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Abstract
_e problem of outlier detection has been widely studied
in existing literature because of its numerous applications in
fraud detection, medical diagnostics, fault detection, and in-
trusion detection. A large category of outlier analysis algo-
rithms have been proposed, such as proximity-based meth-
ods and local density-based methods. _ese methods are ef-
fective in ûnding outliers distributed along linear manifolds.
Spectral methods, however, are particularly well suited to
ûnding outliers when the data is distributed along manifolds
of arbitrary shape. In practice, the underlying manifolds may
have varying density, as a result of which a direct use of spec-
tral methods may not be eòective. In this paper, we show
how to combine spectral techniques with local density-based
methods in order to discover interesting outliers. We present
experimental results demonstrating the eòectiveness of our
approach with respect to well-known competing methods.

1 Introduction.
_e problem of outlier detection is to determine data records
that are signiûcantly diòerent from other data records. Nu-
merousmethods have been proposed in the literature for out-
lier detection, such as linear models, proximity-based meth-
ods and subspace methods [1]. In spite of the vast variety of
methods available, the outlier detection problem continues
to be challenged in cases where the outliers are embedded in
local nonlinear subspaces.

More recently, methods that can explore lower dimen-
sional subspaces [2] in the data in order to discover outliers
have been proposed. Most of these methods are, however,
designed for discovering outliers either in subspaces of the
original attributes, or in linear combinations of the under-
lying subspaces. In practice, the data is aligned along lower
dimensional manifolds of arbitrary shape. Examples of such
manifolds are illustrated in Figure 1. It is clear that both the
data points A and B are outliers. Note that the shape of the
relevant data patterns in localities of data points A and B can
be projected to lower dimensions only if nonlinear mappings
are used. Furthermore, the shape of the data patterns in the
localities of A and B are quite diòerent. Such outliers are un-
likely to be discovered easily in lower dimensional subspaces
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Figure 1: Outliers embedded with arbitrary manifolds.

of the data using existing subspace methods because they are
hidden in local non-linear subspaces, which cannot be eas-
ily discovered by existing subspace methods. _is problem
becomes even more challenging when there is a signiûcant
variation in the local density of the underlying points. In such
cases, one needs to account not only for the shape of the rel-
evant nonlinear subspace but also for the variation in the un-
derlying density.

Spectral methods have the merit that they can o�en dis-
cover an embedding of the data in which the lower dimen-
sional clusters of arbitrary shape can be discovered. In addi-
tion, they have a desirable property that the use of Euclidean
distances in the spectral embedding can adjust to the man-
ifold structure of the data. Although spectral methods can
o�en adapt to varying local subspaces and densities to a lim-
ited degree, the computations of the outlier scores will still be
signiûcantly distorted. _is is, in part, because the similarity
graphs in spectral methods are constructed using full dimen-
sional distances, although the cut-oò distance threshold for
the k-nearest neighbor graph varies with data locality. _ere-
fore, the use of oò-the-shelf spectral methods may not be the
most eòective solution for the underlying task.

In an attempt to rectify the aforementioned problems,
we propose the LODES algorithm. LODES combines spec-
tral methods with local density-based methods and has the
ability to adapt to the varying local properties of the data
more eòectively. It proposes a novel local density-based spec-



tral embedding that is tailored to outlier analysis and is sig-
niûcantly diòerent from state-of-the-art spectral embeddings
proposed for clustering data [14, 12, 9]. Furthermore, the core
idea in LODES is to iteratively adjust the similarity graph of
the data points in conjunction with the results of the embed-
ding achieved. Concretely, the local density-based spectral
embedding from a previous iteration is used for improving
the similarity graph for the next iteration, such that outliers
are gradually segregated from inliers during these iterations.
_is graph-improvement process is combined with an iter-
ative eigenspace exploration strategy that can eõciently si�
through the unimportant eigenvectors and discover eigen-
vectors that are relevant for ûnding outliers hidden in local
non-linear subspaces.

_is paper is organized as follows. _e remainder of
this section discusses related work. _e background and
motivations are discussed in Section 2. Section 3 discusses
the overall spectral embedding method that is tailored to
outlier detection. In Section 4, we discuss how this spectral
embedding can be leveraged to create an eòective outlier
scoring mechanism. Section 5 discusses the experimental
results, while the conclusions are presented in Section 6.

