 et
— RS-Hash(S) — RS-Hash(S) g D
0.004 — RS-Hash(E) 0.004 — RS-Hash(E) 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
False Positive Rate False Positive Rate False Positive Rate
(a) WAVEFORM (b) YEAST (c) KDDCuP99
Figure 1. [Best viewed in color] Receiver operating characteristics (ROC) Curves showing the performance of all the methods. Notice that the difference

between the ROC curves of RS-Hash(E) and RS-Hash(S) is negligible.

10*F E 10%F 3 10%F E
10%F E 10°F 3 10%F E
i o Y
e 10 38 w0y SR s 3 3
Q 3 Q 3 1 Q 3
(S O (&)
z\“f,/ 10 ;3, 10+ 1 zir’z, 10+
° 3 —— RS-Hash(E)| 1 ° 3 / —— RS-Hash(E)| 1 ° 3 [,/ —— RS-Hash(E)| 1
IS) —— RS-Hash(S) I) —— RS-Hash(S)| - IS) —— RS-Hash(S)
F 107y —— AvgKNN 3 = 10°F —— AvgKNN < 10 —— AvgKNN 3
3 — LOF 1 3 — LOF 3 — LOF 1
s —— iForest] = —— iForest 1] s —— iForest]
107 —— HiCS] 107 — HiCS 077 — HiCS]
FastABOD FastABOD 1 FastABOD
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000

Number of Data Points
(a) KDDCupr99

Number of Data Points
(b) NORMAL(0,1)

Number of Data Points
(c) UNIFORM(O0,1)

Figure 2. [Best viewed in color] The execution time of all the detectors as a function of the number data points. The results are shown for one real and two
synthetic data sets. Note that the y-axis of all the figures is on a log-scale to enable visualization of the staggering differences.

1.0 1.0
0.8 C 0.8 o =
(@] (6] T ———— —~——
2 2
06 006
@] o
T 4 [—Rs-Hashs)] T, [~ RS-Hash(s)|
— RS-Hash(E) — RS-Hash(E)
0.2 0.2
2 6 10 14 2 6 10 14
Number of Hash Functions (w) Number of Hash Functions (w)
(a) YEAST (b) OPTDIGITS

Figure 3. [Best viewed in color] Sensitivity of RS-Hash(S) to the number of
hash functions. Performance of the exact method RS-Hash(E) is only shown
for comparison.

The variation in AUC of RS-Hash(S) with the number of
hash functions is shown in Figure 3. The average deviation
of RS-Hash(S) from RS-Hash(E) was 1% in YEAST and 1%
in OPTDIGITS. The effect of the hash range on the AUC
is shown in Figure 4. Again, we observe that the accuracy
of RS-Hash(S) is very similar to the performance of the
exact method. This is again a consequence of Theorem 1.
Concretely, the average deviation of RS-Hash(S) is 1.1% for
YEAST and 1.3% for OPTDIGITS. The performance of RS-
Hash(E) is shown as a straight line for reference in the
same figure. Recall that in Theorem 1 we proved that for

modest values of w the probability of hash collision is very
low. These experiments substantiate this theoretical result by
observing that the deviation of RS-Hash(S) from RS-Hash(E)
is extremely small.

1.0 1.0
08 08 g
[©] O v ~
= =
Sos Sos
: :
04 [~ RS-Hash(s) 04 [~ RS-Hash(s)
— RS-Hash(E) — RS-Hash(E)
0.2 02
4k 8k 12k 16k 20k 4k 8k 12k 16k 20k

Hash Range (p) Hash Range (p)
(a) YEAST (b) OPTDIGITS

Figure 4. [Best viewed in color] Sensitivity of RS-Hash(S) to the hash range.
Performance of the exact method RS-Hash(E) is only shown for comparison.

The performance of RS-Hash(E) and RS-Hash(S) with
increasing number of ensemble components is shown in
Figure 5. Increasing the number of ensemble components
improves both accuracy and stability. Although this paper
has always used 300 components, we found that using only
100 components was more than sufficient to saturate the
performance results. This means that we can gain even better
efficiency than our presented results without losing much in

terms of accuracy. As in other results, we found that there was
little difference between the sketch-based and exact variants.

1.0 1.0
08 0.8
] [®)
2 2 |/
O 061 O 06
o (o]
x x
0.44 —— RS-Hash(E) 0.4+ —— RS-Hash(E)
—— RS-Hash(S) —— RS-Hash(S)
0.2 0.2
20 140 260 380 500 20 140 260 380 500
Number of Components (m) Number of Components (m)

(a) YEAST (b) OPTDIGITS

Figure 5. [Best viewed in color] Sensitivity of RS-Hash(E) and RS-Hash(S)
to the number of ensemble components.

