
Scaling up Link Prediction with Ensembles

Liang Duan1 Charu Aggarwal2 Shuai Ma1,∗ Renjun Hu1 Jinpeng Huai1
1SKLSDE Lab, Beihang University, China 2IBM T. J. Watson Research Center, USA

{duanliang, mashuai, hurenjun, huaijp}@buaa.edu.cn charu@us.ibm.com

ABSTRACT
A network with n nodes contains O(n2) possible links. Even for
networks of modest size, it is often difficult to evaluate all pair-
wise possibilities for links in a meaningful way. Furthermore, even
though link prediction is closely related to missing value estimation
problems, such as collaborative filtering, it is often difficult to use
sophisticated models such as latent factor methods because of their
computational complexity over very large networks. Due to this
computational complexity, most known link prediction methods are
designed for evaluating the link propensity over a specified subset
of links, rather than for performing a global search over the entire
networks. In practice, however, it is essential to perform an ex-
haustive search over the entire networks. In this paper, we propose
an ensemble enabled approach to scaling up link prediction, which
is able to decompose traditional link prediction problems into sub-
problems of smaller size. These subproblems are each solved with
the use of latent factor models, which can be effectively imple-
mented over networks of modest size. Furthermore, the ensemble
enabled approach has several advantages in terms of performance.
We show the advantage of using ensemble-based latent factor mod-
els with experiments on very large networks. Experimental results
demonstrate the effectiveness and scalability of our approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

Keywords
Link Prediction; Ensembles; Networks; Big Data

1. INTRODUCTION
The problem of link prediction or link inference is that of pre-

dicting the formation of future links in a dynamic and evolving
network (see [7, 35, 36] for surveys). The link prediction problem
has numerous applications, such as the recommendation of friends
in a social network, the recommendation of images in a multime-
dia network, or the recommendation of collaborators in a scientific

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
WSDM’16, February 22–25, 2016, San Francisco, CA, USA.
c⃝ 2016 ACM. ISBN 978-1-4503-3716-8/16/02 ...$15.00.

DOI: http://dx.doi.org/10.1145/2835776.2835815.

Network Sizes 1 GHz 3 GHz 10 GHz
106 nodes 1000 sec. 333 sec. 100 sec.
107 nodes 27.8 hrs 9.3 hrs 2.78 hrs
108 nodes > 100 days > 35 days > 10 days
109 nodes > 10000 days > 3500 days > 1000 days

Table 1: The O(n2) problem in link prediction: Time required
to allocate a single machine cycle to every node-pair possibility
in networks of varying sizes and processors of various speeds.

network, and, therefore, link prediction methods have been stud-
ied extensively because of their numerous applications in various
network-centered domains.

Link prediction methods are often applied to very large networks,
which are also sparse. The massive sizes of such networks can cre-
ate challenges for the prediction process in spite of their sparsity.
This is because the search space for the link prediction problem
is of the size O(n2), where n is the number of nodes. Quadratic
scalability can rapidly become untenable for larger networks. In
fact, an often overlooked fact is that most current link prediction
algorithms evaluate the link propensities only over a subset of pos-
sibilities rather than exhaustively search for link propensities over
the entire network, e.g., [23,29]. In order to understand why this is
the case, consider a network with 106 nodes. Note that a size such
as 106 is not large at all by modern standards, and even common
bibliographic networks such as DBLP now exceed this size. Even
for this modest network, the number of possibilities for links is of
the order of 1012. Therefore, a 1GHz processor would require at
least 103 seconds just to allocate one machine cycle to every pair of
nodes. This implies that in order to determine the top-ranked link
predictions over the entire network, the running time will be much
larger than 103 seconds. It is instructive, therefore, to examine how
this (lower bound on) running time scales with increasing network
size. Table 1 shows the time requirements for allocating a single
machine cycle to each pair-wise possibility. The running times in
this table represent very optimistic lower bounds on the required
times because link prediction algorithms are complex and require
far more than a single machine cycle for processing a node-pair.
Note that for larger networks, even the presented lower bounds on
the running times are impractical.

It is noteworthy that most link prediction algorithms in the litera-
ture are not designed to search over the entire space of O(n2) pos-
sibilities. A closer examination of the relevant publications shows
that even for networks of modest size, these algorithms perform
benchmarking only by evaluating over a sample of the possibilities
for links. This is only to be expected in light of the lower bounds
shown in Table 1. In other words, the complete ranking problem
for link prediction in very large networks remains largely unsolved

367

at least from a computational point of view. It is evident from the
presented lower bounds in Table 1 that any ranking-based link pre-
diction algorithm must integrate search space pruning within the
prediction algorithm in order to even have any hope of exploring
the O(n2) search space in a reasonable amount of time. The algo-
rithmic design of most link prediction algorithms largely overlooks
this basic requirement [7, 15].

The link prediction algorithms are classified into unsupervised
and supervised methods. Unsupervised methods [13] typically use
neighborhood measures such as the Adamic-Adar [1], and the Jac-
card coefficient. Supervised methods [15] treat link prediction as a
classification problem in which each node pair is treated as a test
instance. Supervised methods are the state-of-the-art and generally
provide more accurate results than unsupervised methods [15]. It
is also noteworthy that most supervised methods evaluate link pre-
diction algorithms by using only a sample of test links because of
computational consideration. In real-world applications, it is often
desirable to determine the top-k most relevant links for prediction
over all possibilities for test links. This problem remains largely
unsolved even for networks of any reasonable size.

The link prediction problem is also closely related to the missing
value estimation problem, which is commonly used in collaborative
filtering [3]. Just as collaborative filtering attempts to predict miss-
ing entries in a matrix of users and items, the link prediction prob-
lem attempts to predict missing entries in a node-node adjacency
matrix. In fact, the missing value estimation framework seems to
be a more compact and relevant model for the link prediction prob-
lem, as compared with the vanilla classification problem. Many
of the modern methods for collaborative filtering use latent factor
models [2, 17] such as SVD and NMF for predicting missing en-
tries. These methods have been shown to be wildly successful at
least within the domain of collaborative filtering [17]. In spite of
the obvious similarity between link prediction and collaborative fil-
tering and the obvious effectiveness of latent factor models, there
are only a few methods [9] which attempt to use these models.

One of the reasons that latent factor models are rarely used in the
link prediction domain is simply because of their complexity. In
collaborative filtering applications, the item dimension is of the or-
der of a few hundred thousand, whereas even the smallest networks
in real-world settings contain more than a million nodes. Further-
more, collaborative filtering methods often perform the recommen-
dation on a per-user basis rather than try to determine the top-k
user-item pairs. The latter is particularly important in the context
of link prediction. The factorization of a matrix of size O(n2) is not
only computationally expensive, but also memory-intensive. As we
will see later in this paper, one advantage of latent-factor models
is that they are able to transform the adjacency matrix to a mul-
tidimensional space which can be searched efficiently by pruning
large portions of the O(n2) search space in order to recommend
the top-k possibilities. This is essential in such settings.
Contributions. In this paper, we explore an ensemble-enabled ap-
proach to achieving the aforementioned goals.

