
Querying and Tracking Influencers
in Social Streams

Karthik Subbian
University of Minnesota,
Minneapolis, MN 55455.
karthik@cs.umn.edu

Charu C. Aggarwal
IBM TJ Watson Research Ctr,
Yorktown Heights, NY 10598.

charu@us.ibm.com

Jaideep Srivastava
University of Minnesota,
Minneapolis, MN 55455.

srivasta@cs.umn.edu

ABSTRACT
Influence analysis is an important problem in social network anal-
ysis due to its impact on viral marketing and targeted advertise-
ments. Most of the existing influence analysis methods determine
the influencers in a static network with an influence propagation
model based on pre-defined edge propagation probabilities. How-
ever, none of these models can be queried to find influencers in
both context and time-sensitive fashion from a streaming social
data. In this paper, we propose an approach to maintain real-time
influence scores of users in a social stream using a topic and time-
sensitive approach, while the network and topic is constantly evolv-
ing over time. We show that our approach is efficient in terms of
online maintenance and effective in terms various types of real-time
context- and time-sensitive queries. We evaluate our results on both
social and collaborative network data sets.

1. INTRODUCTION
The problem of finding influential actors is important in various

domains such as viral marketing [7] and political campaigns. The
problem was formally defined by Kempe et al. [15] as an optimiza-
tion problem over all possible subsets of nodes with cardinality k.
Subsequently, a significant amount of work [15, 14, 18, 10, 9, 13]
has been done on this area. All these approaches are static in the
sense that they work with a fixed model of network structure and
edge probabilities. In practice, however, the influence of actors are
defined by how their messages are propagated in the social network
over time. Such propagation can only be observed from the under-
lying social stream, such as a Twitter feed or the sequence of Face-
book activities. This problem setting is highly dynamic because
the social stream evolves over time, as different actors initiate mes-
sages which are propagated in varying degrees over the network.
The influence of an actor is best learned by observing the patterns
of message propagations over time, as some actors are more suc-
cessful than others in initiating new cascades of information flow
in the network. The use of such information flows in identifying
influencers has recently been recognized [24].

A major disadvantage of existing influence analysis methods is
that they do not enable the ability to query the influencers in a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM’16, February 22–25, 2016, San Francisco, CA, USA.
c© 2016 ACM. ISBN 978-1-4503-3716-8/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2835776.2835788

context-specific fashion. Ideally, one would like to be able to use
search terms to determine influencers that are specific to a given
context. For example, the top influencers for the search term “Egypt
Unrest” would be very different from that of the search term “PGA
Golf Tour”. The inflexibility of existing methods is, in part, be-
cause the existing methods [18, 10, 9, 15] decouple the problem
of influence analysis from learning content-centric influence prob-
abilities [11]. Clearly, one cannot learn a new set of relevant edge
probabilities every time a query is initiated.

The influencers in a social stream are time-sensitive and may
rapidly evolve [2], as different external events may lead to changes
in the influence patterns over time. For instance, a query such as
“winter boots” may generally have prominent entities associated
with shoe stores as the most influential entities, but an (advertise-
ment) statement from a popular figure in the entertainment indus-
try, such as Justin Bieber, on a specific boot style1 may change this
ordering. Important events can often dynamically change the influ-
encers, and this can only be tracked in a time-sensitive and online
fashion from the underlying activities in the social stream.

We address these issues by considering a more flexible real-time
setting in this paper, in which we enable the ability to query a so-
cial stream for various types of context-sensitive and time-sensitive
influencers. Any influence query includes four components, corre-
sponding to (a) influencer set, (b) influenced set, (c) query content
such as keywords, and (d) time. The last of these components is of-
ten (implicitly) assumed to be the current time, although our frame-
work is flexible enough to provide responses to historical queries
as well. The influence score I(S1, S2,Q, t) represents the aggre-
gate influence score of actor set S1 on actor set S2 with respect
to content Q at time t. Most of the queries are resolved by eval-
uating this score and then ranking it over various possibilities in
the argument. One or more of the arguments in I(S1, S2,Q, t)
can be instantiated to a “*” (don’t care) in order to enable more
general queries in which all possibilities for the matching are con-
sidered. For instance, the queries I(“David”, ∗, “Egypt unrest”, t)
and I(“John”, ∗, “Egypt unrest”, t) can be used to compare the to-
tal influence of David and John on the topic “Egypt unrest” at time
t. Some examples of useful queries that can be resolved with this
approach are as follows:

• For a given query context Q, determining the top-k influencers
at time t can be formulated as: maxX:|X|=k I(X, ∗,Q, t). It is
also possible to constrain the query to consider a specific subset
Y in the second argument, corresponding to the influenced ac-
tors. For example, a winter clothing merchant might decide to
consider only those actors whose location profiles correspond to
colder regions.