1.1 Related Work. _e problem of outlier detection has
been widely studied in the literature because of its numerous
applications including fraud detection and intrusion detec-
tion [1, 4]. _e most fundamental class of outlier detection
methods are the distance-based methods [6, 8, 13]. Tech-
niques for speeding up distance-based methods with sam-
pling have been discussed in [3]. _e LOF method [6] uses
local density in order to discover outliers. Subsequently, sub-
spacemethods were introduced in [2], in which the basic idea
was to discover outliers in locality-speciûc subspaces of the
data. Methods for discovering high-contrast subspaces, or us-
ing statistical methods to isolate important subspaces, were
explored in detail in [7, 10, 11]. Angle-based methods have
also been designed to perform multivariate extreme value
analysis in high-dimensional data [15]. A spectral method,
known as OutDST is proposed in [5]. While this interesting
work is able to leverage several advantages of spectral meth-
ods, it is primarily designed for labeling outliers, as opposed
to scoring them. Also, it does not fully leverage the locality-
speciûc properties of some of the outliers. As our experimen-
tal results in Section 5 will show, the performance of OutDST
can be extremely sensitive to the data set and the parameter
settings. On the other hand, we provide a more robust ap-
proach that can perform robustly in most scenarios.

2 Background and Motivation.
Until now, spectral embeddings have been largely studied in
the context of data clustering, particularly for discovering
non-convex clusters [14, 12]. We will show that these em-
beddings are unsuitable for the problem of outlier detection,

when they are used directly without modiûcations. We will
correspondingly design an embedding approach that is tai-
lored to outlier detection.

2.1 Spectral Embedding of Data Points. We assume that
we have a set of m data points, denoted by X = {x1 , . . . , xm},
where each data point is an n-dimensional vector (i.e., x ∈

Rn). _e process of transforming the data points such that
new co-ordinates are assigned to them in the transformed
space is known as embedding the data points. Our objective
behind computing a spectral embedding is tomake the task of
outlier detection easier in the transformed space by applying
any well-established method. We will describe two of the
most popular spectral embeddings: the ûrst was proposed by
Shi and Malik, which we denote by SM [14] and the second
by Ng et al. [12], which we denote by NJW.

_e ûrst step of computing a spectral embedding is to
construct a set R consisting of index pairs (i , j). A pair (i , j)
is included in R if and only if the data points x i and x j are
mutual k-nearest neighbors of each other. Two points are
mutual k-nearest neighbors of each other if x i is in the set
of top-k similar points to x j and vice-versa. _e similarity
between points x i and x j is denoted as w i j and is typically
computed using a heat kernel. _e entries in the set R can
be thought of as edges of a weighted undirected graph, where
the weights are the similarities w i j . Such a graph is known as
a neighbourhood graph.

In the second step the data points x1 , . . . , xm are mapped
to a vector u, such that if x i and x j are highly similar, then
the entries u i and u j are mapped close to each other. _is
task can be performed by solving the following optimization
problem:

(2.1)
minimize

u
O = ∑

(i , j)∈R
w i j(u i − u j)

2

subject to u⊺Du = 1,

where D is a diagonal matrix known as the degree matrix,
and each of its diagonal entry d i = ∑

m
j=1 w i j is known as the

degree of point x i . _e weightsw i j can bematerialized into a
matrixW known as the kNN matrix. _e objective function
O in Eq. (2.1) can also be expressed as O = 2u⊺(D −W)u,
where thematrix L = D−W is known as the Laplacian of the
neighborhood graph and is positive semi-deûnite with non-
negative eigenvalues.

_e optimization problem of Eq. (2.1) has multiple so-
lutions. _ese solutions are the eigenvectors of the matrix
D−1L, where the eigenvectors associated with lower eigen-
values are considered better solutions. An h-dimensional
embedding can be computed by storing the eigenvectors
u1 , . . . , uh associated with the lowest h eigenvalues in a ma-
trix U ∈ Rm×h . Every row of U is a mapping of the origi-
nal point x i into a new point y i ∈ R

h . _e points y i con-
stitute the spectral embedding of the points x i . _e embed-
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Figure 2: _e second and third eigenvectors of the normalized Laplacian of SM andNJW embeddings are shown when k = 6.
An arrow is drawn to show where the outliers are embedded. In the SM and NJW embeddings, the outliers are not clearly
separated. _e ideal kind of embedding (drawn using the embedding of this paper) is also shown in the ûnal ûgure.

ding technique described so far is known as the SM spectral
embedding. _e matrices D−1L and D−1W are known as the
normalized Laplacian and kNN matrix respectively. In the
NJW embedding the normalized Laplacian and kNN matri-
ces are given as D−1/2LD−1/2 and D−1/2WD−1/2 respectively.
_e normalized matrices of SM are asymmetric while NJW
are symmetric.