We show how to make latent factor models practical for link
prediction by decomposing the search space into a set of smaller
matrices. As a result, large parts of the O(n2) search space can
be pruned without even having to evaluate the relevant node pairs.
This provides an efficient approach for the top-k problem in link
prediction. Furthermore, our problem decomposition method is an
ensemble approach enabled with three structural bagging methods
with performance guarantees, which has obvious effectiveness ad-
vantages. Note that the same bias-variance tradeoffs apply to the
link-prediction problem, as they apply to the standard classification

problem. Therefore, the use of an ensemble approach has obvious
effectiveness advantages as well.

Using real-life datasets, we show that our ensemble-enabled ap-
proach for link prediction is both effective and efficient. For in-
stance, (1) on Friendster with 15 million nodes and 1 billion edges,
our approach could finish in an hour, while direct NMF, AA [1] and
BIGCLAM [33] could not finish in a day, and (2) our approach im-
proves the accuracy by (18%, 39%, 33%) (resp. (4%, 10%, 18%)
and (16%, 11%, 38%)) over direct NMF, AA and BIGCLAM on
YouTube, Flickr and Wikipedia, respectively.
Organization. This paper is organized as follows. In the next sec-
tion, we provide the basic framework for the approach and describe
the efficient use of latent factor models for link prediction. Sec-
tion 3 discusses how latent factor models can be augmented with
ensembles to provide more effective and efficient results. Section 4
presents and discusses the experimental results, followed by related
work in Section 5 and conclusions in Section 6.

2. LATENT FACTOR MODEL FOR SCAL-
ABLE LINK PREDICTION

We assume that G = (N,A) is an undirected network contain-
ing node set N and edge set A. The node set N contains n nodes
and the edge set A contains m edges. Furthermore, the n × n
weight matrix W = [wij]n×n contains the weights of the edges
in A. The weight matrix is useful in representing the strengths of
network connections in many real-world settings such as the num-
ber of publications between a pair of co-authors in a bibliographic
network. The matrix is sparse, and many its entries are 0, which
could be interpreted either as absence of links or as missing entries.
While we assume that an undirected network is available, the ap-
proach can also be generalized to directed networks. The ranking
problem for link prediction is formally stated as follows:

DEFINITION 1. Given a network G = (N,A) with node set N
and edge set A, the ranking problem for link prediction is to de-
termine the top-k node-pair recommendations such that these node
pairs are not included in A.

Note that this problem definition requires us to consider the entire
search space of O(n2) possibilities, rather than a sample of the
node pairs in the network.

Latent factor models work by associating a low dimensional fac-
tor with each row and column of the network. However, since link
prediction is (predominantly) studied only for undirected networks,
which have symmetric weight matrices, it suffices to associate an
r-dimensional latent factor Fi with the ith node in the network.
The value of r is the rank of the factorization. This is an issue,
which we will discuss slightly later. The weight of a link between
nodes i and j is defined by the use of the dot product between the
factors of nodes i and j. In other words, for the weight matrix
W = [wij]n×n, we would like to achieve the following:

wij ≈ Fi · Fj , ∀i, j ∈ {1, . . . , n}. (1)

This condition can be directly written in matrix form. Let F be an
n × r matrix, in which the ith row is the row vector Fi. Then, the
aforementioned condition of Equation (1) can be written as follows:

W ≈ FFT . (2)

An important question arises as to whether entries in the matrix
W corresponding to the absence of links should be treated as in-
complete entries or whether they should be treated as zero, with
the possibility of being incorrect. When latent factor models are
used in collaborative filtering, such entries are typically treated as

368

missing entries. However, unlike the absence of a rating, the ab-
sence of a link is indeed useful information in the aggregate, even
though some node pairs have the propensity to form links in the
future. Therefore, we argue that, unlike collaborative filtering, W
should be treated as a completely specified matrix, but with noisy
entries. Therefore, in the link prediction problem, latent factor
models should be viewed as a way of correcting noisy entries with
zero values, rather than strictly as a missing value estimation prob-
lem. Such assumptions also simplify the algorithmic development
of latent factor models for link prediction. The idea here is that
when we approximately factorize W into the form FFT , the pos-
itive values of entries in FFT can be viewed as the predictions of
noisy 0-entries in W .

A second important question arises as to the choice of the la-
tent factor model that must be used for prediction. There are many
choices available for factorizing an adjacency matrix, especially
when it is symmetric. Even a straightforward diagonalization of
the matrix provides a reasonable factorization. We choose non-
negative matrix factorization not only because of its interpretability
advantages but also because it facilitates the O(n2) search phase of
the prediction by providing a non-negative and sparse representa-
tion for each node.

We would like to determine the matrix F such that the Frobenius
norm of (W − FFT) is minimized. This problem is referred to
as symmetric NMF, and an efficient solution is proposed in [14],
where F can be determined by starting with random nonnegative
entries in (0, 1), and using the following multiplicative update rule:

Fij ← Fij(1− β + β
(WF)ij

(FFTF)ij
), (3)

in which β is a constant in (0, 1] [28].
Discussions. Let us examine the computational complexity of the
update Equation (3). The matrix FFTF can be fully materialized
with O(r2 · n) matrix multiplications, and the matrix WF can be
computed in O(m · r) multiplications by observing that the sparse
matrix W has only 2m non-zero entries corresponding to the num-
ber of edges. Therefore, each update takes O(n · r2 +m · r) time.

This remains quite high for large networks, which motivates us
to develop fast searching techniques to speed up the process.

2.1 Efficient Top-K Prediction Searching
An advantage of the nonnegative factorization approach is that

it enables an efficient search phase, which is generally not possible
with most other link prediction methods. The value of Fi · Fj in
Equation (1) provides a prediction value for the links. The goal of
the search phase is to return the top-k links with the largest predic-
tion values. In real-world settings, the matrix F is often nonneg-
ative and sparse. This non-negativity and sparsity are particularly
useful in enabling an efficient approach. In order to speed up the
search, we define the notion of ϵ-approximate top-k predictions,
denoted as top-(ϵ, k) predictions.

DEFINITION 2 (TOP-(ϵ, k) PREDICTIONS). A set L of predicted
links is a top-(ϵ, k) prediction, if the cardinality of L is k, and the
k-th best value of Fi · Fj for a link (i, j) ∈ L is at most ϵ less than
the k-th best value of Fh · Fl over any link (h, l) in the network.

Intuitively, this definition allows a qualitative tolerance of ϵ in the
top-k returned links. Allowing such a tolerance significantly helps
in speeding up the search process by pruning large portions of the
search space, which is particularly important in an O(n2) search
space of link predictions.

The first step is to create a new n×r matrix S, which is obtained
by sorting the columns of F in a descending order. An inverted list

is associated with each of the r latent variables containing the node
identifiers of F arranged according to the sorted order of S. The r
inverted lists can also be represented as an n× r matrix R. Let the
number of rows in the p-th column of S (p ∈ [1, r]), for which the
value of Sip is greater than

√
ϵ/r be fp, and for which the value of

Sip is greater than 0 be f ′
p, respectively.

