
Self-Attentive Attributed Network Embedding
Through Adversarial Learning

Wenchao Yu1, Wei Cheng1∗, Charu Aggarwal2, Bo Zong1, Haifeng Chen1∗, and Wei Wang3∗
1NEC Laboratories America, Inc. 2IBM Research AI

3Department of Computer Science, University of California Los Angeles

{wyu,weicheng,bzong,haifeng}nec-labs.com, charu@us.ibm.com, weiwang@cs.ucla.edu

Abstract—Network embedding aims to learn the low-
dimensional representations/embeddings of vertices which pre-
serve the structure and inherent properties of the networks. The
resultant embeddings are beneficial to downstream tasks such as
vertex classification and link prediction. A vast majority of real-
world networks are coupled with a rich set of vertex attributes,
which could be potentially complementary in learning better
embeddings. Existing attributed network embedding models,
with shallow or deep architectures, typically seek to match
the representations in topology space and attribute space for
each individual vertex by assuming that the samples from the
two spaces are drawn uniformly. The assumption, however, can
hardly be guaranteed in practice. Due to the intrinsic sparsity of
sampled vertex sequences and incompleteness in vertex attributes,
the discrepancy between the attribute space and the network
topology space inevitably exists. Furthermore, the interactions
among vertex attributes, a.k.a cross features, have been largely
ignored by existing approaches. To address the above issues, in
this paper, we propose NETTENTION, a self-attentive network
embedding approach that can efficiently learn vertex embeddings
on attributed network. Instead of sample-wise optimization, NET-
TENTION aggregates the two types of information through min-
imizing the difference between the representation distributions
in the low-dimensional topology and attribute spaces. The joint
inference is encapsulated in a generative adversarial training
process, yielding better generalization performance and robust-
ness. The learned distributions consider both locality-preserving
and global reconstruction constraints which can be inferred
from the learning of the adversarially regularized autoencoders.
Additionally, a multi-head self-attention module is developed to
explicitly model the attribute interactions. Extensive experiments
on benchmark datasets have verified the effectiveness of the
proposed NETTENTION model on a variety of tasks, including
vertex classification and link prediction.

Index Terms—network embedding, attributed network, deep
embedding, generative adversarial networks, self-attention

I. INTRODUCTION

Low-dimensional network representations of vertices have

proved to be extremely useful as a feature extraction mech-

anism for a wide variety of network prediction and analysis

tasks such as vertex classification and link prediction. The

basic idea of network embedding is to use dimension reduc-

tion techniques to learn compact vertex embeddings while

preserving the neighborhood information. Prior methods, such

as DeepWalk [1], node2vec [2] and SDNE [3], have focused

primarily on preserving network topology structure while

the attributes associated with each vertex have largely been

∗Corresponding authors.

ignored. In real-world scenarios, however, apart from network

topology information, vertices are often associated with a rich

set of attributes, e.g. user profiles in social networks, article’s

topic information in citation network. These attributes not

only provide the proximity information in the attribute space,

but also guide the formation of networks [4], [5]. Integrating

the informative attributes with network topology can benefit

network analysis tasks.

Recent work on attributed network embedding shows that

jointly learning network representations with network topology

information and vertex attributes enhances the performance on

various tasks. Existing methods include matrix factorization

based shallow models that enforce the homophily property

between attributes and network topology in the representation

space [5], [6], as well as neural network based deep models

that explore the highly non-linear property in the embedding

space and aggregate attributes/features from vertices’ local

neighborhoods [7]–[10].

Despite the recent progresses of attributed network embed-

ding, existing approaches face two major open challenges. 1)

Previous methods [6]–[10] seek to match the representations

in topology space and attribute space for each individual

vertex by assuming that the samples from the two spaces

are drawn uniformly. The assumption, however, can hardly

be guaranteed. On one hand, to capture the network topology

information, most network embedding approaches employ

network sampling techniques to derive vertex sequences as

training datasets. However, the sampling strategy suffers from

the data sparsity problem since the total number of vertex

sequences is usually very large in real networks and it is often

intractable to enumerate all [1]–[3]. On the other hand, in

real-world problems, vertex attribute data are sparse, noisy

and often incomplete due to measurement errors and ad hoc

data collection techniques [3], [9]. Consequently, discrepancy

between topology space and attribute space inevitably exists

for individual vertex. As such, it is not reasonable to force

the learned low-dimensional representations of each vertex in

the two spaces to be in complete consensus. 2) An effective

embedding approach on attributed network relies on high-

order combinatorial attributes, which capture the interactions

among vertex attributes. Modeling different orders of attribute

interactions explicitly with good interpretability is nontrivial

and has yet to be explored by existing embedding models.

To address the aforementioned challenges, we propose

758

2019 IEEE International Conference on Data Mining (ICDM)

2374-8486/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDM.2019.00086

Authorized licensed use limited to: NEC Labs. Downloaded on November 05,2020 at 16:28:42 UTC from IEEE Xplore. Restrictions apply.

Consensus
embedding

Adversarial
learning

RNN
Encoder

RNN
Decoder

MLP
Encoder

MLP
Decoder

Discriminator

Encoding of
each vertex

Locality
constraint

Fields of Attributes

Field

Field

Field

Field

Interaction
Layer

Fig. 1: Illustration of NETTENTION, the deep network embed-

ding architecture through adversarial learning. The encoded

walks extracted from the network (denoted as x) and attributes

(denoted as z) pass through the corresponding encoders

to learn the distributions over topology space and attribute

space. The joint optimization of these two distributions is

encapsulated in a generative adversarial training process. The

interactions of attributes among different fields are modeled

using a self-attention mechanism.

NETTENTION, an adversarially regularized self-attentive em-

bedding learning approach that can efficiently learn vertex

embeddings on attributed networks via adversarial training.

These vertex embeddings well capture the network structure

by jointly considering both locality-preserving and global

reconstruction constraints in the network topology space and

attribute space. Specifically, two deep autoencoding archi-

tectures are proposed to capture the underlying high non-

linearity in both network structure and attributes, as shown

in Figure 1. NETTENTION employs a discrete recurrent neural

network autoencoder (RNN autoencoder) to learn a continu-

ous vertex representation distribution in the topology space

with sampled sequences of vertices as inputs. In parallel,

a multilayer perceptron autoencoder (MLP autoencoder) is

adopted to learn the distribution in the attribute space. The

interactions of attributes among different fields are modeled

using a self-attention mechanism (denoted as interaction layer

in Figure 1). Additionally, NETTENTION enforces the learned

vertex representations to preserve the neighborhood proximity

with the locality constraint derived from the network structure.

In order to learn a coherent and complementary represen-

tation from the topological structure and vertex attributes

of a network, we propose a novel strategy to minimize the

difference between the representation distributions in the low-

dimensional topology and attribute spaces, which encapsulates

a join inference in a generative adversarial training process.