2.2 Problems with SM and NJW. _e key problem with
SM and NJW is that the embedding obtained by them is
unsuitable for outlier detection. We will illustrate this point
with a toy example shown in Figure 3. _is data contains two
intertwined spirals representing normal groups of blue data
points. In addition, a group of 5 outliers are shown in red. _e
edges of the neighborhood graph are also shown in Figure 3.

As is common in spectral embeddings, we plot the sec-
ond and the third eigenvector of the normalized Laplacian
for SM andNJW in Figure 2(a) and (b) respectively. Observe
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Figure 3: Toy data set where outliers are shown in red.

that in both these types of embeddings, the outliers are en-
tangled with the inliers. _eir exact position in each case is
shown by an arrow. _is situation does not improve even if
more eigenvectors are included. Such a scenario is common
with spectral embeddings that are optimized to the clustering
problem.

What is the reason for this behavior of the spectral em-
beddings? To answer this question, let us look at the non-
diagonal entriesw i j of the normalized kNNmatrix of SM and
NJW:

(2.2) SM: w i j =
w i j

d i
, NJW: w i j =

w i j
√
d id j

.

_e larger the value of w i j , the closer the points x i and x j
will be embedded. On the other hand, the edges that connect
outliers to inliers generally have signiûcantly lower weight.
_e smaller normalization factors will tend to increase the
weights of edges connecting outliers and inliers. _is leads
to a situation where the degree-based normalization does not
lead to signiûcantly diòerent weights even for edges that con-
nect outliers to inliers. Several straightforward adjustments
of this principle do not seem to help signiûcantly.

3 Local Density-Based Spectral Embedding.
In order to address the aforementioned problems, we will
propose a spectral embedding that is extensively used by
LODES for detecting outliers in local non-linear subspaces.
_is embedding is speciûcally designed for the outlier detec-
tion task and is based on the notion of local densities. It also
has the ability to be used iteratively for slowly separating out-
liers from inliers. _e spectral embedding used by LODES
heavily relies on the following three concepts:

Definition 1. (Local Density) _e local density of a data
point x i is the density of data points in its neighborhood. We
use the degree d i of a data point as a proxy for the local density.



_is deûnition is based on the intuition that the higher the de-
gree of a data point, the greater its local density. Although one
could deûne the local density in a variety of ways, we choose
this particular deûnition because of its natural connections
with spectral clustering.

Definition 2. (Linkage Density) Given two data points x i
and x j , the linkage density is the density in the region between
these two data points. We use the similarity w i j between data
points as a proxy for the linkage density.

_is deûnition is based on the intuition that edges of larger
weight are generally placed in dense regions.

Definition 3. (Symmetric Density Difference) Given
two data points x i and x j , the symmetric density diòerence q i j
measures the squared diòerence in the local densities of x i and
x j :

q i j = (d i − d j)
2 .

_is quantity is symmetric because q i j = q ji . Based on these
deûnitions, LODES proposes a normalized kNN matrix that
is particularly eòective for outlier detection. Let us denote the
normalized kNN matrix of LODES as W(ℓ)

. We deûne each
entry w i j in this matrix as follows:
(3.3)

w i j =
Linkage Density

Symmetric Density Diòerence
=
w i j

q i j
=

w i j

(d i − d j)2
.

_e formulation in Eq. (3.3) can be intuitively explained as
follows. A lower linkage density and a higher symmetric den-
sity diòerence indicates that points x i and x j are from regions
with very diòerent local densities and should bemapped away
from each other. On the other hand, when the linkage density
is high and the symmetric density diòerence is low, it indi-
cates that x i and x j belong to a region of high density and sim-
ilar local density regions. Such points are therefore mapped
close to each other. An important observation about outliers
is that the local density diòerence between an outlier and its
nearest neighbors is typicallymuch larger. _erefore, the pro-
posed adjustment explicitly incorporates this factor into the
mapping.

Next, this normalized kNNmatrixW(ℓ)
is used for com-

puting the degree matrix D(ℓ). _e corresponding Laplacian
is written as follows:

(3.4) L(ℓ) = D(ℓ) −W(ℓ)
.

_en, the ûrst r eigenvectors of L(ℓ) are computed. Like
before, the row y i corresponding to the original data point
x i is the new coordinate of x i in the embedded space. _e
embedded points y i o�en show clearer separation of outliers
from inliers, as compared to the original data points x i .
_e process of computing the local density-based embedding
of the data points x i is known as local densiûcation. We

demonstrate the spectral embedding created by this adjusted
methodology on the toy example of Figure 3. _e resulting
embedding is shown in Figure 2(c). It is clear that this
embedding exposes the outliers much better than the ones
obtained in Figure 2(a) and (b).