Then the following nested loop is executed for each (say p-th)
column of S:

for each i = 1 to fp do
for each j = i+ 1 to f ′

p do
if Sip · Sjp < ϵ/r then

break inner loop;
else increase the score of node-pair (Rip, Rjp) by

an amount of Sip · Sjp

endfor
endfor

This nested loop is designed to track the relevant subset of node
pairs from which one can determine the top-(ϵ, k) predictions. The
nested loop typically requires much less time than O(n2) time be-
cause large portions of the search space are pruned. First, depend-
ing on the value of ϵ, the value of fp is much less than n. This
is particularly true if many entries of the factorized matrix F are
close to 0. Furthermore, the inner loop is often terminated early.
The value of ϵ therefore provides the user a way to set the trade-
off between accuracy and efficiency. A hash-table is maintained
which tracks all the pairs (Rip, Rjp) encountered so far in the
nested loop. Because of the pruning, the hash table usually needs
to track a miniscule set of the O(n2) node-pairs in order to de-
termine the ones that truly satisfy the top-(ϵ, k) requirement. In
the process, we exclude the links which have already been repre-
sented with non-zero entries in W because such links are always
likely to have the largest prediction values, which further reduces
the searching space.

It remains to show that this procedure truly does find a valid set
of top-(ϵ, k) link predictions. The reason that the procedure works
correctly and efficiently is because of nonnegativity and sparsity.

PROPOSITION 1. The nested loop method finds a valid set of
top-(ϵ, k) predictions.

PROOF. The main part of the proof is to show that any dot prod-
uct is underestimated by at most ϵ. The aforementioned pseudo-
code containing the nested loop is executed r times, once for each
latent component. Therefore, it suffices to show that the contribu-
tion of each nested loop is underestimated by at most ϵ/r. There
are two sources of underestimation:

1. The outer loop does not consider rows i for which Sip <√
ϵ/r. This effectively prunes the products between pairs

(i, j) for which both Sip and Sjp are less than
√

ϵ/r. There-
fore, the underestimation because of the ignoring of this pair
is at most

√
ϵ/r ×

√
ϵ/r = ϵ/r.

2. The second case is when the inner loop is terminated early.
The early termination condition in this case is that the prod-
uct is at most ϵ/r.

Therefore, in both these mutually exclusive cases, the underesti-
mation is at most ϵ/r. Therefore, over all latent components the
aggregate underestimation is at most (ϵ/r)× r = ϵ.

This completes the proof.
Discussions. While the basic matrix factorization method is able
to allow us to provide efficiency and pruning to the search process,
it is still not quite as fast as one may need for large networks. The

369

main problem arises as a result of the factorization process itself,
which can require as much as O(r ·(m+n·r)). Typically, the num-
ber r of latent factors varies from the orders of a few ten to a few
hundred [30, 31]. For sparse networks, in which the node degree
is less than r, the O(nr2) term might be the bottleneck. The re-
quired number of latent components r is often expected to increase
with network size. In order to handle this computational problem,
we propose the method of ensemble decomposition, which provides
both efficiency and effectiveness advantages.

3. STRUCTURAL BAGGING METHODS
Since the link prediction problem scales worse than linearly with

the network size, it is generally more efficient to solve smaller prob-
lems multiple times rather than solve a single large problem. The
structural bagging approach provides an effective method to de-
compose the link prediction problem into smaller pieces that are
solved independently. Furthermore, the aggregated results from
multiple models often provide a robustness to the decomposition
process [38]. In the following, we introduce three different ways
for the bagging decomposition.

3.1 Random Node Bagging
Random node bagging is the simplest form of structural bagging.

The basic idea of random node bagging is to iteratively apply the
following three steps:

(1) Select a random set of nodes Nr from the graph G corre-
sponding to a fraction f of the nodes in the network. De-
termine the node set Ns ⊇ Nr , corresponding to all nodes
adjacent to Nr .

(2) Construct a reduced adjacency matrix Ws from the node set
Ns by using the subgraph induced on Ns of G, referred to as
an ensemble component or simply an ensemble, to select the
relevant |Ns| rows and columns of W .

(3) Apply the symmetric NMF method in Section 2 to the re-
duced matrix Ws. Use the pruning search process in Section
2.1 to determine the predictions of all pairs of nodes of Ns.

The main efficiency advantage of this approach is because of the
smaller sizes of the matrices in the factorization. Furthermore, be-
cause of the smaller size of the induced subgraph in each ensemble
component, the number of latent factors r, which is required, is also
smaller. This will generally translate into efficiency advantages. In
many cases, when the number of nodes is very large, it may be
impractical to solve the entire problem in main memory. In such
cases, the use of ensemble approach decomposes the problem into
smaller memory-resident components.

The main problem with random node sampling is that it does not
attempt to sample more relevant regions of the network which are
more likely to contain possible links. Other forms of sampling are
likely to be more effective in this context.

3.2 Edge Bagging
Edge bagging is designed to sample more relevant regions of the

graph. After all, real-world networks are sparse and most of the
O(n2) possibilities for edges are usually not populated. By sam-
pling densely populated regions of the network, many node pairs
will not be considered at all, but these node pairs are often not rel-
evant to begin with.

The edge bagging approach proceeds as follows:

(1) Let Ns be a node set containing a single randomly chosen
node. Nodes which are adjacent to Ns are randomly selected

and added to Ns. In the event that no node is adjacent to Ns,
a randomly chosen node from a different connected compo-
nent is added to Ns. The procedure is repeated until Ns con-
tains at least a fraction f of the total number of nodes.

(2) Construct a reduced adjacency matrix Ws from the node set
Ns by using the subgraph induced on Ns of G, i.e., an en-
semble, to select the relevant |Ns| rows and columns of W .

(3) Apply the symmetric NMF method in Section 2 to the re-
duced matrix Ws. Use the pruning search process in Section
2.1 to determine the predictions of all pairs of nodes.

This method of growing the sampled node set with edge sam-
pling is likely to select dense components from the network. Such
dense components are more likely to contain random node pairs.
Unlike the previous case where every node pair is considered with
high probability, many node pairs will not be considered at all.
However, such node pairs will typically not be present in the same
dense component. Therefore, such node pairs are likely to be ir-
relevant, and in this way the approach already prunes unimportant
node pairs during the process of ensemble construction.

3.3 Biased Edge Bagging
While the edge bagging procedure is effective at discovering

dense components, it does have a drawback. Its main drawback
is that it selectively includes nodes with high degrees within the
resulting components. Therefore, the same high-degree nodes are
very likely to be included in all the ensemble components. As a
result, it often becomes more difficult to make robust predictions
between low-degree nodes.

In biased edge bagging, exactly the same procedure is used as
the case of edge bagging. The only difference is that when the node
set Ns is grown, a random adjacent node is not selected. Rather,
an adjacent node, which was selected the least number of times in
previous ensemble components, is used. Ties are broken randomly.