Extensive experiments on benchmark datasets have verified the

effectiveness of our proposed approach on a variety of tasks,

including vertex classification, link prediction and network

visualization. To summarize, the main contributions of this

work are as follows:

• A novel deep self-attentive attributed network embedding

model, NETTENTION, has been proposed to learn vertex

representations through minimizing a penalized form of

the Wasserstein distance between the distributions from

topology space and attribute space.

• A self-attention layer has been designed to learn the in-

teractions of attributes among different fields, a.k.a. cross

features, which enhances network analysis performance.

• Due to the intrinsic sparsity and incompleteness in topo-

logical structure and network attributes, NETTENTION

proposes to use a generative adversarial network based

regularizer to pull the embedding distributions in the two

spaces together, so as to learn a consensus embedding.

Thus, NETTENTION obtains better generalization perfor-

mance and robustness.

• Extensive experiments have been conducted on tasks

of link prediction, vertex classification and visualiza-

tion using real-world information networks. Experimental

results demonstrate the effectiveness and efficiency of

NETTENTION.

The rest of this paper is organized as follows. In Sec-

tion II, we review the preliminary knowledge including gen-

eral network embedding models, optimal transport theory

and attention mechanism. In Section III, we describe the

NETTENTION model to learn low dimensional representations

though adversarial learning. In Section IV, we demonstrate the

performance of NETTENTION by adapting this joint learning

framework on tasks of vertex classification, link prediction

and visualization. In Section V, we compare the NETTENTION

framework to other network embedding algorithms and discuss

several related works. Finally, in Section VI we conclude this

study and mention several directions for future work.

II. PRELIMINARIES

A. Network Embedding
Network embedding approaches seek to learn representa-

tions that encode structural information of the network. These

approaches learn a mapping that embeds vertices as points

in a low-dimensional space. Given the encoded vertex set

{x(1), ...,x(n)}, finding an embedding fφ(x
(i)) of each x(i)

can be formalized as an optimization problem [11],

min
φ,ψ

∑
1≤i<j≤n

L(fφ(x(i)), fφ(x
(j)), ϕij) + λ · R(ψ;x) (1)

where fφ(x) ∈ R
d is the embedding result for a given

input x, L(·) is the loss function between a pair of inputs,

ϕij is the weight between x(i) and x(j), R(·) serves as a

regularizer such as autoencoder [3]. In this paper, we consider

the Laplacian Eigenmaps (LE) that enables the embedding to

preserve the locality property of network structure. Formally,

the embedding can be obtained by minimizing the following

objective function

LLE(φ;x) =
∑

1≤i<j≤n
‖fφ(x(i))− fφ(x(j)‖2ϕij . (2)

759

Authorized licensed use limited to: NEC Labs. Downloaded on November 05,2020 at 16:28:42 UTC from IEEE Xplore. Restrictions apply.

B. Generative Adversarial Networks

The generative adversarial networks (GANs) [12] build an

adversarial training platform for two players, namely generator
gθ(·) and discriminator dw(·) to play a minimax game. Here

w and θ are model parameters.

min
θ

max
w

E
x∼Pdata(x)

[log dw(x)] + E
z∼Pg(z)

[log (1− dw(gθ(z)))]
(3)

The generator gθ(·) tries to map the noise to the input space

as closely as the true data, while the discriminator dw(x) rep-

resents the probability that x comes from the data rather than

the noise. It aims to distinguish real data distribution Pdata(x)
and fake sample distribution Pg(z), e.g. z ∼ N (0,1). The

Jensen-Shannon divergence is originally used by GANs which

is known to suffer from training unstability. To overcome this

problem, GANsWasserstein GANs [13] use the Earth-Mover

(Wasserstein-1) distance, and solve the problem

min
θ

max
w∈W

E
x∼Pdata(x)

[dw(x)]− E
z∼Pg(z)

[dw(gθ(z))]. (4)

The Lipschitz constraint W on the discriminator has been kept

by clipping the weights of the discriminator within a compact

space.

III. APPROACH

We consider the attributed network embedding problem as

finding a transformation that maps the structural input data

to lower-dimensional representations. The resultant represen-

tations can be used in the downstream tasks, such as link

prediction and vertex classification.

A. Problem Definition

Let G(V, E ,Z) denote an attributed network with n vertices

(n = |V|). E is the edge set and Z ∈ R
n×d(a)

0 is the attribute

matrix where z = Zi,: ∈ R
d
(a)
0 denotes the attribute vector of

the ith vertex. X ∈ R
n×d(g)0 represents the encoded vertex

vectors through a lookup table or one-hot encoding. And

x = Xi,: ∈ R
d
(g)
0 denotes the vector representation of the ith

vertex. A random walk generator is utilized to obtain truncated

random walks (i.e. sequences of vertices) rooted from each

vertex v ∈ V in G(V, E ,Z). A walk is sampled randomly

from the neighbors of the last visited vertex until the preset

maximum length is reached.

Definition 1 (Network Homophily). Given a network
G(V, E ,Z), vertices of similar attributes are likely to be
close to each other (i.e. connected by edges) than dissimilar
ones. That is, the low-dimensional vertex representations of
{Xi,:}ni=1 are drawn from a distribution similar to that of the
representations of the attributes {Zi,:}ni=1.

Inspired by the principle of homophily [4], we assume that

the formation of network is highly correlated with vertex

attributes, and leveraging vertex attribute information can

improve network embedding performance. Therefore, in this

paper, we learn a low-dimensional vertex embedding based on

the network topology G(·) and the attribute matrix Z, such

Copy Reconstruction Error
(Cross Entropy Loss)

Walk

Walk
Embedding

Walk

Prediction
Probability

Sequence Length

Walk
Embedding

Hidden Layer
Embedding

RNN Encoder

RNN Decoder

Fig. 2: Illustration of the RNN autoencoder with walks ex-

tracted from network as input

that the learned representations can preserve the proximity

existing in both the network topology space and the attribute

space. The key point is to view both network structure and

attribute information as the latent factors to drive the formation

of the network. Formally, let f
(g)
φ (x) and f

(a)
θ (z) denote the

learned representations of network topological structure and

attribute information, respectively. A mapping f{X,Z} →
M is going to be learned by minimizing the disagreement

L(f (g)φ (X), f
(a)
θ (Z)) between the learned topology space and

structure space. Here, M ∈ R
n×d is the resultant representa-

tion matrix. Each row of M can be viewed as a vertex feature

vector.

B. The NETTENTION Model

In this section, we propose NETTENTION, a self-attentive

deep attributed network embedding model through adversarial

learning. As illustrated in Figure 1, two deep autoencoding

architectures are proposed to capture the underlying high non-

linearity in both network structure and vertex attribute spaces.