While the basic local density-based normalization has a
clear advantage over a vanilla spectral embedding, it still does
not fully leverage the advantages of local density diòerences.
In the next section, we will see how to build on this basic
idea, and iteratively reûne the local densiûcation process to
derive the maximum advantage from this approach. A�er
a few iterations of the local densiûcation process have been
performed, the spectral embedding from the ûnal round is
used for computing the outlier scores.

4 _e LODES Algorithm.
A straightforward way to detect and score outliers is to apply
a k-nearest neighbor approach on the local density-based
embedding proposed in the previous section. Although such
an approach may detect some of the more obvious outliers,
many outliers may not be uncovered by it. Even though
the use of local density helps in tailoring the embedding
to outlier detection to some extent, the overall algorithmic
framework of discovering the eigenvectors in one shot is still
optimized to clustering rather than outlier analysis. In fact,
the presence of outliers can itself interfere with the discovery
of an eòective embedding. As a result, the more obvious
outliers can o�en interfere with the discovery of less obvious
outliers. _erefore, a more reûned approach is required,
which as we will see later, takes the form of an iterative
algorithm.

_emain challenge is caused by the fact that the presence
of some of the eigenvectors in the embedding can subtlymask
the presence of speciûc outliers. _erefore, it is important that
these eigenvectors are distinguished and separated from the
remaining eigenvectors to achieve a more eòective analysis
in later iterations. In many cases, the removal of some of
the eigenvectors corresponds to removing subsets of data
points that interfere with the local analysis. As a result, the
local analysis becomes even more localized and sharpened.
_erefore, an important aspect in this context is to identify
the nature of such eigenvectors. In the following, we will
discuss some common characteristics of these eigenvectors.

Sparse Eigenvectors: Such eigenvectors have a large number
of zeros and only a small number of non-zero entries. _e
data points corresponding to these non-zero entries can of-
ten be marked as obvious outliers, as these data points are
disconnected from all other data points in the neighborhood
graph. For illustration, consider the following sparse eigen-
vector: u2 = (0.5, 0, 0, 0, 0)⊺. _is eigenvector indicates that
the data point x1 is an outlier. Since it contains useful infor-
mation about outliers, these eigenvectors are retained sep-
arately by LODES and are used during the outlier scoring



stage. Nevertheless, the presence of such an eigenvector of-
ten prevents the discovery of a low-dimensional embedding
containing all the outliers especially if there are a modestly
large number of such eigenvectors.

Low-Cardinality Eigenvectors: Such eigenvectors contain
a small number of distinct values. Intuitively, such eigen-
vectors represent a small number of distinct groups of data
points. _ese eigenvectors embed the data points as groups,
where all points that have the same component in the eigen-
vector belong to the same group. While such an eigenvec-
tor is optimized to clustering, it does little in terms of ex-
posing the outliers in the underlying data. To illustrate this
point, consider the following example of an eigenvector: u2 =

(0.5, 0.5,−0.2,−0.2,−0.2)⊺. _is eigenvector contains 2 dis-
tinct values 0.5 and −0.2 and therefore two groups of size 2
and 4 respectively. _is eigenvector provides little informa-
tion about the outliers in the underlying data.

It is noteworthy that sparse eigenvectors have smaller
eigenvalues as compared to low-cardinality eigenvectors be-
cause they o�en represent full disconnection between small
groups of the points and the remaining neighbourhood
graph. In the following, we will discuss how LODES can ef-
fectively handle these two types of eigenvectors.

4.1 An Iterative Approach. _e basic iterative approach
that is followed by LODES starts by computing a neighbor-
hood graph in the ûrst iteration, and then iteratively modi-
fying the weights of the edges in subsequent iterations. _e
weights of the edges are successively modiûed in subsequent
iterations by using the distances between points in the locally-
densiûed spectral embedding of the previous iteration. _e
goal of this iterative modiûcation is to successively expose
relevant outliers, and also iteratively store away useful eigen-
vectors found in earlier iterations. In order to achieve this
goal, the sparse and low-cardinality eigenvectors are always
removed from the spectral embedding of a given iteration be-
fore theweights are recomputed. Note that only theweights of
the neighborhood graph change in successive iterations, and
the edges of the neighborhood graph never change across it-
erations.