This approach ensures that each node is selected with an approx-
imately similar number of times across various ensemble compo-
nents, and it prevents the repeated selection of high-degree nodes.
Note that the bias in the edge bagging process makes that the vast
majority node pairs will not be considered. However, such node
pairs will usually be in components that are not as well connected.
Therefore, such nodes are far less likely to form links. In most prac-
tical applications, one only needs to recommend a small number of
node pairs for prediction. Therefore, it is reasonable to ignore such
node pairs in the prediction process.

3.4 Using Link Prediction Characteristics
Different from existing sampling methods [32], our bagging meth-

ods should be designed in particular for link prediction. Motivated
by the observation that most of all new links in social networks
span within very short distances, typically closing triangles, which
has been justified in [37], we develop three structural bagging ap-
proaches such that a node is always sampled together with all its
neighbors, which guarantees the possibility of forming triangles.
To achieve this, we revise the previous bagging methods as follows.

(1) For random node bagging, when a node is selected uniformly
at random from the network G, the node together with all of
its neighbors are put into the node set Ns.

(2) For edge and biased edge bagging, when a node adjacent to
Ns is selected and added to Ns, all of its neighbors are put
into the node set Ns together.

370

3.5 Bound of Node Bagging Ensembles
Observe that even each ensemble component is much smaller,

multiple samples are required. To meaningfully rank the various
node pairs, each node pair needs to be included in the ensemble
components with performance guarantees. What is the required
number of samples to ensure that each node pair is included at least
µ times? Clearly, this number depends on the sampling fraction f .
We next present a probabilistic bound on the expected number of
times that a node pair is included as follows.

PROPOSITION 2. The expected times of each node pair included
in µ/f2 ensemble components is at least µ.

PROOF. Since each ensemble component includes a node with
probability at least f , it follows that each node pair is included with
probability f2. Furthermore, all ensemble component are indepen-
dent of each other. Let X be the times of each node pair is included
in all ensemble components, and the expected value E(X) of X is
equal to b × f2, where b is the number of ensemble components.
For E(X) ≥ µ, we have b ≥ µ/f2.

Note that the above bound holds only for the original random
node bagging method, and it provides a theoretical guarantee. In-
deed, we could do much better in practice. For instance, the setting
of µ = 0.1 and f = 0.1 already achieves a pretty good result, as
shown by our experimental study in Section 4.

3.6 Ensemble Enabled Top-K Predictions
We now explain the complete framework for top-k predictions

enabled with ensembles, shown as follows.
given network G(N,A) and parameters µ and f .
let Γ be empty;
repeat µ/f2 times do

let Ns be a sampled ensemble of G with at least f · n nodes;
Compute Ws ≈ Fs · FT

s using NMF;
let Γ′ be top-k largest value node pairs (i, j) in {Fs,i · Fs,j};
let Γ be top-k largest value node pairs (i, j) in Γ′ ∪ Γ;

return the top-k node pairs Γ not included in A.
To ensure that a node pair appears in the ensemble components

at least µ expected times, µ/f2 ensemble components are consid-
ered in total. For each time, an ensemble component Ns is sampled
by one of the above node, edge and biased edge bagging methods,
the symmetric NMF method in Section 2 is used to the reduced ma-
trix Ws, and the aforementioned pruning search process in Section
2.1 is used to determine the predictions of all pairs of nodes. If a
node pair appears in multiple ensemble components and has mul-
tiple predicted values, the maximum predicted value is considered.
And, hence, only the top-k predicted links are maintained for each
ensemble component. At the end of the process, the top-k predic-
tions in all µ/f2 ensemble components are returned.

4. EXPERIMENTAL STUDY
We next present an extensive experimental study of our ensemble-

enabled approach for link prediction. Using real-life datasets, we
conducted two sets of experiments to evaluate: (1) the effectiveness
and efficiency of our approach vs. conventional methods AA [1]
and BIGCLAM [33] and (2) the impacts of various factors.

4.1 Experimental settings
We first present our experimental settings.

Datasets. We used the following real-life network datasets, which
are from the Koblenz Network Collection 1.
1http://konect.uni-koblenz.de/

Datasets Date Nodes Edges
2006-12-09 — 2007-02-22 1,503,841 3,691,893

YouTube 2007-02-23 — 2007-07-22 1,503,841 806,213
2006-11-01 — 2006-11-30 1,580,291 13,341,698

Flickr 2006-12-01 — 2007-05-17 1,580,291 3,942,599
2001-02-19 — 2006-10-31 1,682,759 28,100,011

Wikipedia 2006-11-01 — 2007-04-05 1,682,759 5,856,896

Table 2: Training and ground truth data. The data in the first
time slot is the training data and the remaining is the ground
truth data.

Parameters Descriptions Default Values
β Coefficient in NMF update rule 0.5

iter Number of iterations for NMF 50
r Number of latent factors 10
ϵ Tolerance of top-(ϵ, k) prediction 1

k
Number of links returned by
top-(ϵ, k) prediction 1× 105 / 1× 106

µ
Expected appearing times of each
node pair in ensemble components 0.1

f
Fraction of the number of nodes to be
selected for an ensemble component 0.1

n Number of nodes See Table 2

Table 3: Parameters used in the experiments. Note that we set
k = 1× 105 for YouTube and k = 1× 106 for other datasets.

(1) YouTube is a 7 month friendship network of YouTube users
with 3, 223, 589 nodes and 9, 375, 374 undirected edges.
(2) Flickr is a 6 month friendship connections of Flickr users with
2, 302, 925 nodes and 33, 140, 017 directed edges.
(3) Wikipedia is a 6 year hyperlink network of the English Wikipedia
with 1, 870, 709 nodes and 39, 953, 145 directed edges.
(4) Twitter is the follower network from Twitter with 41, 652, 230
nodes and 1, 468, 365, 182 directed edges.
(5) Friendster is the friendship network of the Friendster with
68, 349, 466 nodes and 2, 586, 147, 869 directed edges.