Autoencoders are popularly used for dimension reduction,

providing informative low dimensional representations of input

data. In NETTENTION, a discrete RNN autoencoder is em-

ployed, as depicted in Figure 2, to learn a continuous vertex

representation distribution in the topology space with sampled

sequences of vertices as inputs. The RNN autoencoder can be

trained individually by minimizing the negative log-likelihood

of reconstruction, which is indicated by cross entropy loss in

the implementation

L(g)
AE (φ, ψ;x) = −Ex∼Pgraph(x)[dist(x, h

(g)
ψ (f

(g)
φ (x)))] (5)

where dist(x,y) = x log y + (1 − x) log(1 − y). Here

x is a sampled batch from training data. f
(g)
φ (x) is the

embedded latent representation of x. φ and ψ are parameters

of the encoder and decoder functions in the network topology

space, respectively. Similarly, in the attribute space, an MLP

760

Authorized licensed use limited to: NEC Labs. Downloaded on November 05,2020 at 16:28:42 UTC from IEEE Xplore. Restrictions apply.

autoencoder is adopted to learn the distribution. Therefore we

have,

L(a)
AE (θ, ξ; z) = −Ez∼Pattribute(z)[dist(z, h

(a)
ξ (f

(a)
θ (z)))] (6)

where θ and ξ are parameters of the encoder and decoder

functions in the attribute space, respectively.
In the training iteration of the RNN autoencoder, not only

the encoder and decoder are updated, the locality-preserving

loss is also jointly minimized,

LLE(φ;x) =
∑

1≤i<j≤n
‖f (g)φ (Xi,:)− f (g)φ (Xj,:)‖2ϕij (7)

where f
(g)
φ (x) ∈ R

d is the embedding result for a given input

x. ϕij is the weight between vertex i and j.
In order to minimize the discrepancies between attribute

distribution and network topology distribution, we propose

to use a generative adversarial training process as a com-

plementary regularizer. The process has two advantages. On

one hand, the regularizer can guide the extraction of useful

information from data [14]. On the other hand, the genera-

tive adversarial training provides more robust discrete-space

representation learning that can well address the overfitting

problem on sparsely sampled walks [15]. To be more specific,

in NETTENTION, we introduce a discriminator in the latent

space which tries to separate the generated vectors from

the encoder network f
(g)
φ (·) with network topology and the

encoder network f
(a)
θ (·) with attributes. Let f

(g)
φ (x) ∼ Pφ(x)

denotes a sample drawn from the distribution of the network

topology space Pφ(x), and f
(a)
θ (z) ∼ Pθ(z) denotes a sample

drawn from the distribution of the attribute space Pθ(z). The

dual form of the earth mover distance between Pφ(x) and

Pθ(z) can be described as follows [13],

W (Pφ(x),Pθ(z)) = sup
‖d(·)‖L≤1

Ey∼Pφ(x)[d(y)]− Ey∼Pθ(z)[d(y)]

(8)

where ‖d(·)‖L≤1 is the Lipschitz continuity constraint (with

Lipschitz constant 1). If we have a family of functions

{dw(·)}w∈W that are all K-Lipschitz for some K, then we

have

W (Pφ(x),Pθ(z)) ∝max
w∈W

E
x∼Pgraph(x)

[dw(f
(g)
φ (x))]

− E
z∼Pattribute(z)

[dw(f
(a)
θ (z))] (9)

In our adversarial setup, we use the parameterized encoders

f
(g)
φ (x) and f

(a)
θ (z) as generators, and the training of genera-

tor and discriminator are separated. As for the generators, the

cost function is defined by,

LGEN(θ, φ;x, z) =Ex∼Pgraph(x)[dw(f
(g)
φ (x))]

− Ez∼Pattribute(z)[dw(f
(a)
θ (z))] (10)

Similarly, and the cost function of discriminator is defined

by,

LDIS(w;x, z) =− Ex∼Pgraph(x)[dw(f
(g)
φ (x))]

+ Ez∼Pattribute(z)[dw(f
(a)
θ (z))] (11)

Fields of
Attributes

Attention Map

Output
Input

Embedding

Field

Field

Field

Field

Fig. 3: Illustration of attribute interaction layer with a single

self-attention head

NETTENTION learns smooth representations by jointly min-

imizing the reconstruction errors of autoencoders with network

topological structure and vertex attributes as inputs, and the

locality-preserving loss within an adversarial training process.

Specifically, we consider solving the joint optimization prob-

lem with objective function

L(φ, θ, ψ, ξ, w) = L(g)
AE (φ, ψ;x) + L(a)

AE (θ, ξ; z)

+ λ1LLE(φ;x) + λ2W (Pφ(x),Pθ(z)) (12)

In order to learn the interactions among vertex attributes,

a.k.a cross features, an interaction layer has been introduced

in the attribute space (as shown in Figure 1). In this layer,

self-attention mechanism has been adopted to map the at-

tributes of different fields, such as “author profiles” and “paper

keywords”, with weighted sum to the output by computing

its similarity against different attribute fields, as illustrated in

Figure 3. Formally, let p denote the total number of fields in

the input attributes. For each field {z(i)
0 }pi=1, a linear mapping

function Φ(·) is used to map the field to a low-dimensional

dense vector Φ(z
(i)
0) ∈ R

d
(a)
1 . By applying the mapping

function on all fields, the output of one instance i would

be a concatenation of multiple embedding vectors denoted by

Z0i,: ∈ R
p×d(a)

1 ,

Z0i,: = Φ([z
(1)
0 , z

(2)
0 , ..., z

(p)
0]) (13)

In this paper, we employ the scaled dot-product atten-

tion [16] to compute the outputs with attention weights. This

self-attention mechanism consists of three parts: the queries Q,

the keys K and the values V . All of these parts are derived

from the same embedding Z0 with the ReLU activation,

such that Q = ReLU(Z0W q), K = ReLU(Z0W k), and

V = ReLU(Z0W v), where W q,W k,W v ∈ R
d
(a)
1 ×d(a)

1

are parameters to be learned. We then compute the attention

map using the queries and keys as shown in Figure 3. Each

entry of the attention map represents the interaction intensity

of attributes between two different fields. The output of the

self-attention module is computed together with the values,

Z = σ

⎛
⎜⎝QKT

√
d
(a)
1

⎞
⎟⎠V (14)

761

Authorized licensed use limited to: NEC Labs. Downloaded on November 05,2020 at 16:28:42 UTC from IEEE Xplore. Restrictions apply.

where σ(·) is the Softmax function. Additionally, an attribute

field may also involved in the interaction in different repre-

sentation subspaces. We use multi-headed attention to achieve

this since it allows the model to jointly attend to information

from different subspaces. The final output from the interaction

layer is defined as follows,

Z = σ

⎛
⎜⎝Q1K

T
1√

d
(a)
1

⎞
⎟⎠V 1⊕σ

⎛
⎜⎝Q2K

T
2√

d
(a)
1

⎞
⎟⎠V 2⊕...⊕σ

⎛
⎜⎝QhK

T
h√

d
(a)
1

⎞
⎟⎠V h⊕Z0

(15)

where ⊕ denotes concatenation operation, h is the number of

heads and Z ∈ R
n×d(a)

0 , d
(a)
0 = (h+ 1)× p× d(a)1 .