1http://money.msn.com/now/post.aspx?post=
ea03f857-18c1-414f-97bc-7bc5d0b2ab06

493

http://dx.doi.org/10.1145/2835776.2835788
http://money.msn.com/now/post.aspx?post=ea03f857-18c1-414f-97bc-7bc5d0b2ab06
http://money.msn.com/now/post.aspx?post=ea03f857-18c1-414f-97bc-7bc5d0b2ab06

• Determining the top-k influenced actors at time t, for a given
query contextQ, can be extremely useful in context-specific sub-
scriptions and in recommending interesting public content to in-
fluenced users.

• Influence queries can also be useful in context-sensitive link rec-
ommendation, such as finding the top-k influencer-influenced
pairs, for a given query contextQ.

Influence queries can provide significant business insights into
the content, network, and temporal dynamics of the social stream.
In addition, dynamic variants of existing problems can be formu-
lated using this querying framework to leverage our approach. For
example, the traditional influence maximization problem [15] is
that of maximizing the influence of node set X (of size k) for the
entire network, for any content, across all time points. In other
words, the traditional problem can be formulated as maxX:|X|=k
I(X, ∗, ∗, ∗). An important difference from traditional influence
analysis is that these queries are now resolved in a dynamic and
data-driven way with the help of the social stream.

1.1 Contributions and Organization
In this paper, we propose an online approach in which we pro-

cess the incoming social stream objects to create an incrementally
(lazy) updatable data structure of flow paths. This data structure
implicitly tracks all the influence information corresponding to the
different content of all users in real-time. This goal is achieved
by tracking information flow patterns in a tree-like data structure
across various paths of the network in a context- and time-sensitive
fashion. This data structure can then be queried in a flexible way
to yield a variety of insights that are not normally possible with a
traditional influence-based model. It is important to note that our
framework provides the ability to query influencers for different
contexts without any re-computation of influencers from scratch,
unlike existing approaches [10, 9, 15].

Our approach is well-suited for applications where the hardware
available for execution is limited. To handle such scenarios, we
provide an approximation technique (based on the available hard-
ware) and show that our approximation is close enough to actual
value. We establish a tight lower bound on the accuracy for this
purpose. Our approach also has a well-established relationship
with Katz similarity measure. Finally, we evaluate our approach
using social and collaboration data sets and show several interest-
ing case studies and precision-recall experiments for different types
of queries. To the best of our knowledge, this is the first influence
querying and tracking model for social streams.

This paper is organized as follows. The remainder of this section
discusses the related work. In the next section, we formalize the
problem of online influence analysis for social streams. In section
3, we will provide an efficient algorithm for querying and tracking
influencers from social streams. Section 4 contains the experimen-
tal results. The conclusions and summary are contained in section
5.

1.2 Related Work
The problem of tracking influencers in a network is often treated

as an influence maximization problem [15, 14, 18, 10, 9]. The prob-
lem of influence maximization is that of finding the top-k nodes
such that the average infection spread is maximized under a spe-
cific influence propagation model. There are two popular choices
for the influence propagation model, which are referred to as the
Independent Cascade (IC) and Linear Threshold (LT) [15] models,
respectively. In these models, it is assumed that the edge propaga-
tion probabilities for the influence propagation model are already

provided. Therefore, it is difficult to query these models for a spe-
cific context (or content), unless the edge propagation probabilities
are learned as a separate problem in its own right [11]. In the dy-
namic social stream setting, such a model is too inflexible to si-
multaneously track the influencers in different contexts, while also
adjusting for the evolution in the flow patterns and influencers over
time.