We start by describing the ûrst iteration of LODES and
then describe how the information from one iteration is used
in subsequent iterations to progressively separate the outliers.
_e pseudocode for the LODES algorithm can be found in
Algorithm 1. _e iteration number is denoted by the variable
t. _e ûrst step, on Line 4, is to estimate the bandwidth of
the heat kernel used for computing similarities. _is is done
using the following rule-of-thumb. We sample P random
pairs of data points and compute the following:

(4.5)
¿
Á
ÁÀ

1
∣P∣
∑
(i , j)∈P

∥x i − x j∥
2
2 .

_is value is used as an estimate of the bandwidth σ , which is
used for computing similarities and the corresponding kNN
matrix W1. Note that the iteration number is written as a
subscript of the concerned matrix; for example, W1 is the
kNN matrix from the ûrst iteration, i.e. t = 1. _en, on
Line 12, the locally dense and normalized Laplacian L(ℓ)1 is
computed as discussed in Section 3. _e eigenvector matrix
U1, with columns containing eigenvectors, is computed in
Line 13. It is assumed that the columns in U1 are sorted in
order of increasing eigenvalues.

_e next step is to select a set of r eigenvectors in this
order that address the sparsity and low-cardinality problems.
An important observation is that the sparse eigenvectors are
almost always the leading (i.e., le�most) eigenvectors. _ere-
fore, they can be removed by simply increasing the column
index a of le�most eigenvector (in matrixU1) passed into the
next iteration. A threshold δ ∈ (0, 1) is used to determine the
number of le�most eigenvectors to drop. All the le�most con-
secutive eigenvectors containing less than δ ⋅m non-zero en-
tries are assumed to be sparse. _e value of a is incremented
just enough so that ua is not sparse. _is is achieved by the
function handleSparsity(), which is called on Line 14 and
is described from Lines 22-31. _e next step involves scan-
ning the columns of U1 from le� to right and determining a
value of b, such that at least r eigenvectors inua , . . . , ub donot
have low cardinality. An eigenvector is said to have low cardi-
nality, if for a user-deûned threshold τ ∈ (0, 1), there are less
than τ ⋅m distinct values in the eigenvectors. _is is achieved
by the procedure handleLowCardinality(), which is called
on Line 15 and described from Lines 33-42. In practice, rea-
sonably small values (typically less than 4–6%) of the sparsity
and cardinality thresholds are suõcient for LODES to func-
tion correctly. Additionally, LODES is robust to minor in-
consistencies while setting these thresholds. _ese important
properties of LODES are validated with extensive experimen-
tal evaluation in Section 5.4.

It is noteworthy that the sparse eigenvectors at the lead-
ing end are useful for discovering outliers and the corre-
sponding data points are continuously added to a set R. As
we will see later, the outlier scores of these points are set to
arbitrarily high values at the very end of the algorithm. _e
embedding given by the eigenvectors ua , . . . , ub is used in the
subsequent iterations for a similarity update step in which the
weights of the neighborhood graph are readjusted.

4.1.1 Similarity Update Step. In subsequent iterations, the
weightmatrixWt is readjusted using the eigenvectors derived
in the previous iteration from matrix Wt−1. Note that no
new edges are added to or removed from the neighbourhood
graph. We use the eigenvectors ua , . . . , ub derived from the
spectral embedding in the previous iteration and compute
the similarity matrix W(s im)

t , where each entry (i , j) is the
similarity between the embedded data points i and j using



Algorithm1_eLODES spectral outlier detection algorithm.

Input: Data points: X, Number of mutual kNN: k, Sparsity
and cardinality thresholds: (δ, τ), Window size of eigen-
vectors: r, Number of iterations: T

Output: Outliers scores {c1 , . . . , cm}
1: for t = 1 to T do
2: if t = 1 then
3: X̂ ← X, a ← 2
4: Compute bandwidth σ of X̂ using Eq. (4.5)
5: Let Wt be kNN matrix of X̂ with bandwidth σ
6: else
7: X̂ ← Ut−1(∶, a ∶ b)
8: Compute bandwidth σ of X̂ using Eq. (4.5)
9: Let W(s im)

t contain all pairwise similarities of X̂
with bandwidth σ

10: Wt ←W(s im)
t ○Wt−1

11: end if
12: L(ℓ)t ← Compute Laplacian of Wt as discussed in

Section 3
13: Ut ← Compute the eigenvector matrix of L(ℓ)t
14: (a,R) ← handleSparsity(Ut , a, δ)
15: b ← handleLowCardinality(Ut , a, τ, r)
16: R←R∪R

17: end for
18: {c1 , . . . , cm} ← outlierScore(UT(∶, a ∶ b), k)
19: Set the score of the points inR to max({c1 , . . . , cm})
20: return {c1 , . . . , cm}
21:
22: function handleSparsity(U , a, δ)
23: â ← a,R← ∅