Theorem 1. Let Pφ(x) be any distribution. Let Pθ(z) be
the distribution of f (a)θ (z) where z is a sample drawn from
distribution Pattribute(z) and f (a)θ (·) is a function satisfying the
local Lipschitz constants Ez∼Pg(z)[L(θ, z)] < +∞. Then we
have

∇θL = −∇θEx∼Pattribute(x)[dist(x, h(a)ξ (f
(a)
θ (x)))]

−λ2∇θEz∼Pattribute(z)[dw(f
(a)
θ (z))] (16)

∇wL = −λ2∇wEx∼Pgraph(x)[dw(f
(g)
φ (x))]

+λ2∇wEz∼Pattribute(z)[dw(f
(a)
θ (z))] (17)

∇φL = λ1∇φ
∑

1≤i<j≤n
‖f (g)φ (Xi:)− f (g)φ (Xj:)‖2ϕij

−∇φEx∼Pgraph(x)[dist(x, h(g)ψ (f
(g)
φ (x)))]

+λ2∇φEx∼Pgraph(x)[dw(f
(g)
φ (x))] (18)

∇ψL = −∇ψEx∼Pgraph(x)[dist(x, h(g)ψ (f
(g)
φ (x)))] (19)

∇ξL = −∇ξEx∼Pattribute(x)[dist(x, h(a)ξ (f
(a)
θ (x)))] (20)

Proof. Let X ⊆ R
n be a compact set, and

V (d̃, θ) = Ey∼Pφ(x)[d̃(y)]− Ey∼Pθ(z)[d̃(y)]

= Ey∼Pφ(x)[d̃(y)]− Ez∼Pattribute(z)[d̃(f
(a)
θ (z))] (21)

where d̃ lies in D = {d̃ : X → R, d̃ is continuous and

bounded, ‖d̃‖ ≤ 1}. Since X is compact, we know by the

Kantorovich-Rubinstein duality [13] that there exists a d ∈ D
that attains the value

W (Pφ(x),Pθ(z)) = sup
d̃∈D

V (d̃, θ) = V (d, θ) (22)

and D∗(θ) = {d ∈ D : V (d, θ) = W (Pφ(x),Pθ(z))} is non-

empty. According to the envelope theorem [17], we have

∇θW (Pφ(x),Pθ(z)) = ∇θV (d, θ) (23)

for any d ∈ D∗(θ). Then we get

∇θW (·) = ∇θV (d, θ)

= ∇θEy∼Pφ(x)[d(y)]− Ez∼Pattribute(z)[d(f
(a)
θ (z))]

= −∇θEz∼Pattribute(z)[dw(f
(a)
θ (z))] (24)

By adding the loss term from the autoencoder from attribute

space, we have,

∇θL = −∇θEx∼Pattribute(x)[dist(x, h
(a)
ξ (f

(a)
θ (x)))]

−λ2∇θEz∼Pattribute(z)[dw(f
(a)
θ (z))] (25)

Eq.(17)-(20) are straightforward applications of the derivative

definition.

We now have all the derivatives needed. This joint archi-

tecture requires dedicated training objective for each part. To

train the model, we use block coordinate descent to alternate

between optimizing different parts of the model: (1) for

RNN autoencoder reconstruction error in the network topology

space L(g)
AE (φ, ψ;x) and locality-preserving loss LLE(φ;x),

updating φ and ψ; (2) for MLP autoencoder reconstruction

error in the attribute space L(a)
AE (θ, ξ; z), updating θ and ξ, the

interaction layer is optimized as an end-to-end model; (3) for

the discriminator in the adversarial training process, updating

w; (4) for RNN encoder and MLP encoder, updating φ and θ.

The pseudocode of the full approach is given in Algorithm 1.

Algorithm 1 NETTENTION Model Training

Require: the walks generated from input graph, network attributes
from different fields, maximum training epoch nepoch, the number
of discriminator training iteration nD.

1: for epoch = 0; epoch < nepoch do
2: (1) Network topology space encoding
3: Sample {x(i)}Bi=1 ∼ Pgraph(x) from the walks

4: Compute latent representation f
(g)
φ (x(i))

5: Compute reconstruction output h
(g)
ψ (fφ(x

(i)))

6: Compute L(g)
AE (φ, ψ;x) and LLE(φ;x) using Eq. (5), (7)

7: Back propagate loss and update φ and ψ using Eq. (18), (19)
8:

9: (2) Network attribute space encoding
10: Compute interaction layer output Z using Eq. (15)
11: Sample {z(i)}Bi=1 ∼ Pattribute(z) from the attribute vectors

12: Compute latent representation f
(a)
θ (z(i))

13: Compute reconstruction output h
(a)
ξ (f

(a)
θ (z(i)))

14: Compute L(a)
AE (θ, ξ; z) using Eq. (6)

15: Back propagate loss and update θ and ξ using Eq. (16), (20)
16:

17: (3) Discriminator training
18: for n = 0, n < nD do
19: Sample {x(i)}Bi=1 ∼ Pgraph(x) from the walks
20: Sample {z(i)}Bi=1 ∼ Pattribute(z) from the attribute vectors

21: Compute representations f
(g)
φ (x(i)) and f

(a)
θ (z(i))

22: Compute LDIS(w;x, z) using Eq.(11)
23: Back propagate loss and update w using Eq.(17)
24: end for
25:

26: (4) RNN/MLP encoders adversarial training
27: Sample {x(i)}Bi=1 ∼ Pgraph(x) from the walks
28: Sample {z(i)}Bi=1 ∼ Pattribute(z) from the attribute vectors

29: Compute representations f
(g)
φ (x(i)) and f

(a)
θ (z(i))

30: Compute LGEN(θ, φ;x, z) using Eq.(10)
31: Backpropagate loss and update θ and φ using Eq.(16), (18)
32: end for

With this generative adversarial training, the latent space

of RNN autoencoder provides an optimal embedding of the

762

Authorized licensed use limited to: NEC Labs. Downloaded on November 05,2020 at 16:28:42 UTC from IEEE Xplore. Restrictions apply.

vertices with the guided information from the attribute space.

Notably, the usage of RNN autoencoder in the topology space

takes the vertex order information of the sampled walks into

consideration, which is well-suited for vertex representation

learning. After the training of NETTENTION, we obtain vertex

representations f
(g)
φ (x) of the network by passing the input

walks through the encoder function.

Theoretical Analysis. We now show the connection be-

tween the optimization over the NETTENTION objective func-

tion L(φ, θ, ψ, ξ, w) and the optimization of the autoencoder

reconstruction errors defined with optimal transport cost [18],

[19]. From the analysis we will see that, the adversarial

training process in NETTENTION is equivalent to optimize the

optimal transport cost between the input and output distribu-

tions of RNN/MLP autoencoders, which enforcing the latent

embeddings in topology space and attribute space to follow

the same prior distribution.