Information flow mining has been recognized as a useful tool
for the problem of influence analysis. A number of basic models
for influence analysis in social networks are discussed in [15]. Re-
lated work on information flow mining and cascades may be found
in [16, 18, 19, 22]. The problem of information flow mining and
influence analysis has been related in [12, 24]. There are game the-
oretic [26] and supervised learning models [25] applied for find-
ing influencers. However, these techniques are applicable only for
static graphs and not for streaming social data. There are a few
topic-specific influence analysis models [5, 8, 21, 27], but they are
either not online, or they cannot be queried in a context- and time-
sensitive fashion.

There is a surge of recent literature on social streams [3]. As
the content of many social networks, such as Twitter, are often
available only in the form of social streams of user activity. So-
cial streams have been explored in the context of event detection
[1, 23], topic-based browsing [6], classification [29], and influence
analysis [24]. There have been some attempts to compute influ-
encers in an online setting [17, 30], but these approaches are not
context-specific and cannot be queried. There are other interest-
ing works on topic-specific influence maximization [4]. However,
our focus is more on a general keyword-based influence querying
scheme for streaming scenarios. As we will see later, our approach
is related to a flow-based version of the Katz measure [20], a pop-
ular centrality measure.

2. REAL-TIME FLOW-BASED INFLUENCE
ANALYSIS

In this section, we discuss the necessary notations and the prob-
lem definition to introduce the online influence analysis model for
social streams. We assume that we have a social stream S(t) at
time t. It should be pointed out that the social stream S(t) can be
used to construct a temporal network G(t) = (V (t), E(t)), which
is based on all the edges received so far till time t. It is assumed
that all edges in the network are directed, which corresponds to the
direction of the information flow along an edge in E(t). Each ac-
tor ai ∈ V performs a number of content-based actions such as
sending tweets, exchanging messages, or placing wall posts, etc.
Because this process occurs simultaneously over the entire set of
actors in the social network, the stream of content created by the
different actors can be globally treated as a social stream of text
content. We denote the set of all distinct keywords that appear in
the social stream by K = {K1, . . . ,Km}. Each content-token Ki

in the stream is associated with the following meta-data:

• The content-token Ki ∈ K represents a component of the
content created by an actor in the social stream. This could
correspond to the actual string of the tweet/post, or only spe-
cific parts of the post, such as URL strings, keywords, or
hash tags. In the event that the cascade behavior is being
observed broadly in the form of topics, rather than re-posts,
the string Ki could also simply be one of a set of a topical
dictionary of keywords (contained in the tweet). An inter-
esting feature of our approach is that it can be easily applied
to an arbitrary subset of content-tokens or even latent topics
to facilitate topic-specific influence in the network (Section

494

3.3). However, for the purpose of this paper we treatK as the
dictionary of content-tokens and each content token (Ki) de-
notes a unique hashtag or a keyword. We feel such keyword-
based treatment allows for better granularity of analysis.

• It is assumed that the contentKi is created by some actor aj .
The value j is an index drawn from the actor set V (t), and it
represents the actor who is responsible for the origination of
that particular piece of content.

• It is assumed that the content Ki is received by actor al ∈
V (t), and it represents the recipient of that content. This
recipient could be an email recipient in an email network, a
follower of the tweet sender in Twitter, or any other form of
communication in a social network.

The continuous flow of such user content through a network is
referred to as social stream (S) [24], and it is often the only observ-
able aspect of the dynamics of a social network. In many social
networks, such as Twitter, this form of social stream data is avail-
able using a subscription-based access.

2.1 The Flow-based Query Model
We now set up the model for the influence querying problem,

and show its relationship to many of the existing methods in the
literature. More specifically, we will discuss how the flow paths are
used in the context of influencer querying. The intuition behind the
flow-based approach is that influencers that are important to a spe-
cific content are often the originators of messages or tweets related
to that content. The same observation is true about the pairwise in-
fluence between nodes. When a particular actor ai is influential on
actor aj with respect to a particular content set (e.g., keywords), it
will lead to a significant amount of flow of the corresponding con-
tent set form ai to aj and then to aj’s neighbors, through multiple
flow paths. Thus, by tracking the flow paths for different keywords,
one can perform effective content-centric analysis.

For the purpose of this paper, we assume that a dictionary of key-
word K is available, and all content flow weights are computed in
terms of the transmission of messages containing these keywords.
The use of keywords, as opposed to segments of text, actually al-
lows for better granularity of analysis, since the content flows can
be computed in terms of these keywords, and then aggregated over
different flow paths for a particular topic.