(1) YouTube, Flickr and Wikipedia contain timestamps of edge
arrivals. For each of these datasets, the latest five month part is
treated as its ground truth data for testing the accuracy, and the re-
maining part is treated as its training data, shown in Table 2. To test
the scalability, we further generated five subnetworks with increas-
ing sizes for each dataset, using the breadth first search started from
the node with the largest degree. (2) Twitter and Friendster do not
have timestamps, and are only used for the scalability test. (3) It
does not make much sense to predict links for users who appear
in the ground truth data, but not in the training data. Hence, we
removed these users from the ground truth data. Moreover, since
our link prediction methods focus on predicting links on undirected
graphs, we ignored the direction of edges in the directed graphs.
Algorithms for comparison. We have carefully chosen a couple
of algorithms to compare with our ensemble-enabled approach.
(1) Adamic/Adar (AA) [1]: AA is a popular neighborhood based
method that produces a score for each link (u, v), defined as below:

score(u, v) =
∑

z∈N(u)∩N(v)

1

log|N(z)| ,

where N(u) is the set of neighbors of node u. Lu [35] showed
that AA performs well on a range of networks because it only con-
cerns 2-hop neighbors and reduces much of search space. There-
fore, we implemented a top-k link prediction method by searching
the k largest AA score links. The complexity of this method is
O(nd2log(k)), where d is the average degree of networks. An-
other popular link prediction method is Katz [34], which is based
on the ensemble of all paths. However, its complexity is O(n3),

371

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y
(%

)

k (× 104)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(a) YouTube

5.0

7.0

9.0

11.0

13.0

1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y
(%

)

k (× 105)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(b) Flickr

1.5

2.5

3.5

4.5

5.5

1 2 3 4 5 6 7 8 9 10

A
cc

ur
ac

y
(%

)

k (× 105)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(c) Wikipedia

0

100

600

3000

1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

ec
)

k (× 104)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(d) YouTube

0

300
500
900

1500

1 2 3 4 5 6 7 8 9 10

Ti
m

e(
se

c)

k (× 105)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(e) Flickr

0

150

4700

5000

1 2 3 4 5 6 7 8 9 10

Ti
m

e(
se

c)

k (× 105)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(f) Wikipedia

Figure 1: Accuracy and efficiency comparison: with respect to the number k of predicted links.

0

0.5

1.0

1.5

2.0

2.5

3 6 9 12 15

A
cc

ur
ac

y
(%

)

n (× 105)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(a) YouTube

0

2.0

4.0

6.0

8.0

3 6 9 12 15

A
cc

ur
ac

y
(%

)

n (× 105)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(b) Flickr

0

0.5

1.0

1.5

2.0

2.5

3 6 9 12 15

A
cc

ur
ac

y
(%

)

n (× 105)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(c) Wikipedia

0
50

400

900

3500

3 6 9 12 15

Ti
m

e
(s

ec
)

n (× 105)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(d) YouTube

0

300
900

1500

2400

3 6 9 12 15

Ti
m

e
(s

ec
)

n (× 105)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(e) Flickr

0
150

1500

4000
5000
6000

3 6 9 12 15

Ti
m

e
(s

ec
)

n (× 105)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(f) Wikipedia

0
4000
7000

14000
50000
80000

3 6 10 30 50

Ti
m

e
(s

ec
)

n (× 105)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(g) Twitter

0

3600
15000
20000

40000
80000

1 4 7 10 15

Ti
m

e
(s

ec
)

n (× 106)

AA
BIGCLAM

NMF

NMF(Node)
NMF(Edge)

NMF(Biased)

(h) Friendster

Figure 2: Accuracy and efficiency comparison: with respect to the network sizes.

and does not work on large networks with millions of nodes. Thus,
we did not choose Katz for comparison in the experiments.
(2) Cluster Affiliation Model for Big Networks (BIGCLAM) [33]:
Yang and Leskovec developed this probabilistic generative model
for networks based on community affiliations. An ingredient of
BIGCLAM is based on the fact that, when people share multiple
community affiliations, the links between them stem for one domi-
nant reason. This means that more communities a node pair shares,
the higher the probability of the node pair being connected is. Let
F be a nonnegative matrix where Fuc is the degree of the node u

belongs to the community c. Give F , the BIGCLAM generates a
graph G(N,A) by creating edge (u, v) between a pair of nodes
u, v ∈ N with the probability

p(u, v) = 1− exp(−Fu · Fv),

where Fu is a weight vector for node u. Viewing the probability
p(u, v) as a score for the link (u, v), it is reasonable to predict links
based on BIGCLAM. The complexity of BIGCLAM is O(nd(r +
d)), where d is the average degree of networks. In addition, this

372

model is not designed to search the entire space of O(n2), and we
revised it by our top-(ϵ, k) method to predict links.
Implementation. We implemented all algorithms including AA,
BIGCLAM, link prediction method in Section 2 (NMF), NMF with
random node bagging (NMF(Node)), NMF with edge bagging
(NMF(Edge)) and NMF with biased edge bagging (NMF(Biased))
using C/C++ with no parallelization.

All experiments were conducted on a machine with 2 Intel Xeon
E5–2630 2.4GHz CPUs and 64 GB of Memory, running 64 bit Win-
dows 7 professional system. Each experiment was repeated 5 times,
and the average is reported here.

4.2 Experimental Results
We next present our findings. In all the experiments, we fixed r

to (50, 30, 50) (resp. (40, 20, 20)) for NMF (resp. BIGCLAM) on
YouTube, Flickr and Wikipedia, respectively. For three bagging
methods, we fixed r = 10 by default (See Exp-2.3 for more details
about the setting of r). The other parameters with their descriptions
and default values are presented in Table 3.

4.2.1 Comparison with AA and BIGCLAM
In the first set of tests, we evaluated the effectiveness and effi-

ciency of our methods compared with AA and BIGCLAM. Given
one of top-k link prediction methods, denoted by x, its effective-
ness of link prediction is evaluated with the following measure:

accuracy(x) =
of correctly predicted links

the number k of predicted links
.

Exp-1.1: Impacts of k. To evaluate the impacts of the number k of
predicted links, we varied k from 1× 104 to 1× 105 on YouTube
(resp. from 1× 105 to 1× 106 on Flickr and Wikipedia) and fixed
other parameters to their default values. The results of accuracy and
running time are reported in Figure 1(a), 1(b) and 1(c) and Figure
1(d), 1(e) and 1(f), respectively.

The accuracy results tell us that (a) NMF(Biased) outperforms
other methods on all datasets, (b) three bagging methods always
have higher accuracy than NMF, AA and BIGCLAM, (c) NMF is
more accurate than AA and BIGCLAM, and (d) the accuracy of all
methods decreases with the increment of k. Indeed, NMF(Biased)
improves the accuracy by (18%, 39%, 33%) (resp. (4%, 10%, 18%)
and (16%, 11%, 38%)) over NMF, AA and BIGCLAM on YouTube,
Flickr and Wikipedia, respectively. This verifies the effectiveness
of our bagging methods.

The running time results tell us that (a) three bagging meth-
ods are much faster than NMF, AA and BIGCLAM, (b) the run-
ning time of all methods is insensitive to the increase of k, ex-
cept AA whose complexity is O(nd2log(k)). Indeed, the three
bagging methods finished the prediction in 300 seconds on the
three datasets. Furthermore, NMF(Biased) is (70, 2.7, 14) (resp.
(4.5, 2.7, 8) and (33, 33, 36)) times faster than NMF, AA and BIG-
CLAM on YouTube, Flickr and Wikipedia, respectively. This ver-
ifies the efficiency of our bagging methods.