Let x ∼ Pgraph denote the samples drawn from the input,

y ∼ Pprior denote the samples drawn from a prior distribution

in the latent space, f
(g)
φ and h

(g)
ψ denote the encoding and

decoding functions, and Pφ and Pψ denote the corresponding

distributions, respectively.

Theorem 2. For Pψ defined above with deterministic Pψ(y|x)
and any function h(g)ψ : Y �→ X ,

Wc(Pgraph,Pψ) inf
Γ∈P(x∼Pgraph,y∼Pprior)

E(x,y)∼Γ[c(x, h
(g)
ψ (y))]

inf
Pφ:Pφ=Pprior

Ex∼PgraphEPφ(y|x)[c(x, h
(g)
ψ (y))],

(26)

where Pφ is the marginal distribution of y when x ∼ Pgraph

and y ∼ Pφ(y|x) [19].

Based on Theorem 2, the objective function of autoencoder

with optimal transport cost (Wasserstein autoencoder) is de-

fined by [20],

L(g)

AE
= inf

Pφ(y|x)∈F
Ex∼PgraphEPφ(y|x)[c(x, h

(g)
ψ (y))] + λ · D(Pφ,Pprior)

(27)

where F is any nonparametric set of probabilistic encoders,

D is an arbitrary divergence between Pφ and Pprior, λ > 0 is

a hyper parameter. Similarly, we can define the Wasserstein

autoencoder in the attribute space,

L(a)

AE
= inf

Pθ(y|z)∈F
Ez∼PattributeEPθ(y|z)

[
c(z, h

(a)
ξ (y))

]
+λ · D(Pθ,Pprior)

(28)

Theorem 3. The optimization over the NETTENTION objective
function L(φ, θ, ψ, ξ, w) is equivalent to minimize the locality-
preserving loss and the Wasserstein autoencoders from the
network topology space and attribute space with same prior
distribution Pprior.

Proof. Given dist(x,y) = c(x,y), evidently the first term in

L(g)
AE and L(a)

AE are equal to the autoencoder losses defined in

Eq. (5) and Eq. (6). That is,

inf
Pφ(y|x)∈F

Ex∼PgraphEPφ(y|x)[c(x, h
(g)
ψ (y))] = L(g)

AE (φ, ψ;x)

(29)

inf
Pθ(y|z)∈F

Ez∼PattributeEPθ(y|z)
[
c(z, h

(a)
ξ (y))

]
= L(a)

AE (θ, ξ; z)

(30)

Additionally, we have two Wasserstein autoencoders follow-
ing the same prior distribution Pprior, thus,

L(g)
AE + L(a)

AE = L(g)
AE (φ, ψ;x) + L(a)

AE (θ, ξ; z) + λ · D(Pφ,Pθ) (31)

D(·) is defined with earth mover distance, then we have,

L =L(g)
AE (φ, ψ;x) + L(a)

AE (θ, ξ; z) + λ1LLE(φ;x) + λ2W (Pφ(x),Pθ(z))

=L(g)
AE (φ, ψ;x) + L(a)

AE (θ, ξ; z) + λ1LLE(φ;x) + λ2 · D(Pφ,Pθ)

=L(g)
AE + L(a)

AE + λ1LLE(φ;x)

Computational Cost. Given a network G(V, E ,Z), where

|V| = n, |E| = m, according to the definition in Eq.(2),

the overall complexity of Laplacian Eigenmaps embedding is

O(n2). In the implementation, we only consider the vertex

pairs (x(i),x(j)) that have edges between them, thus the size

of the sampled pairs reduced to O(m). The computational

complexity of learning autoencoders is proportional to the

number of parameters in each iteration. Therefore, the learn-

ing computational complexity for RNN/MLP autoencoders is

O(nepoch×(|φ|+|θ|)). Similarly, the computational complexity

for discriminator is O(nepoch × (nD × |w|)).
IV. EVALUATION

A. Datasets and Baselines

To verify the performance of the proposed NETTENTION

model, we conduct experiments on a variety of networks

summarized in Table I.

• The Cora and CiteSeer datasets consist of scientific pub-

lications classified into different classes. Each publication

in the dataset is described by a 0/1-valued word vector in-

dicating the absence/presence of the corresponding word

from the dictionary.

• Wikipedia (Wiki) [21] is a directed word network. Vertex

labels represent the Part-of-Speech (POS) tags inferred

using the Stanford POS-Tagger [22].

• The PubMed Diabetes dataset consists of scientific pub-

lications from PubMed database pertaining to diabetes

classified into one of three classes. Each publication in the

dataset is described by a TF/IDF weighted word vector

from a dictionary which consists of 500 unique words.

We compare our proposed model with baselines in three

categories: (1) baselines only using network topology fea-

tures, such as DeepWalk [23], node2vec [21] and SDNE [3].

(2) baselines only using network attributes, including XG-

Boost [24] and Logistic Regression (LR). And (3) baselines

763

Authorized licensed use limited to: NEC Labs. Downloaded on November 05,2020 at 16:28:42 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Statistics of the real-world network datasets

Dataset |V | |E| #Attribute #label
Citeseer 3,312 4,660 3,703 6

Cora 2,708 5,278 1,433 7
Wiki 2,405 12,761 4,973 17

PubMed 19,717 44,338 500 3

combining network topology and attributes to learn final

representations, including TADW [5], GAE and VGAE [7],

AANE [6], SAGE [8], DANE [9] and G2G [10]. Detailed

descriptions of baselines can be found as follows,

Network topology based baselines:
• DeepWalk [23]: DeepWalk is a skip-gram [25] based

model which learns the graph embedding with truncated

random walks.

• node2vec [21]: This approach combines the advantage of

breadth-first traversal and depth-first traversal algorithms.

The random walks generated by node2vec can better

represent the structural equivalence.

• Structural Deep Network Embedding (SDNE) [3]: SDNE

is a deep learning based network embedding model which

uses autoencoder and locality-preserving constraint to

learn vertex representations that capture the highly non-

linear network structure.

Attribute based baselines:
• XGBoost [24]: XGBoost provides a parallel tree boosting

(also known as GBDT, GBM) that solve many data

science problems in a fast and accurate way. We use

XGBoost for the vertex classification task.

• Logistic Regression (LR): Logistic regression (or logit

regression) is estimating the parameters of a logistic

model; it is a form of binomial regression.

Attributed network embedding baselines:
• TADW [5]: The text-associated DeepWalk (TADW) in-

corporates text features of vertices into network represen-

tation learning under the framework of matrix factoriza-

tion.

• GAE and VGAE [7]: VGAE/GAE is a framework for

unsupervised learning on graph-structured data based on

the (variational) auto-encoder.

• AANE [6]: Accelerated attributed network embedding

(AANE) learns an effective unified embedding repre-

sentation by incorporating node attribute proximity into

network embedding.