First, we define the concept of a valid flow between a pair of
nodes aj and ak, with respect to a specific content token Ki. In-
tuitively, this concept represents the transmitting of a keyword Ki

along a specific path aj = b1 . . . br = ak leading from aj to ak,
such that each transmission between successive nodes occurs in that
order. We formally define this concept as a valid flow:

DEFINITION 1 (VALID FLOW). A valid flowF of keywordKi

from aj to ak is an ordered set of nodes aj = b1 . . . bs = ak ∈ N ,
such that the following conditions are satisfied:

1. An edge exists between nodes br and br+1 in the base net-
work, for all r = 1 . . . s− 1.

2. The node br+1 transmits a message containing the keyword
Ki, after a message is transmitted from node br containing
the same keyword.

Thus, a flow from node aj to node ak, of the keyword Ki is in-
dicative of the influence that node aj has over node ak. Note that
the flow of a message occurs over a particular duration that corre-
sponds to the elapsed time since the first transmission of message
keyword from node aj . We refer to this as the flow duration:

DEFINITION 2 (FLOW DURATION). Consider a valid flow F
of keyword Ki from aj to ak. Let tc be the current time, and to be
the original time at which the keyword was transmitted from node
aj . Then, the flow duration from node aj to node ak is equal to
δt = tc − to.

The notion of flow duration refers to the latency of influence re-
sponse. When the flow duration (δt) is large, the significance of
the content flow decays over time in terms of its influence. This is
important, especially if the influence scores are to be made tempo-
rally sensitive for more effective analysis. Therefore, we assume a
decay factor of λ, and assume exponential decay in order to define
the flow weight of a particular path.

DEFINITION 3 (DECAYED FLOW WEIGHT). Let δt be the flow
duration of a particular flow F at a current time tc, and λ be the
decay factor. Then, the decayed flow weight is given by 2−(λδt).

The flow F has a half-life of 1/λ, since the weight of a flow
reduces by a factor of 2 every 1/λ time units. Note that the rate
at which the information decays is a constant for all users in our
model (i.e. λ). More specifically, the rate of decay before and
after the message is transmitted by (the last actor) ak in flow F
is λ. Thus, the decayed flow weight expression, in Definition 3, is
independent of the time of transmission of the message by actor ak.
The decayed flow weight can be further used to define the aggregate
path flow.

DEFINITION 4 (AGGREGATE PATH FLOW). The aggregate path
flow A(P,Ki, tc) at current time tc, for keyword Ki along a par-
ticular path P = 〈aj , . . . , ak〉, is the sum of the flow weights on
that path for the keyword Ki over all different valid propagation of
the keyword from node j to node k along path P .

Note that the aggregate path flow is caused by repeated flow of a
keywordKi along a particular path. For two flows to be considered
distinct, the keywords would need to have been transmitted at a
distinct time at the source or destination node in the path, and also
satisfy all the valid flow constraints.

This path flow can be aggregated across a set of paths that are
specific to a particular source and destination node, to define a pair-
wise value, as opposed to a path-wise value.

DEFINITION 5 (AGGREGATE PAIRWISE FLOW). The aggre-
gate pairwise flow V(aj , ak,Ki, tc) at time tc for keywordKi from
node aj to node ak is equal to sum of the value of the flows on the
paths from node aj to node ak. Therefore, is Sjk be the set of paths
from node j to node k, we have:

V(aj , ak,Ki, tc) =
∑
P∈Sjk

A(P,Ki, tc) (1)

We now formally introduce the atomic influence function I(aj ,
ak,Q, t), which is the influence exerted by node aj on ak, for the
context Q (query keywords), at time t. This function can be com-
puted as a sum of the aggregate pairwise flows over all the query
keywords Ki ∈ Q. It is important to note that this influence func-
tion is asymmetric. In other words, the influence exerted from aj
to ak can be very different from the influence in the other direction.

DEFINITION 6 (ATOMIC INFLUENCE FUNCTION). The atomic
influence value I(aj , ak,Q, t) for a node aj to influence ak, is de-
fined as the sum of the aggregate pairwise flows over all keywords
Ki ∈ Q in the data:

I(aj , ak,Q, t) =
∑
Ki∈Q

V(aj , ak,Ki, t) (2)

495

So far, we have explained how the individual content tokens ar-
riving in the social stream T can be used to model an influence
function I, in content, network and time sensitive fashion. It is
possible to convert the keywords to other representations in sce-
narios where it leads to enhanced performance. For example, the
content tokens tracked may be URLs or high level topics, while the
incoming query may be still a collection of textual tokens. In such
cases, a probabilistic latent factor model can be used to compute
the association of tracked content tokens to given query tokens. We
will revisit this discussion in detail, after we explain a simplified
version of the algorithm in the next section.