24: for j = a to m do
25: if ∣u j ≠ 0∣ ≤ m ⋅ δ then
26: â ← j + 1
27: R←R∪ {i∣u i j ≠ 0}
28: end if
29: end for
30: return (â,R)
31: end function
32:
33: function handleLowCardinality(U , a, τ, r)
34: b ← a, v ← 0
35: while v < r and b < m do
36: b ← b + 1
37: if ∣ub ∣≠ > m ⋅ τ then
38: v ← v + 1
39: end if
40: end while
41: return b
42: end function

the same heat kernel approach. _ese similarity values are
used to update the original kNN matrixWt−1 in the previous
iteration to obtain Wt as follows:

(4.6) Wt =W(s im)
t ○Wt−1 ,

where the symbol ○ denotes the Hadamard product. _e
Hadamard product between two matrices corresponds to the
element-wise multiplication between the two matrices. _e
idea of performing the Hadamard product is to change the
relative values of the various entries in the kNN matrixWt−1
tomore closely re�ect the similarities in the sanitized spectral
embedding from the previous iteration. _is has the eòect of
keeping the same edges in the neighbourhood graph, but only
modifying the similarity between the embedded data points.
_is update procedure helps the nodes in the neighbourhood
graph to move closer or away from each other between iter-
ations as the eigenvectors are reûned. _is approach acceler-
ates the densiûcation process and the detection and separa-
tion of the outliers hidden in local non-linear subspaces.

Algorithm 2 outlierScore() – Outlier scoring algorithm.

Input: Spectral embedding UT , number of nearest neigh-
bours k.

Output: Outlier scores {c1 , . . . , cm}
1: for i = 1 to m do
2: Initialize ∆max

1 . . . ∆max
k to 0

3: for j = 1 to k do
4: p j ← jth nearest neighbor distance of y i in UT
5: ∆ j ← p j − p j−1

6: ∆max
j ← max j

s=1∆s
7: end for
8: c i ←

∑k
j=1 ∆

max
j

k
9: end for
10: return {c1 , . . . , cm}

4.2 Outlier Scoring. _e last step of the LODES algorithm
computes the outlier scores c i corresponding to each data
point x i . _e spectral embedding UT , which is obtained in
the ûnal iteration, is used for computing the scores. For each
point y i that is embedded according toUT , the distance p j to
its jth nearest neighbor is computed for each j ∈ {1, . . . , k}.
_e embedded representation UT is used for computing dis-
tances. For each value of j ∈ {1, . . . , k} we compute the value
of ∆ j = p j − p j−1 and compute ∆max

j = max j
s=1∆s . In this

computation, the value of p0 is 0 for the case where j = 1 and
∆ j = p1 − p0. _e outlier score of x i is simply the arithmetic
mean of ∆max

1 , . . . , ∆max
k . _e scoring approach works well

because the spectral embedding is tailored for ûnding out-
liers that are well-separated from the inliers based on their
local density diòerence and subsequent sanitization of eigen-
vectors. As we will show in the experimental section (Sec-



tion 5), the resulting approach shows superior results com-
pared to the state-of-the-art methods.

4.3 Computational Complexity. Let us consider the com-
plexity of a single iteration of LODES. _e cost of comput-
ing the kNN matrix is O(nm logm), with the use of a k-d
tree index. _e kNN matrix and the Laplacian can be con-
structed in O(mk) time by using a sparse representation
of the matrix. _e eigendecomposition of a sparse Lapla-
cian matrix containing O(km) non-zero entries is given by
O((m+ km)g+ g2). Here, g is an user-deûned integer that is
much smaller than m (based on the Lanczosmethod). _ere-
fore, the cost of a single iteration of LODES is dominated by
theO(km) number of entries in the sparsematrix. For T iter-
ations this cost is given as O(Tkm). As will be demonstrated
in the experiments performed in Section 5, in practice the
number of iterations required by LODES to separate outliers
is insigniûcant as compared to the number of data points.

5 Experimental Evaluation.
In this section we perform an extensive experimental analysis
of LODES and compare its performance with state-of-the-art
outlier analysis methods. We start by discussing the details
of the data sets in Section 5.1. _e baselines are described in
Section 5.2. _e accuracy of LODES is compared with the
baselines in Section 5.3. Finally, in Section 5.4, we analyze
how sensitive the accuracy is to the parameter k.