• SAGE [8]: SAGE is a general inductive framework that

learns a function to generate embeddings by sampling and

aggregating features from a node’s local neighborhood.

• DANE [9]: DANE is a deep attributed network embed-

ding approach, which can capture the high nonlinearity

and preserve various proximities in both topological

structure and node attributes.

• G2G [10]: G2G embeds each node as a Gaussian dis-

tribution, allowing us to capture uncertainty about the

representation.

After obtaining the features from network topology, we

create another versions of the above network embedding

algorithms in category (1) which concatenated the attributes

as the final vertex representations. These variants are denoted

as DeepWalk*, node2vec* and SDNE*. A variant of the

NETTENTION model without self-attention module is denoted

as NETTENTION*.

B. Experimental Settings

For fair comparison, we run each algorithm to generate

300 dimensional vertex representations on different datasets,

unless noted otherwise. The number of walks per vertex in

DeepWalk and node2vec is set to 20 with walk length 30,

which is the same as the random walk generation step of

NETTENTION. The window size of DeepWalk and node2vec

is optimized to 10. For the rest baselines, we utilize the default

parameter setting as described in each paper. The gradient

clipping is performed in every training iteration to avoid the

gradient explosion in NETTENTION. LSTM is adopted for

RNN encoder and decoder with stochastic gradient descent as

the optimizer in training. In the interaction layer with self-

attention, the embedding dimension d
(a)
1 for each attribute

field is set to 16, and the number of heads h is set to

4. A 6-layer MLP autoencoder is used in learning attribute

representations, and a 3-layer MLP is used in discriminator.

The hyper parameters λ1 and λ2 are set 1 in the experiments.

The MLP autoencoder and discriminator are optimized using

Adam [26]. The evaluation of different algorithms is based on

the vertex classification and link prediction accuracy using the

learned embeddings, as illustrated in the subsequent sections.

C. Classification

In this section, we use vertex features as input to a one-

vs-rest logistic regression to train the classifiers. To make

a comprehensive evaluation, we randomly select 10%, 30%,

50% of total number of vertices as the training set and use the

remaining vertices as the test set. We report Micro-F1 (Mi-F1)

and Macro-F1 (Ma-F1) as evaluation metrics. Each result is

averaged over 10 trials, as shown in Table II.

It is evident from the figure that NETTENTION outperforms

the state-of-the-art embedding algorithms on the vertex clas-

sification task on all four datasets. Among all baselines, G2G

and NETTENTION are very comparable with small training

percentage. However, as the training percentage goes from

10% to 50%, the performance of NETTENTION gets bet-

ter and beats all baselines by a large margin. Comparing

the performance of topology-based baselines, attribute-based

baselines and attributed network embedding baselines, we

observe that vertex attribute information plays an important

role in the classification task which cannot be ignored, and

better accuracy will be achieved if both network topology and

attributes are considered. Notably, the constrained version of

our method NETTENTION* that does not consider the attribute

interactions is still able to outperform most of the competing

approaches.

764

Authorized licensed use limited to: NEC Labs. Downloaded on November 05,2020 at 16:28:42 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Classification performance comparison

Methods
Citeceer Cora

10% Training 30% Training 50% Training 10% Training 30% Training 50% Training
Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 0.5046 0.4681 0.5897 0.5316 0.6017 0.5536 0.7041 0.6920 0.7290 0.7064 0.7583 0.7226
SDNE 0.5183 0.4794 0.5910 0.5399 0.6164 0.5812 0.7087 0.6943 0.7319 0.7069 0.7483 0.7173

node2vec 0.5319 0.4917 0.6159 0.5775 0.6400 0.6035 0.7230 0.7094 0.7394 0.7112 0.7662 0.7415
XGBoost 0.6391 0.5777 0.7031 0.6494 0.7120 0.6697 0.7545 0.7585 0.8100 0.7984 0.8400 0.8192

LR 0.6461 0.5931 0.6951 0.6531 0.7190 0.6724 0.7590 0.7566 0.8048 0.8019 0.8421 0.8242
DeepWalk* 0.6548 0.6017 0.6950 0.6524 0.7296 0.6797 0.7628 0.7381 0.7982 0.7906 0.8339 0.8127

SDNE* 0.6583 0.6166 0.7070 0.6601 0.7312 0.6887 0.7333 0.7095 0.8011 0.8026 0.8390 0.8223
node2vec* 0.6662 0.6126 0.7068 0.6585 0.7453 0.6932 0.7526 0.7309 0.8208 0.8191 0.8218 0.8053

TADW 0.6134 0.5516 0.6644 0.5897 0.6600 0.5985 0.7538 0.7211 0.7942 0.7697 0.8270 0.8102
AANE 0.5979 0.5489 0.6783 0.6208 0.7075 0.6640 0.7301 0.7226 0.8034 0.7822 0.8003 0.8054
GAE 0.6103 0.5560 0.6530 0.5843 0.6662 0.5962 0.7200 0.7199 0.8015 0.7807 0.8077 0.8000

VGAE 0.6116 0.5777 0.6458 0.5987 0.6470 0.5870 0.7620 0.7495 0.8078 0.7829 0.8002 0.7935
SAGE 0.5487 0.5102 0.6376 0.6081 0.6629 0.6141 0.7530 0.7481 0.8083 0.8003 0.8222 0.7984
DANE 0.6509 0.6162 0.7271 0.6736 0.7463 0.6733 0.7872 0.7634 0.8250 0.8122 0.8442 0.8355
G2G 0.6887 0.6218 0.7169 0.6810 0.7276 0.6424 0.7858 0.7628 0.8299 0.7995 0.8324 0.8161

Nettention* 0.6914 0.6202 0.7305 0.6830 0.7441 0.6810 0.7939 0.7743 0.8306 0.8149 0.8496 0.8382
Nettention 0.6956 0.6306 0.7428 0.6927 0.7563 0.6942 0.7971 0.7781 0.8479 0.8209 0.8522 0.8461

Methods
Wiki PubMed

10% Training 30% Training 50% Training 10% Training 30% Training 50% Training
Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

DeepWalk 0.5559 0.4437 0.6378 0.5254 0.6634 0.6011 0.7828 0.7344 0.7892 0.7753 0.7954 0.7837
SDNE 0.5769 0.4663 0.6479 0.5327 0.6658 0.5673 0.7668 0.7465 0.8097 0.7660 0.7936 0.7781

node2vec 0.5576 0.4158 0.6070 0.4805 0.6412 0.5109 0.7860 0.7422 0.7969 0.7645 0.8025 0.7888
XGBoost 0.6240 0.5947 0.6629 0.6003 0.6871 0.6235 0.8191 0.7805 0.8215 0.7943 0.8232 0.8088

LR 0.6291 0.5928 0.6811 0.6059 0.6998 0.6203 0.8238 0.7798 0.8339 0.8016 0.8403 0.8217
DeepWalk* 0.6119 0.5820 0.6775 0.6097 0.7038 0.6213 0.8001 0.7834 0.8146 0.7999 0.8177 0.7994