2.2 General Flow-based Query Processing
The aforementioned computation of the atomic influence func-

tion for calculating influence scores in pairwise fashion can be gen-
eralized to a wider range of queries easily. An important obser-
vation is that the “don’t care” conditions, denoted by ‘*’, can be
treated as implicit summations. For instance, we have I(∗, ak,Q, t)
=

∑
aj∈V I(aj , ak,Q, t) = I(V, ak,Q, t). In this section, we

denote the influencer and the influenced as aj and ak, respectively.
The three main applications of the atomic influence function are as
follows:
Influencer Search Queries (α (aj ,Q, t)): A typical form of query-
ing is similar to using a search engine. Given a contextual query,
Q = {w1, w2, ..., wk}, a relevant set of influencers are computed
for Q at the current time t, using the atomic influence function,
which is defined as α(aj ,Q, t) = I(aj , ∗,Q, t)/I(∗, ∗,Q, t). We
normalize the scores across all users for the query, before compar-
ing them with each other. We find the top-k (aj) nodes that have
the highest influence scores (using the atomic query α(aj ,Q, t))
and arrange them in the descending order. A user can also query
the influencers in a similar way for an earlier time t′ < t.
Link Prediction Queries (β (aj , ak, t)): Social network users tend
to connect to the users who influence them highly. Hence, one
can use this query to find the top-k users who have the greatest
influence on user ak at current time t. This query is very simi-
lar to the link prediction problem where directional (e.g., follower)
links are predicted on the basis of context-sensitive influence. Here,
the atomic influence function can be defined as β(aj , ak, t) =
I(aj , ak, ∗, t)/I(∗, ak, ∗, t) to find the influence of nodes aj on
ak across all Ki ∈ K.
Concept-specific temporal queries (γ (Q, [t1, t2])): These queries
can be used to find the evolution of influence of a particular con-
cept or phrase across a time horizon [t1, t2] 2. Here, a concept or
phrase (Q) is given, and its influence over a time window is mea-
sured and compared. The atomic influence function is computed as
γ(Q, [t1, t2]) = I(∗, ∗, Q, t)/I(∗, ∗, Q, ∗), t ∈ [t1, t2].

We will discuss these three applications in detail in our experi-
ments section.

2.3 Relationship with Katz Measure
The aforementioned atomic influence function is closely related

to the Katz measure [20]. The Katz measure is defined in terms of
the weighted sum of the number of all possible paths between a pair
of nodes and the weight decays exponentially with the length of the
underlying path. Specifically, if Pij be the set of paths between
nodes ai and aj , then the Katz measure K(ai, aj) is defined as
follows:

2Here the time interval is discrete, with a specific time granularity
days, hours, minutes, etc.

K(ai, aj) =
∑
P∈Pij

β|P | (3)

Here β is the discount factor on the path length, which in our
case is analogous to the flow-based temporal decay factor. This
is also analogous to the original definition of the Katz measure,
in which longer paths are discounted to a greater degree. Thus, our
flow-based approach computes exponentially decayed flow weights
across different paths, as a more dynamic, time- and content-sensitive
way of measuring the importance of nodes. In an indirect sense,
this way of computing node importance can be considered a flow-
based analogue to the Katz measure in static networks. Because the
Katz measure has been shown to be effective for link recommen-
dation in static networks, it lends greater credence to its use in the
flow-based streaming scenario. Of course, the Katz measure is used
rarely in static networks because of the complexity of enumerating
over a large number of possible paths. The important point to un-
derstand is that the flow-based measure significantly changes in the
importance of different paths in the update process, and can also
be more efficiently computed in the streaming scenario, because
of the availability of a dynamic update process (see Section 3.2).
Most paths in the network are used rarely by the different flows,
and therefore the flow-based measure provides a better weighting
to the different paths in terms of user actions. This skew in the
distribution of user behavior across different paths also allows for
a more efficient computation of the atomic influence function, as
compared to the static case, because of the number of paths with
significant flow is much smaller. We will use this intuition later to
provide an efficient approximation to our algorithm in Section 3.1.