D. Experiments on Streaming Data

In this section, we show the performance results of RS-
Stream, which is the streaming version of the algorithm.
An important observation is that this approach is the first
decay-based approach, and all previous streaming methods
are window-based methods. However, we need similar decay-
based baselines in order to perform a meaningful comparison.
Therefore, we used decay-based adaptations of some classical
algorithms as baselines. In particular, we used two stream-
ing detectors, LOF-Stream and AvgKNN-Stream, which are
streaming adaptations of the LOF and the average k-nearest
neighbor detector, respectively. As in the case of RS-Stream,
we allow points to be weighted by the same decay function,
except that the average k-nearest neighbor and LOF scores are
computed in a weighted way with the decay function.

AvgKNN-Stream computes the score of each point as the
weighted average of the distances to its k-nearest neighbors.
In LOF-Stream the weights are used for computing a weighted
version of the local reachability distances and the final LOF
score. Another modification is that points for which the decay
weight is less than the threshold of 10~° are ignored. This
modification also improves the efficiency of the baselines
while improving accuracy in the presence of concept drift.
In all experiments, the value of the decay parameter A is set
to 0.015. The number of hash tables is set to w = 4, hash size
is set to 10000, and number of components is set to m = 300.
The value k of the number of nearest neighbors is set to 10
for LOF-Stream and AvgKNN-Stream.

Accuracy Analysis: Table III provides a summary comparison
of the performances of various streaming methods. The ROC
curve for both the streaming data sets KDDCUP99-T and AcC-
TIVITY are shown in Figure 6. Clearly, the RS-Stream method
is highly accurate as compared to the baselines. Concretely,
for the KDDCUP99-T data set the average improvement over
baselines is 61% and the improvement for the ACTIVITY
data set is 27%. This is because the design of the RS-Stream
algorithm is such that the parameters of the algorithm are
robust to shifts in data distributions over time. This means
that RS-Stream’s ensemble components can survive infrequent

— RS-Stream — LOF-Stream —— AvgKNN-Stream

o]
<
14
(5]
=
‘@
o
o
(]
=
|_
T T T T T
0.00 0.25 0.50 0.75 1.00
False Positive Rate
(a) KDDCupP99-T
— RS-Stream — LOF-Stream —— AvgKNN-Stream
1.00
i)
& 075
(0]
>
= 0.50
[%2]
g
o 0.25
=
|_ 0007 T T T T T
0.00 0.25 0.50 0.75 1.00
False Positive Rate
(b) ACTIVITY
Figure 6. [Best viewed in color] Receiver operating characteristics (ROC)

Curves showing the performance of all the methods. The RS-Stream algorithm
is accurate as compared to the baselines.

updates. This not only makes the algorithm more efficient but
also makes it more robust to changing characteristics of the
data.

Table III
COMPARISON OF AUC. THE TOP-2 AUCS ARE IN BOLDFACE.

RS-Stream LOF-Stream AvgKNN-Stream
KDDCupr99-T 96.61 61.26 9.7
ACTIVITY 99.96 53.58 91.48

Efficiency Analysis: The efficiency of RS-Stream is compared
with the baselines in Figure 7. We use a metric known as tuples
per second (TPS) to quantify the efficiency. It measures the
maximum number of data points that can be processed by a
particular algorithm in a given interval of time. Observe that
RS-Stream’s average TPS over both data sets is 46 as compared
to 1.5 TPS for LOF-Stream and 1.6 TPS for AvgKNN-Stream.
This translates to a performance improvement of between one
and two orders of magnitude, which is similar to the static
case. It is noteworthy that the performance of RS-Stream is
independent of the decay rate, whereas that of the baselines
is sensitive to the decay rate because of the use of cut-off
thresholds will computing nearest neighbors. In other words,
if smaller decay rates were used for slowly evolving data, the
baselines would perform even more slowly and would become
impractical in many settings.

Il RS-Stream
B LOF-Stream
[AvgKNN-Stream

o
i

N
2

Tuples per second (TPS)

KDDCUp99-T Activity

Figure 7. [Best viewed in color] Efficiency of the streaming algorithms
measured as the number of tuples processed per second (TPS). Higher values
are considered better.

V. RELATED WORK

Detailed discussions and surveys on outlier detection may
be found in [1]. Important classes of outlier detectors include
distance-based methods [7], [10], [11], [15], [23], density-
based methods [11], [21], and pattern-based compression
methods [6]. Subspace outlier detection goes one step further
in finding localized subsets of dimensions that emphasize the
outliers [2]. Spectral methods [13], [24] have also been ex-
plored in order to discover outliers in lower-dimensional man-
ifolds of high-dimensional data. One challenge in subspace
outlier detection methods is that no single subspace is able
to discover all the outliers. Recently, ensemble methods [4]
have found increasing interest in the literature because of their
ability to discover outliers using multiple views of the data.
Starting with the work in [17], subspace outlier detection has
often been explored by examining multiple axis-parallel [14],
[17], [19], [20] or rotated [4] views of the data. Statisti-
cal methods for discovering relevant subspaces are explored
in [14], [19], [20]. However, these methods combine feature
bagging with distance-based methods, which do not seem to
be well-suited to one another. Our approach is a bi-sampling
technique of combining point and dimension sampling and it
is better suited to the (perturbed) subspace histogram method-
ology proposed in the paper. Row-wise subsampling of data
matrices have also been explored in the context of isolation
forests [18] and entry-wise subsampling methods of adjacency
matrices have been explored for graph outlier detection [3].
Many outlier detection algorithms have also been generalized
to the streaming setting, such as distance-based methods [8],
[22] and tree-based methods [9], [25], [26].