5.1 Data Sets. We used 11 real data sets from the UCI
Machine Learning Repository1. _e important features of
all these data sets are given in Table 1. In data sets with
unbalanced classes, the majority classes are labeled as inliers,
while the minority class is labeled as outliers. In data sets
with reasonably balanced classes, a minority class is created
by uniformly down-sampling one of the majority classes.
_e summary results are presented for all the 11 data sets.
However, because of space constraints, more detailed results,
such as the full Receiver Operating Characteristics (ROC)
and sensitivity curves are presented only for a subset of 4 data
sets, which areGlass, Pendigits, Ecoli, andVowels. We refer
to these four data sets as the primary data sets.

5.2 Baselines. We use a combination of state-of-the-art
density-based techniques (LOF [6]), angle-based methods
(FastABOD [15]), subspace exploration techniques (HiCS
[7]), and spectral techniques (OutDST [5]) as baselines.
LODES and OutDST use the bandwidth σ to construct the
kNN matrix. Its value is estimated using Eq. (4.5). _ere are
a few other parameters that are required by HiCS and Out-
DST, they are set to their default values. Concretely, for HiCS
we set M = 50, α = 0.1, candidate_cuto f f = 400. As Out-

1https://archive.ics.uci.edu/ml/datasets.html

Table 1: Summary of the data sets.

data set points attributes percent
outliers (%)

Glass 214 9 4.2
Pendigits 6870 16 2.2
Ecoli 336 7 2.6
Vowels 1456 12 3.4
Cardio 1831 21 9.6
Wine 129 13 7.7
_yroid 3772 6 2.4
Vertebral 240 6 12.5
Yeast 1364 8 4.7
Seismic 2584 11 6.5
Heart 224 44 4.4

DST requires the percentage of outliers present in the data set,
this quantity is provided to it as input. OutDST’s parameter
γ is varied from 0.5 to 0.8 and a value of γ is chosen, such
that the diòerence between the number of outliers found and
present in the data set is minimal. _e value of γ correspond-
ing to the minimal diòerence is used for generating the ûnal
results. Lastly, for LODES the default parameter setting is as
follows: k = 10, r = 2, τ = 1%, γ = 2%, and we always executed
the algorithm for 10 iterations. _e value of k was always the
same across all algorithms. Unless otherwise speciûed, these
default parameter settings are used.

5.3 ComparingAccuracy. In this section, wewill compare
the accuracy of LODES with the baselines. _e aforemen-
tioned default parameter settings are used for LODES. We
used the Receiver Operating Characteristics (ROC) curves to
generate the full trade-oò between the true positive rate (re-
call) and the false positive rate. A summary measure of the
accuracy is the area under the ROC curve (AUC). _is sum-
mary measure is shown across all data sets, although the de-
tailed ROC curves are shown only on the primary data sets.
_e ROC curves for these data sets are shown in Figure 4(a)
to (d). It can be observed that the ROC of LODES signif-
icantly dominates the baselines. _e key reason for this is
the local-density based spectral embedding and the superior
eigenspace exploration strategy used by LODES to navigate
through the eigenvectors that are important for discovering
outliers.

It is noteworthy that the OutDST method does not per-
form particularly well over the various data sets in spite of be-
ing a spectral method like our technique. _is diòerence can
be attributed to the tailoring of the iterative spectral method
in our approach and the local density-based spectral embed-
ding used for outlier analysis. Particularly interesting is the
behavior of LoF, HiCS and LODES on the Vowels data set.
_e ROC curve forVowels is shown in Figure 4(d). Although
the AUC of HiCS and LoF on Vowels is better than LODES
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Figure 4: ROC curves for the primary data sets.

by 1% and 3.5% respectively, LODES demonstrates the ability
to capture outliers signiûcantly earlier than HiCS. _e large
initial jump in the ROC of LODES can be attributed to the
outliers detected in the sparse eigenvectors, which are found
through successive local-densiûcation of the spectral embed-
ding. A similar initial jump in the ROC of LODES can be
observed for the Pendigits data set shown in Figure 4(b).

Next, the AUC of all the methods and data sets is shown

Table 2: Comparison of AUC. _e top-2 AUCs are shown in
bold, while the rest are greyed.

Data Set LODES HiCS OutDST FastABOD LOF
Glass 87.31 60.4 46.61 60.05 78.26
Pendigits 94.4 62.42 82.89 66.39 52.55
Ecoli 89.29 81.34 26.5 87.32 86.30
Vowels 91.14 92.17 40.01 63.67 94.67
Cardio 72.08 63.02 30.78 94.52 59.67
Wine 96.6 48.5 92.43 82.5 62.18
_yroid 68.40 76.82 51.2 55.58 67.14
Vertebral 58.20 56.60 48.2 34.80 59.39
Yeast 81.4 59.48 69.89 84.55 56.44
Seismic 63.43 60.58 66.79 70.91 57.39
Heart 59.06 52.10 56.25 40.14 30.28

Table 3: Comparison of F1-score for 10% highest ranked data
points. _e top-2 F1-scores are shown in bold, while the rest
are greyed.