2.4 Challenges and Intuition
The problem of flow-based online influence analysis is extremely

challenging because of its computational and real-time constraints.
One major challenge is that the number of possible paths between
a pair of nodes are exponential and so are the number of flows.
Furthermore, real-time tracking becomes extremely difficult, when
the number of paths involved is extremely large.

A salient observation is that while the number of possible flows
is large, only a small number of them may be significant enough
to be maintained. This fact will be exploited in order to create a
pruned approximation of the flow paths. This pruned version can
keep approximate track of the different paths in an efficient and
dynamic way. We provide an analysis that shows our approxima-
tion significantly reduces the complexity of the maintaining all flow
paths, while retaining the effectiveness of the querying process.

3. INFLUENCER TRACKING ALGORITHM
In this section, we will present the basic flow-based influencer

tracking algorithm. As discussed earlier, a key part of this approach
is the aggregation of flow paths together with the relevant weights
and updating them in real-time as the new social stream object ar-
rives. Therefore, the main focus of this approach is to find an ef-
ficient way to keep track of the flow paths. For ease in discussion,
we will first describe the algorithm with two simplifying assump-
tions. The first assumption is that the keyword set K contains a
single keyword K. We dropped the subscript i in Ki, since we are
dealing with a single keyword assumption. The second simplify-
ing assumption is to set the decay factor λ = 0 (no decay), so that
path weights essentially correspond to the counts of all the mes-
sages received so far. Later, we will describe how to modify the
algorithm to the general case. This two-stage exposition eases the
understanding of the algorithm. Before discussing the algorithm in

496

detail, we will first introduce the concept of the flow-path tree that
is an essential data structure for keeping track of the flow paths.
Our first description will use a very simple version of the path tree,
without any latent factor model (such as topic model), no decay and
a single keyword. Later, we will systematically discuss the changes
required for each of the increasing levels of complexity.

The flow-path tree T is a compressed representation of all the
flow paths that have been encountered so far. This tree is used in
order to keep track of all the information flows in the stream so
far. For a set of paths P = P1 . . . Pn with flow weights w1 . . . wn,
along which a flow of the keyword K has occurred, the flow-path
tree is defined as follows:

DEFINITION 7 (FLOW-PATH TREE). A flow-path tree T for
a set of paths P = {P1 . . . Pn} is defined as follows:

1. The root of the tree T is the null node.

2. Each path from the root to a leaf must correspond to exactly
one path Pi ∈ P , and a path from the root to an internal
node may correspond to a path in P .

3. The weight associated with a node (other than null node) is
equal to the flow weight corresponding to the path from root
to that node.

The flow-path tree is different from frequent pattern tree (fp-tree)
in several ways. The most important difference is that fp-tree is a
representation for item sets, where the order does not matter. While
in the flow-path tree the ordering of node matters the most. Hence,
in our problem, the strategy of using the most frequent node in
the root will not help. Moreover, while constructing the fp-tree
each transaction in the database is used to update the counts in the
tree. While in our scenario, there is no notion of a transaction and
multiple paths that may have influenced a node is extracted from
graph G(t) and then updated in the flow-path tree. All nodes that
propagated a content w will have their own root node (for content
w) in flow-path tree, while in fp-tree transactions with same item
w will not necessarily be a root node under null.

The overall framework for the influencer tracking algorithm (for
a single keyword) is illustrated in Fig. 1. This particular descrip-
tion shows only how the flow paths are updated for the arrival of a
message containing a single keyword K. In practice, however, all
keywords in a given message will need to be extracted, and multi-
ple updates will need to be performed to the flow tree. Furthermore,
this procedure will need to be performed every time a message from
a user originates at a given node ai. The input to the algorithm is
the network G(t), the originating node ai, and the current status of
the path tree T .