SDNE* 0.6206 0.5739 0.6859 0.5982 0.6889 0.6296 0.7958 0.7793 0.8163 0.8018 0.8101 0.8071
node2vec* 0.6252 0.5827 0.6825 0.6068 0.7026 0.6316 0.7924 0.7751 0.8069 0.7990 0.8020 0.7941

TADW 0.7157 0.6223 0.7505 0.6448 0.7754 0.6530 0.8392 0.8380 0.8521 0.8570 0.8565 0.8637
AANE 0.6247 0.5357 0.7033 0.5908 0.7275 0.6847 0.7898 0.7813 0.8150 0.8093 0.8179 0.8114
GAE 0.6192 0.5136 0.6507 0.5023 0.6625 0.5073 0.8243 0.8239 0.8325 0.8269 0.8369 0.8213

VGAE 0.6506 0.5143 0.6849 0.5647 0.7081 0.5818 0.8289 0.8313 0.8316 0.8196 0.8382 0.8211
SAGE 0.6181 0.5170 0.6770 0.5925 0.6893 0.5966 0.8096 0.8056 0.8220 0.8067 0.8259 0.8208
DANE 0.7354 0.6148 0.7500 0.6633 0.7729 0.6865 0.8316 0.8298 0.8433 0.8306 0.8418 0.8503
G2G 0.7231 0.6072 0.7514 0.6422 0.7714 0.6873 0.8306 0.8230 0.8402 0.8337 0.8514 0.8461

Nettention* 0.7274 0.6240 0.7701 0.6638 0.7879 0.6864 0.8210 0.8244 0.8534 0.8311 0.8623 0.8705
Nettention 0.7362 0.6300 0.7827 0.6710 0.8021 0.6973 0.8336 0.8300 0.8626 0.8416 0.8697 0.8777

TABLE III: Link prediction performance comparison mea-

sured by AUC score

Methods Citeceer Cora Wiki PubMed
DeepWalk 0.7562 0.8024 0.7630 0.8137

SDNE 0.7605 0.8230 0.7888 0.8057
node2vec 0.7517 0.8191 0.7693 0.8224
XGBoost 0.8194 0.7833 0.8374 0.8352

LR 0.8176 0.7836 0.8421 0.8458
DeepWalk* 0.8230 0.8336 0.8206 0.8959

SDNE* 0.8255 0.8311 0.8234 0.8818
node2vec* 0.8318 0.8341 0.8402 0.8934

TADW 0.7557 0.7630 0.7905 0.8649
AANE 0.7808 0.7808 0.8077 0.8529
GAE 0.8077 0.8282 0.8363 0.8941

VGAE 0.8169 0.8212 0.8523 0.8984
SAGE 0.8132 0.8490 0.8375 0.9046
DANE 0.8435 0.8634 0.8860 0.9130
G2G 0.8586 0.8933 0.8798 0.9166

Nettention* 0.8615 0.9019 0.8941 0.9361
Nettention 0.8890 0.9181 0.9072 0.9413

D. Link Prediction

Link prediction is a common task to demonstrate the

effectiveness of embedding models. The objective of link

prediction task is to infer missing edges given a network with

a certain fraction of edges removed. In the experiments, we

randomly remove 20% of edges from the network, which

serve as positive samples, and select an equal number of

vertex pairs without edges between them as negative samples.

With the vertex representation learned by network embedding

algorithms, we obtain the link prediction ranking score from

the 	2 norm of two vertex vectors. We report the area under

curve (AUC) score in link prediction task by convention. The

results for different datasets are shown in Table III.

Obviously, NETTENTION outperforms the baseline algo-

rithms across all datasets by a large margin, which is a

strong sign that the learned embeddings are useful. In detail,

NETTENTION achieves 3% to 19% improvement based in

AUC score on these four datasets. Note that, the constrained

765

Authorized licensed use limited to: NEC Labs. Downloaded on November 05,2020 at 16:28:42 UTC from IEEE Xplore. Restrictions apply.

(a) Edge percentage for training (b) Embedding dimensions

(c) Performance on different λ1 (d) NETTENTION variants

Fig. 4: Model analysis on Citeceer dataset

version of our model NETTENTION* also outperforms all

competitors. Another observation is that, the baselines based

solely on attributes achieve surprisingly strong performance on

some datasets, which is even better than some of the attributed

network embedding methods, which is another strong sign

to show the importance of vertex attributes. By comparing

NETTENTION, AANE and DANE, which all seek to minimize

the discrepancies between topology space and attribute space,

we can see the effectiveness of generative adversarial regular-

ization for improving the generalization performance in NET-

TENTION model, which shows NETTENTION can overcome

the sparsity issue existing in attributed network embedding.

E. Model Analysis

In this section, we investigate the performance of the

proposed model using different parameter set and model archi-

tectures on link prediction task. We study how the training set

size, embedding dimension and locality-preserving constraint

parameter λ1 will affect the link prediction performance.

Additionally, by changing the architecture of the NETTEN-

TION model, we can investigate the importance of different

components in NETTENTION.

In Figure 4(a), the training percentage of edges in the Cite-

ceer network changes from 50% to 90%. It can be seen that the

performance of NETTENTION and NETTENTION* increases

as the training percentage increases. Notably, with a small

proportion of training edges, the gap of AUC scores between

NETTENTION and NETTENTION* (that has no interaction

layer) is larger, which demonstrates the generalization capabil-

ity of the NETTENTION model with self-attention mechanism.

In Figure 4(b), we study the effects of embedding dimension.

The prediction performance gets saturated as the dimension

increases from 50 to 1000. Since the embedding dimension

is proportional to the model parameter size in NETTENTION,

we choose to set the embedding size to 300 as a trade-off

between the performance and efficiency of model training. We

also investigate the impact of λ1, the relative strength between

locality-preserving constraint and autoencoder constraint. The

higher the λ1, the larger the gradient coming from the locality-

preserving constraint. As observed from the Figure 4(c), a

higher λ1 not only helps the training converge fast, but also

enhances the link prediction performance on the Citeceer

network, indicating the importance of network neighborhood

information.

We also include three variants of NETTENTION to demon-

strate the importance of individual components, including

NETTENTION*, NETTENTION−LE and NETTENTION−LSTM.

As described in the previous section, NETTENTION* re-

moves the interaction layer in the NETTENTION model.

Similarly, NETTENTION−LE removes the locality-preserving

constraint, and we replace RNN autoencoder with MLP

autoencoder in NETTENTION−LSTM. It is evident from Fig-

ure 4(d) that RNN autoencoder, locality-preserving constraint,

and self-attention mechanism play important roles in NET-

TENTION model. Overfitting becomes obvious in the training

of NETTENTION−LSTM.