VI. CONCLUSIONS

Subspace outlier detection is an extremely challenging prob-
lem because of the high level of computational complexity
associated with the identification of different subspaces. In
this paper, we present an extremely simple, accurate, and linear
time algorithm for subspace outlier detection with randomized
hashing. Its simplicity enables implementation in a few lines
of code. It has linear complexity with small constant factors

and constant space requirements, which enables efficient use
in very large data sets and data streams. Our experimental
results show that the approach is able to achieve superior
results compared to state-of-the-art methods both in terms of
accuracy and efficiency.

REFERENCES

[1] C. Aggarwal. Outlier Analysis, Second Edition, Springer, 2017.

[2] C. Aggarwal and P. Yu. Outlier detection for high-dimensional data, ACM
SIGMOD Conference, 2001.

[3] C. Aggarwal, Y. Zhao, and P. Yu. Outlier detection in graph streams.
ICDE, 2011.

[4] C. Aggarwal and S. Sathe. Theoretical foundations and algorithms for
outlier ensembles. ACM SIGKDD Explorations, 2015.

[5] L. Akoglu, E. Muller, and J Vreeken. ACM KDD Workshop on Outlier
Detection and Description, 2013.

[6] L. Akoglu, H. Tong, J. Vreeken, and C. Faloutsos. Fast and reliable
anomaly detection in categorical data. ACM CIKM Conference, 2012.

[7]1 E. Angiulli, C. Pizzuti. Fast outlier detection in high dimensional spaces,
PKDD Conference, 2002.

[8] F. Angiulli and F. Fassetti. Detecting Distance-based Outliers in Streams
of Data. ACM CIKM Conference, 2007.

[9] 1. Assent, P. Kranen, C. Beldauf, and T. Seidl. AnyOut: Anytime Outlier
Detection in Streaming Data, DASFAA Conference, 2012.

[10] S. Bay, and M. Schwabacher. Mining distance-based outliers in near
linear time with randomization and a simple pruning rule. KDD, 2003.

[11] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. LOF: Identifying
Density-based Local Outliers, SIGMOD, 2000.

[12] G. Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. LATIN, 2004.

[13] X. Dang, B. Misenkova, I. Assent, and R. Ng. Outlier detection with
space transformation and spectral analysis. SDM Conference, 2013.

[14] F. Keller, E. Muller, K. Bohm. HiCS: High-Contrast Subspaces for
Density-based Outlier Ranking, IEEE ICDE Conference, 2012.

[15] E. Knorr, and R. Ng. Algorithms for Mining Distance-based Outliers in
Large Datasets. VLDB Conference, 1998.

[16] H-P. Kriegel, M. Schubert and A. Zimek. Angle-based outlier detection
in high-dimensional data. KDD, 2008.

[17] A. Lazarevic, and V. Kumar. Feature Bagging for Outlier Detection,
KDD, 2005.
[18] FE. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation Forest. ICDM, 2008.
[19] E. Muller, M. Schiffer, and T. Seidl. Statistical Selection of Relevant
Subspace Projections for Outlier Ranking. ICDE Conference, 2011.
[20] E. Muller, I. Assent, P. Iglesias, Y. Mulle, and K. Bohm. Outlier Ranking
via Subspace Analysis in Multiple Views of the Data, /CDM, 2012.
[21] S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos, LOCI:
Fast outlier detection using the local correlation integral, /CDE, 2003.

[22] D. Pokrajac, A. Lazarevic, and L. Latecki. Incremental Local Outlier
Detection for Data Streams, CIDM Conference, 2007.

[23] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient Algorithms for
Mining Outliers from Large Data Sets. ACM SIGMOD Conference, 2000.

[24] S. Sathe and C. Aggarwal. LODES: Local Density Meets Spectral
Outlier Detection. SDM Conference, 2013.

[25] S. C. Tan, K. M. Ting, and T. F. Liu. Fast Anomaly Detection for
Streaming Data. IJCAI Conference, 2011.

[26] K. Wu, K. Zhang, W. Fan, A. Edwards, and P. Yu. RS-Forest: A Rapid
Density Estimator for Streaming Anomaly Detection. /ICDM, 2014.