Note that the accuracy of all methods is not high, even the best
accuracy (NMF(Biased) on Flickr when k = 1× 105) is less than
12%. The reason is that there are more than 1 × 1012 possible
links in the search space of each dataset, but less than 1×107 links
in the ground truth. In addition, NMF is slower than AA on three
datasets because r is fixed to at least 30, which is consistent to
the O(nr2) complexity of NMF. The running time of AA is about
100 seconds on YouTube, while more than 500 seconds on Flickr
and 4700 seconds on Wikipedia. This is because that the average
degree of these datasets are 5, 17 and 33, and AA takes more time
with the increase of the degree of networks. The running time of

BIGCLAM is also sensitive to the degree of networks because its
complexity is O(nd(r+d)). As a result, it runs faster than NMF on
YouTube when the degree is 5, while it takes more time on Flickr
and Wikipedia when the degree is increased.
Exp-1.2: Impacts of network sizes. To evaluate the impacts of
network sizes, we varied the number of nodes n from 3 × 105 to
1.5× 106 on YouTube, Flickr and Wikipedia (resp. from 3× 105

to 5 × 106 on Twitter and from 1 × 106 to 1.5 × 107 on Friend-
ster). Since Twitter and Friendster do not contain ground truth for
choosing the value of r, we fixed r on these datasets to the average
value of its default values. Hence, on these two datasets, we fixed
r = 43 for NMF (resp. r = 27 for BIGCLAM and r = 10 for
bagging methods). The other parameters are fixed to their default
values. The results of accuracy and running time are reported in
Figure 2(a), 2(b) and 2(c) and Figure 2(d), 2(e), 2(f), 2(g) and 2(h),
respectively. Note that there are some missing plots for NMF, AA
and BIGCLAM in the Figure 2(g) and 2(h) because their running
time is beyond 24 hours.

The accuracy results tell us that (a) NMF(Biased) obtains the
highest accuracy on all datasets, (b) the three bagging methods per-
form better than NMF, AA and BIGCLAM, and (c) NMF has higher
accuracy than AA and BIGCLAM. This means that our methods are
accurate and robust with the increase of network sizes.

The running time results tell us that (a) bagging methods are
much faster than other methods, (b) the running time of all meth-
ods increase nearly linearly with the increase of n. For instance,
NMF(Biased) speeds up NMF, AA and BIGCLAM for around
(20, 107, 43) (resp. (31, 21, 175)) times on Twitter (resp. Friend-
ster) and is thus essential for making our bagging methods scalable
to large networks. Note that NMF is slower than BIGCLAM on
YouTube but faster on other datasets because BIGCLAM requires
more time with the increase of the degree of networks, which is
consistent with the complexity analysis. In addition, the running
time of BIGCLAM fluctuates when n between 6×105 and 1.2×106
on YouTube and Flickr because the number of the iterations for its
nonnegative matrix factorization method is not fixed.

4.2.2 Impacts of Various Parameters
In the second set of tests, we evaluated the impacts of parameters

on the accuracy and running time of NMF, NMF(Node), NMF(Edge),
NMF(Biased) and BIGCLAM. We first tested the impacts of µ and
f in bagging methods. We then tested the impacts of r and ϵ.
Exp-2.1: Impacts of µ. To evaluate the impacts of µ, we varied µ
from 0.01 to 0.25 and fixed other parameters to their default values.
The accuracy and running time results are reported in Figure 3(a),
3(b) and 3(c) and Figure 3(d), 3(e) and 3(f), respectively. We also
plotted the accuracy and running time of NMF for comparison.

The results tell us that (a) bagging methods have higher accu-
racy than NMF when µ is large enough, (b) the accuracy of bag-
ging methods increases with the increment of µ and becomes stable
when µ is greater than 0.1. This means that the accuracy of bag-
ging methods would increase and become stable with the increase
of the number of ensemble components. Furthermore, (c) the run-
ning time of bagging methods increases linearly with the increase
of µ since µ/f2 ensemble components had been generated in each
bagging method. Note that, when µ = 0.1, the accuracy of bag-
ging methods is becoming stable and the running time of them is
less than NMF. Therefore, we fixed µ = 0.1 by default.
Exp-2.2: Impacts of f . To evaluate the impacts of f , we varied f
from 0.02 to 0.5 and fixed other parameters to their default values.
The accuracy and running time results are reported in Figure 4(a),
4(b) and 4(c) and Figure 4(d), 4(e) and 4(f), respectively.

373

1.4

1.6

1.8

2.0

2.2

2.4

0.01 0.05 0.10 0.25

A
cc

ur
ac

y
(%

)

µ

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(a) YouTube

6.0

6.5

7.0

7.5

0.01 0.05 0.10 0.25

A
cc

ur
ac

y
(%

)

µ

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(b) Flickr

1.0

1.5

2.0

2.5

0.01 0.05 0.10 0.25

A
cc

ur
ac

y
(%

)

µ

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(c) Wikipedia

0

50

100

150

3000

0.01 0.05 0.10 0.25

Ti
m

e
(s

ec
)

µ

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(d) YouTube

0
100
250

500

900

0.01 0.05 0.10 0.25

Ti
m

e
(s

ec
)

µ

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(e) Flickr

0

300

500
600

4700

0.01 0.05 0.10 0.25

Ti
m

e
(s

ec
)

µ

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(f) Wikipedia

Figure 3: Accuracy and efficiency comparison: with respect to the expected appearing times µ.

0

1.0

2.0

3.0

0.02 0.03 0.05 0.10 0.50

A
cc

ur
ac

y
(%

)

f

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(a) YouTube

0

2.0

4.0

6.0

8.0

0.02 0.03 0.05 0.10 0.50

A
cc

ur
ac

y
(%

)

f

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(b) Flickr

0

1.0

2.0

3.0

0.02 0.03 0.05 0.10 0.50

A
cc

ur
ac

y
(%

)

f

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(c) Wikipedia

0

100

300

2000

0.02 0.03 0.05 0.10 0.50

Ti
m

e
(s

ec
)

f

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(d) YouTube

0
200
600
900

1300

2700

0.02 0.03 0.05 0.10 0.50

Ti
m

e
(s

ec
)

f

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(e) Flickr

0

300

600

4700

0.02 0.03 0.05 0.10 0.50

Ti
m

e
(s

ec
)

f

NMF
NMF(Node)

NMF(Edge)
NMF(Biased)

(f) Wikipedia

Figure 4: Accuracy and efficiency comparison: with respect to the fraction f

The results tell us that (a) bagging methods have higher accu-
racy than NMF when f between 0.02 and 0.1, (b) the accuracy of
bagging methods decreases with the increase of f , and (c) the run-
ning time of bagging methods increases nearly linearly with the
decrease of f . Note that the complexity of bagging methods is
O((n1r

2 +n1d1r) ∗µ/f2), where n1 = nf and d1 is the average
degree of each ensemble component. Since bagging methods are
likely to select dense components, d1 may be greater than r and
the complexity is O(nd1rµ/f). Thus, the running time of bagging
methods increases with the decrease of f . Keeping the accuracy
of bagging methods better than that of NMF, we fixed f = 0.1 by
default to achieve a better efficiency.
Exp-2.3: Impacts of r. To evaluate the impacts of r, we varied
r from 10 to 50 and fixed other parameters to their default values.
The accuracy and running time results are reported in Figure 5(a),
5(b) and 5(c) and Figure 5(d), 5(e) and 5(f), respectively.