Data Set LODES HiCS OutDST FastABOD LOF
Glass 0.263 0.132 0.132 0.197 0.132
Pendigits 0.285 0.097 0.007 0.017 0.081
Ecoli 0.328 0.188 0.047 0.328 0.328
Vowels 0.328 0.328 0.000 0.133 0.400
Cardio 0.351 0.185 0.033 0.597 0.206
Wine 0.777 0.079 0.341 0.253 0.000
_yroid 0.055 0.166 0.026 0.047 0.111
Vertebral 0.185 0.111 0.000 0.000 0.111
Yeast 0.358 0.159 0.153 0.441 0.119
Seismic 0.131 0.140 0.107 0.196 0.103
Heart 0.161 0.000 0.062 0.000 0.000

in Table 2. For a given data set only the top-2 winners are
highlighted in bold. Except for the Seismic and Vowels data
sets, the AUC of LODES is among the top-2 winners for all
data sets. In some data sets, such asGlass, it shows signiûcant
improvement even over the second best result. In cases where
it is second-best, it is usually a close second to the best-
performing result. _e main point here is that LODES is
extremely consistent across diòerent data sets compared to
the state-of-the-art methods. _is demonstrates the ability
of LODES to detect outliers in high-dimensional manifolds,
which are hard to detect using other techniques. At the same
time, LODES can also easily ûnd outliers that can be detected
by othermethods. _us, the combination of local density and
spectral techniques enables consistent and reliable detection
of outliers in a large number of real data sets.

As stated in [5], OutDST is not optimized to ûnding the
ROC, and is primarily designed for labeling outliers, as op-
posed to scoring them. _erefore, in [5], the F1-score is used
as a measure for demonstrating OutDST’s eòectiveness. We
follow the same principle and compute the F1-score for all
methods using the top 10% points. _ese F1-scores are shown



in Table 3. Observe that LODES again shows signiûcantly bet-
ter performance against all the competitors, including Out-
DST. _e F1-score of LODES is among the top-2 for 9 data
sets, while HiCS is in the top-2 for 4 data sets, OutDST in 2
data sets, FastABOD in 5 data sets, and LOF in 4 data sets.

5.4 Analyzing Sensitivity to k. Finally, we analyze the pa-
rameter sensitivity of the parameter k, which regulates the
number of nearest neighbors. Since this parameter is used
by all the methods, its sensitivity can be studied in all meth-
ods. We plot the AUC against the value of k for the primary
data sets in Figure 5(a) to (d). It can be observed that all the
methods, except OutDST, are largely insensitive to the value
of k. _is is of course a positive characteristic of both LODES
and the baselines.
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Figure 5: Sensitivity of the outlier detection methods to the
parameter k or the number of k-nearest neighbours.

OutDST demonstrates high sensitivity to k. On the other
hand, even though LODES is an spectral outlier detection
technique, like OutDST, its accuracy is not highly sensitive
to k. An inappropriate value of k adds edges to the neigh-
bourhood graph that are inconsistent with the local-density
structure. Such inconsistent edges dramatically reduce the
quality of the spectral embedding. _e relative insensitivity
of LODES to the parameter k can be attributed to its ability to
handle inconsistent edges in the neighbourhood graph. _e
similarity update step of LODES adjusts the neighbourhood
graph, such that the weights of these inconsistent edges are
signiûcantly reduced a�er each iteration. _us, the iterative
nature of LODES helps to mitigate the adverse eòects exhib-

ited by improper values of k, while other spectral techniques
remain susceptible to it.

6 Conclusion.
Spectral methods are used widely in clustering because of
their ability to discover clusters of varying shapes and sizes.
_erefore, it is natural to explore whether such methods can
also be used in the context of outlier analysis in order to
discover outliers embedded in manifolds of arbitrary shape.
However, spectral methods are o�en optimized to clustering
and they do not work particularly well for outlier analysis.
In this paper, we discussed an iterative approach for discov-
ering a high-quality spectral embedding by combining local
density-based methods with spectral methods. _e embed-
ding obtained from the proposed approach is tailored for out-
lier analysis. Our experimental results show signiûcant per-
formance improvements over several state-of-the-art outlier
analysis methods.
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