V. RELATED WORK

Attributed Network Embedding. Recently, a wide variety

of models have been proposed for attributed networks [5]–

[10], which show that jointly learning network represen-

tations with network topology information and vertex at-

tributes enhance the performance on various tasks. The text-

associated DeepWalk [5] incorporates text features of vertices

into network representation learning under the framework

of matrix factorization. Similarly, an accelerated attributed

network embedding learns an effective unified embedding

representation by incorporating node attribute proximity into

network embedding [6]. However, these matrix factorization

based shallow models are not enough for the complicated

attributed networks. More deep models have been proposed,

including graph convolutional neural network models [7], deep

autoencoder based models [9] and models that can handle

inductive learning scenarios [8], [10], to learn the non-linearity

in the representation space.

Generative Adversarial Networks. Generative adversarial

networks (GANs) [12] have achieved great success in gener-

ating and learning the latent presentation of high-dimensional

data such as images [27]. There have been several successful

attempts [20], [28]–[30] of implementing GANs on discrete

structures, such as text and discrete images. Using GANs

to learn the representation of discrete contents like natural

languages and network embedding remains a challenging

problem due to the difficulty in back-propagation through

discrete random variables [30]. Recent work on GANs such as

GraphGAN [31], NetRA [32] and ANE [33] for discrete data

is either though the use of discrete structures or the improved

autoencoders.

766

Authorized licensed use limited to: NEC Labs. Downloaded on November 05,2020 at 16:28:42 UTC from IEEE Xplore. Restrictions apply.

Attention Mechanisms. Motivated by visual attention to

different regions of an image or correlated words in one

sentence, attention mechanisms become a fundamental part

of deep neural network models that use to capture the global

dependencies [34]–[36]. In particular, self-attention [16], also

known as intra-attention, relates different positions of a single

sequence by attending to all positions within the same se-

quence. It has achieved state-of-the-art results by solely using a

self-attention model in machine translation [16]. Self-attention

mechanism is also been widely used in various perceptual

tasks such as image generation [37] and translation [38].

VI. CONCLUSION

In this paper, we propose NETTENTION, an adversarially

regularized embedding learning approach that can efficiently

learn vertex embeddings on attributed networks that well

capture the network structure through minimizing a penalized

form of the Wasserstein distance between the distributions

learned from the topology space and the attribute space so as

to learn a consensus and complementary representation. The

joint inference is encapsulated in a generative adversarial train-

ing process, yielding better generalization performance and

robustness. Additionally, a self-attention module is developed

to explicitly model the attribute interactions. The effectiveness

has been verified by extensive experiments including vertex

classification and link prediction.

ACKNOWLEDGEMENT

The work is partially supported by NSF DGE-1829071. We

thank the anonymous reviewers for their careful reading and

insightful comments on our manuscript.

REFERENCES

[1] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp. 701–710, ACM, 2014.

[2] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 855–864,
ACM, 2016.

[3] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,”
in Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1225–1234, ACM, 2016.

[4] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual review of sociology, vol. 27,
no. 1, pp. 415–444, 2001.

[5] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network
representation learning with rich text information.,” in IJCAI, pp. 2111–
2117, 2015.

[6] X. Huang, J. Li, and X. Hu, “Accelerated attributed network embedding,”
in Proceedings of the 2017 SIAM International Conference on Data
Mining, pp. 633–641, SIAM, 2017.

[7] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

[8] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” arXiv preprint arXiv:1706.02216, 2017.

[9] H. Gao and H. Huang, “Deep attributed network embedding,” in IJCAI,
pp. 3364–3370, 2018.

[10] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of graphs:
Unsupervised inductive learning via ranking,” in ICLR, 2018.

[11] W. Yu, G. Zeng, P. Luo, F. Zhuang, Q. He, and Z. Shi, “Embedding
with autoencoder regularization,” in Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 208–
223, Springer, 2013.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
NIPS, pp. 2672–2680, 2014.

[13] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in ICML, pp. 214–223, 2017.

[14] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning,
vol. 1. MIT Press, 2016.

[15] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow, “Adversarial
autoencoders,” in ICLR, 2016.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, pp. 5998–6008, 2017.

[17] P. Milgrom and I. Segal, “Envelope theorems for arbitrary choice sets,”
Econometrica, vol. 70, no. 2, pp. 583–601, 2002.

[18] C. Villani, Optimal transport: old and new, vol. 338. Springer Science
& Business Media, 2008.

[19] O. Bousquet, S. Gelly, I. Tolstikhin, C.-J. Simon-Gabriel, and
B. Schoelkopf, “From optimal transport to generative modeling: the
vegan cookbook,” arXiv preprint arXiv:1705.07642, 2017.

[20] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf, “Wasserstein
auto-encoders,” arXiv preprint arXiv:1711.01558, 2017.

[21] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in KDD, pp. 855–864, ACM, 2016.

[22] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich
part-of-speech tagging with a cyclic dependency network,” pp. 173–180,
Association for Computational Linguistics, 2003.

[23] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in KDD, pp. 701–710, ACM, 2014.

[24] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, pp. 785–794, ACM, 2016.

[25] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, pp. 3111–3119, 2013.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[27] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[28] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. Courville, “Improved training of wasserstein gans,” arXiv preprint
arXiv:1704.00028, 2017.

[29] S. Rajeswar, S. Subramanian, F. Dutil, C. Pal, and A. Courville, “Adver-
sarial generation of natural language,” arXiv preprint arXiv:1705.10929,
2017.

[30] Y. Kim, K. Zhang, A. M. Rush, Y. LeCun, et al., “Adversarially regu-
larized autoencoders for generating discrete structures,” arXiv preprint
arXiv:1706.04223, 2017.

[31] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie,
and M. Guo, “Graphgan: Graph representation learning with generative
adversarial nets,” AAAI, 2018.

[32] W. Yu, C. Zheng, W. Cheng, C. C. Aggarwal, D. Song, B. Zong,
H. Chen, and W. Wang, “Learning deep network representations with
adversarially regularized autoencoders,” in KDD, pp. 2663–2671, ACM,
2018.

[33] Q. Dai, Q. Li, J. Tang, and D. Wang, “Adversarial network embedding,”
arXiv preprint arXiv:1711.07838, 2017.

[34] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[35] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903,
vol. 1, no. 2, 2017.

[36] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang, and J. Tang,
“Autoint: Automatic feature interaction learning via self-attentive neural
networks,” arXiv preprint arXiv:1810.11921, 2018.

[37] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention gen-
erative adversarial networks,” arXiv preprint arXiv:1805.08318, 2018.

[38] N. Parmar, A. Vaswani, J. Uszkoreit, Ł. Kaiser, N. Shazeer, and A. Ku,
“Image transformer,” arXiv preprint arXiv:1802.05751, 2018.

767

Authorized licensed use limited to: NEC Labs. Downloaded on November 05,2020 at 16:28:42 UTC from IEEE Xplore. Restrictions apply.