The results tell us that (a) NMF(Biased) obtains the best ac-
curacy compared with other methods, (b) bagging methods have
higher accuracy than NMF and BIGCLAM, (c) the accuracy of
NMF increases slightly with the increase of r and is always greater

than that of BIGCLAM, and (d) the running time of NMF is in-
creased quadratically with the increase of r since its complexity is
O(nr2). A similar trend of running time is also found for bagging
methods. To obtain the highest accuracy, we fixed r to (50, 30, 50)
(resp. (40, 20, 20)) for NMF (resp. BIGCLAM) on YouTube,
Flickr and Wikipedia, respectively. Note that, when r = 10, the
accuracy of bagging methods is greater than the best accuracy of
NMF. Hence, we fixed r = 10 by default for bagging methods.
Exp-2.4: Impacts of ϵ. To evaluate the impacts of ϵ, we varied ϵ
from 0.5 to 1.0 and fixed other parameters to their default values.
The accuracy and running time results are reported in Figure 6(a),
6(b) and 6(c) and Figure 6(d), 6(e) and 6(f), respectively.

The results tell us that (a) the accuracy of all methods is stable
with the increase of ϵ, which means that the accuracy of our meth-
ods is insensitive to ϵ, and (b) the running time of all methods is
decreased with the increase of ϵ because the larger ϵ reduces more
search space. Thus, our top-(ϵ, k) method is reasonable for link
prediction. Since the accuracy is insensitive to ϵ, we fixed ϵ = 1 by
default to achieve a better efficiency.

374

0.5

1.0

1.5

2.0

2.5

10 20 30 40 50

A
cc

ur
ac

y
(%

)

r

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(a) YouTube

0

2.0

4.0

6.0

8.0

10 20 30 40 50

A
cc

ur
ac

y
(%

)

r

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(b) Flickr

0

1.0

2.0

3.0

10 20 30 40 50

A
cc

ur
ac

y
(%

)

r

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(c) Wikipedia

0

1000

2000

3000

10 20 30 40 50

Ti
m

e
(s

ec
)

r

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(d) YouTube

0

1000

2000

3000

4000

10 20 30 40 50

Ti
m

e
(s

ec
)

r

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(e) Flickr

0

3000

6000

9000

10 20 30 40 50

Ti
m

e
(s

ec
)

r

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(f) Wikipedia

Figure 5: Accuracy and efficiency comparison: with respect to the number r of latent factors.

0

0.5

1.0

1.5

2.0

2.5

0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
ac

y
(%

)

ε

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(a) YouTube

4.5

5.5

6.5

7.5

0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
ac

y
(%

)

ε

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(b) Flickr

0

0.5

1.0

1.5

2.0

2.5

0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
ac

y
(%

)

ε

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(c) Wikipedia

0

30

60
600

3200
3600

0.5 0.6 0.7 0.8 0.9 1.0

Ti
m

e
(s

ec
)

ε

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(d) YouTube

0

200

400
1100
1500

2700

0.5 0.6 0.7 0.8 0.9 1.0

Ti
m

e
(s

ec
)

ε

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(e) Flickr

150

250
4800

6000

0.5 0.6 0.7 0.8 0.9 1.0

Ti
m

e
(s

ec
)

ε

BIGCLAM
NMF

NMF(Node)

NMF(Edge)
NMF(Biased)

(f) Wikipedia

Figure 6: Accuracy and efficiency comparison: with respect to the tolerance ϵ of top-(ϵ, k) prediction.

Summary. From these experimental results on real-life social net-
work datasets, we find the following. (1) NMF is able to pre-
dict links and can be sped up by the top-(ϵ, k) process to explore
the O(n2) search space. It is more accurate than AA and BIG-
CLAM, which verifies the effectiveness of NMF. Moreover, NMF
runs faster than BIGCLAM on dense networks, e.g., Flickr and
Wikipedia, which is consistent with the complexity analysis that
BIGCLAM is sensitive to the degree of networks. (2) However, the
running time of NMF is increased quadratically with the increase
of r. This might be a bottleneck for large networks. By decom-
posing the link prediction problem into smaller pieces and solv-
ing them independently, our bagging methods are more efficient
and scale well with the size and density of large networks, e.g.,
NMF(Biased) finished in an hour on Friendster with 1.5 × 107

nodes and 1.0× 109 edges, while NMF, AA and BIGCLAM could
not finish in a day. Further, NMF(Biased) speeds up NMF, AA and
BIGCLAM for around (20, 107, 43) (resp. (31, 21, 175)) times on
Twitter (resp. Friendster). (3) Combining link prediction char-
acteristics, our bagging methods also provide the accuracy advan-
tages for link prediction, e.g., NMF(Biased) is faster than the other

methods, and improves the accuracy by (18%, 39%, 33%) (resp.
(4%, 10%, 18%) and (16%, 11%, 38%)) over NMF, AA and BIG-
CLAM on YouTube, Flickr and Wikipedia, respectively.

5. RELATED WORK
The link prediction problem has been studied extensively in the

data mining and machine learning community [13, 35], which falls
into unsupervised and supervised methods [15]. Unsupervised meth-
ods often assign scores to potential links based on the topology of
the given graphs: (a) Adamic/Adar [1] is a common neighbor based
method; (b) Katz [34] is a path based method which sums over all
paths between two nodes, and there are also other path based meth-
ods, such as Local Path and Random Walk with Restart [35]; And
(c) [12, 13] investigates the low rank approximation methods by
generating a small rank matrix to approximate the initial adjacency
matrix. Supervised methods [8, 15, 16] typically treat link predic-
tion as a classification problem, e.g., supervised matrix factoriza-
tion and random walk based approaches [5, 9]

Recently, several models for link prediction have been proposed,
such as community affiliation models [25,33], stochastic topic mod-

375

els [39], negative link prediction models [40], statistical relational
models [6, 10, 11, 22, 26] and Markov models [27]. Moreover,
link prediction has also been studied for mining missing hyper-
links [4,41]. While some recent work has focused on the heteroge-
neous [18–21,24] and temporal [5,23] scenarios, these methods are
not essentially designed to search the entire space of O(n2) possi-
bilities. Indeed, they are often not able to prune the search space of
possibilities, and are mostly designed to evaluate the link prediction
propensities of a subset of node pairs.

Our method is related to NMF proposed in [30], which has been
successfully used for collaborative filtering [17]. Since the adja-
cency matrix in our approach is symmetric, we adopt the symmet-
ric NMF method [28]. Our work is also related to bagging predic-
tor [38] that generates an aggregated predictor based on multiple
bootstrap samples. Different from the bootstrap sampling methods,
we focus on sampling subgraphs from large networks. Although a
variety of graph sampling techniques were introduced in [32], our
approach combines link prediction characteristics [37] with graph
sampling methods to achieve high link prediction accuracy.

6. CONCLUSIONS AND FUTURE WORK
We have proposed an ensemble-enabled approach for top-k link

prediction, which scales up link prediction on very large social net-
works. By decomposing a large network into smaller pieces, the
bagging methods are more scalable to large networks with over
15 million nodes and 1 billion edges. We develop three bagging
methods that are designed in particular for link prediction, and our
bagging methods also provide better accuracy and scalability. Fi-
nally, we have experimentally verified that our ensemble-enabled
approach is much more accurate and scalable than existing meth-
ods AA [1] and BIGCLAM [33].

A couple of topics need further investigation. First, we are to
develop distributed approaches scalable on networks with billions
of nodes, in a way similar to [31]. Second, we are to study person-
alized recommendations using our link prediction approach.

Acknowledgments. This work is supported in part by 973 program
(No. 2014CB340300), NSFC (No. 61322207) and Special Funds of
Beijing Municipal Science & Technology Commission. For any
correspondence, please refer to Shuai Ma.

7. REFERENCES
[1] L. Adamic and E. Adar. Friends and neighbors on the web. Social

Networks, 25, pp. 211–230, 2001.
[2] C. Aggarwal and S. Parthasarathy. Mining massively incomplete data

sets by conceptual reconstruction. KDD, 2001.
[3] G. Adomavicius, and A. Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 17(6), pp. 734–749, 2005.

[4] S. F. Adafre and M. Rijke. Discovering missing links in Wikipedia.
KDD Workshop on Link Discovery, 2005.

[5] L. Backstrom, and J. Leskovec. Supervised random walks: predicting
and recommending links in social networks. WSDM, 2011.

[6] M. Bilgic, G. Namata and L. Getoor. Combining collective
classification and link prediction. ICDM Workshop on Mining Graphs
and Complex Structures, 2007.

[7] L. Getoor and C. Diehl. Link mining: A survey. SIGKDD
Exploration, pp. 3–12, 2005.

[8] J. R. Doppa, J. Yu, P. Tadepalli and L. Getoor. Chance constrained
programs for link prediction. NIPS Workshop on Analyzing Networks
and Learning with Graphs, 2009.

[9] A. K. Menon, and C. Elkan. Link prediction via matrix factorization.
Machine Learning and Knowledge Discovery in Databases, pp.
437–452, 2011.

[10] L. Getoor, N. Friedman, D. Koller and B. Taskar. Learning
probabilistic models of relational structure. ICML, 2001.

[11] L. Getoor, N. Friedman, D. Koller and B. Taskar. Learning
probabilistic models of link structure. Journal of Machine Learning
Research, 3, pp. 679–707, 2002.

[12] J. Kunegis and A. Lommatzsch. Learning Spectral Graph
Transformations for Link Prediction. ICML, 2009.

[13] D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. Journal of the American society for information
science and technology, 58(7), pp. 1019–1031, 2007.

[14] B. Long, Z. Zhang, and P. Yu. Co-clustering by block value
decomposition. KDD, 2005.

[15] R. Lichtenwalter, J. Lussier, and N. Chawla. New perspectives and
methods in link prediction. KDD, 2010.

[16] R. Lichenwater and N. Chawla. Vertex Collocation Profiles:
Subgraph Counting for Link Analysis and Prediction. WWW, 2012.

[17] B. Liu. Web Data Mining. Springer, 2010.
[18] G. Qi, C. Aggarwal, and T. Huang. Link Prediction across Networks

by Cross-Network Biased Sampling. ICDE, 2013.
[19] Y. Sun, R. Barber, M. Gupta, C. Aggarwal, J. Han. Co-author

Relationship Prediction in Heterogeneous Bibliographic Networks.
ASONAM, 2011.

[20] Y. Sun, J. Han, C. Aggarwal, N. Chawla. When will it happen –
Relationship Prediction in Heterogeneous Information Networks.
WSDM, 2012.

[21] J. Tang, T. Lou, and J. Kleinberg. Inferring social ties across
heterogenous networks. WSDM, 2012.

[22] B. Taskar, M. F. Wong, P. Abbeel and D. Koller. Link prediction in
relational data. NIPS, 2003.

[23] D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A.-L. Barabasi.
Human mobility, social ties, and link prediction. KDD, 2011.

[24] Y. Yang, N. Chawla, Y. Sun, and J. Han. Predicting Links in
Multi-Relational and Heterogeneous Networks. ICDM, 2012.

[25] T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for
community detection: a discriminative approach. KDD, 2009.

[26] K. Yu, W. Chu, S. Yu, V. Tresp and Z. Xu. Stochastic relational
models for discriminative link prediction. NIPS, 2006.

[27] J. Zhu, J. Hong and G. Hughes. Using Markov models for web site
link prediction. HyperText, 2002.

[28] C. Ding, X. He and H. D. Simon. On the Equivalence of Nonnegative
Matrix Factorization and Spectral Clustering. SDM, 2005.

[29] C. Lee, M. Pham, N. Kim, M. K. Jeong, D. K. J. Lin and W. Art. A
Novel Link Prediction Approach for Scale-free Networks. WWW,
2014.

[30] Lee, Daniel D. and Seung, H. Sebastian. Learning the parts of objects
by non-negative matrix factorization. Nature, 401, pp. 788–791, 1999.

[31] Chao Liu, Hung-chih Yang, Jinliang Fan, Li-Wei He and Yi-Min
Wang. Distributed Nonnegative Matrix Factorization for Web-Scale
Dyadic Data Analysis on MapReduce. WWW, 2010.

[32] Ahmed, Nesreen K. and Neville, Jennifer and Kompella, Ramana.
Network Sampling: From Static to Streaming Graphs. Transactions
on Knowledge Discovery from Data (TKDD), 8(2), pp. 7:1–7:56 2014.

[33] Jaewon Yang and Jure Leskovec. Overlapping Community Detection
at Scale: A Nonnegative Matrix Factorization Approach. WSDM,
2013.

[34] L. Katz. A New Status Index Derived from Sociometric Analysis.
Psychometrika, 18(1), pp. 39–43, 1953.

[35] Linyuan Lu and Tao Zhou. Link Prediction in Complex Networks: A
Survey. Physica A, pp. 1150–1170, 2011.

[36] Mohammad Al Hasan and Mohammed J. Zaki. A survey of link
prediction in social networks. Social Network Data Analytics, 2011.

[37] J. Leskovec, L. Backstrom, R. Kumar and A. Tomkins. Microscopic
Evolution of Social Networks. KDD, 2008.

[38] Leo Breiman. Bagging Predictors. Machine Learning, 24(2), pp.
123–140, 1996.

[39] N. Barbieri, F. Bonchi and G. Manco. Who to Follow and Why: Link
Prediction with Explanations. KDD, 2014.

[40] J. Tang, S. Chang, C. Aggarwal and H. Liu. Negative Link Prediction
in Social Media. WSDM, 2015.

[41] R. West, A. Paranjape and J. Leskovec. Mining Missing Hyperlinks
from Human Navigation Traces: A Case Study of Wikipedia. WWW,
2015.

376

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20151216085625
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20151216085625
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 10

 1

 HistoryList_V1
 qi2base