The basic idea in the algorithm is to trace back all the paths in
the network G(t) starting at node ai, at which the keyword K has
appeared in the past. For example, if node aj has an outgoing edge
to node ai, and has propagated the keyword K before ai, then the
path 〈aj , ai〉 is added to the tree T if non-existent, and the count is
increased by 1. Then, the path 〈aj , ai〉 is added to the candidate list
C for further backtracking. Note that all paths in C will always end
with the node ai, but not all these paths may be relevant because
the keywordK may not have had a flow along the immediate prefix
(obtained by removing node ai) of some of these paths. This rele-
vance can be checked by examining whether the immediate prefix
of this path occurs in T . More specifically, for any path P ∈ C all
nodes in the networkG(t), which have incoming edges into the first
node in the path P are examined, along with the temporal ordering.
For any such node ak, a new path ak ⊕ P is created by append-
ing ak to the beginning of the path P . Then, it is checked whether

Algorithm UpdateFlowPaths(Originating Node: ai,
Network: G(t), Social Stream: S, Flow-Path Tree: T)

begin
Receive the next message containing keyword K in
in social stream S originating at node ai;
Create singleton node ai in tree T as child of root

node if it does not already exist;
C = {ai}; { Candidate paths for expansion }
Update weight of singleton path containing only

node ai in tree T by 1;
while C is not empty
begin

Delete the first path P from C and
denote the first node of P by aj ;

for each ak 6∈ P in V (t) with an incoming edge to aj
if prefix of path ak ⊕ P exists in T and ak has
propagated keyword K prior to aj
if the complete path ak ⊕ P exists in T

Increment weight of last node of path ak ⊕ P
by 1 in T ;

else
Create last node of P as child for prefix
of path ak ⊕ P in T with weight as 1;

endif
Add ak ⊕ P to C;

endif
endfor

endwhile
end

Figure 1: Updating the Flow Paths for Single Keyword Simpli-
fication

the prefix of ak ⊕ P 3 occurs in T . If the prefix does exist, then a
new child node of the prefix can be created in T , corresponding to
ak ⊕ P , if such a child node does not already exist. The count of
this child node is incremented by 1. The path ak ⊕ P is added to
the candidate set C for further exploration. Once a path has been
explored in C, it is deleted from C. The termination criterion for
the algorithm is the case when no more paths in C remain to be ex-
plored. It should be pointed out that while the number of possible
paths in the network is exponential, the number of paths relating to
a specific keyword is usually much smaller. This number is even
smaller in the decay-based scenario discussed later, where very few
paths are relevant to a particular keyword at a specific time. Nev-
ertheless, the challenge arises that the tree T can grow rather large
in many scenarios, because the number of children of a node in T
can be as large as the in-degree of the corresponding node in G(t).
Since the degrees of nodes may sometimes be large, this can lead to
an explosion in the number of nodes in the T . In the next section,
we will show how to improve the efficiency of the representation.

3.1 Speeding up by Pruning
Since the flows are skewed across the different paths in the tree,

it is possible to use pruning to reduce the tree size and improve
the efficiency of representation. Specifically, the tree size can be
reduced by pruning out the low frequency leaves in the tree. The
overall approach for building the flow-path tree uses an additional
pruning phase, in which the low frequency leaves of the tree are
removed.

In order to achieve this goal, the number of nodes in the tree
always allowed to vary between n andN , where n = α ·N for α ∈
[0, 1]. Smaller values of α improves the space complexity, while

3Prefix of ak ⊕P is the path obtained after removing the last node
of P .

497

100 101 102 10310−3

10−2

10−1

100

101

102

k

P
(k

;θ
,N

)

w
12797

 (Θ=1.64, R2=0.912)

w
12803

 (Θ=1.87, R2=0.896)

w
12831

 (Θ=1.50, R2=0.956)

w
12861

 (Θ=1.72, R2=0.893)

w
12925

 (Θ=1.37, R2=0.907)

Figure 2: The best-fit estimate of the Zipf parameter θ and cor-
responding R2 for few flow-path trees are shown in the legend.

larger values provide better accuracy of estimation. The pruning
approach is triggered whenever the total number of leaves in the
tree reaches N . The pruning approach sequentially removes the
leaves from the tree until the total number of nodes in the tree is
equal to α ·N . A question arises here as to how much of the flow
weight is lost by using the pruning approach, since the reduction in
the flow weight reduces the accuracy of estimation. We will show
that for modestly large values of N , the amount of flow weight
lost is very small, in scenarios where the flow weights are skewed.
Furthermore, because only the low frequency paths are lost, and the
influence scores are mostly relevant to the high frequency paths, the
impact of pruning is even lower.

The relative flow weights in a flow-path tree can be approxi-
mately modeled to be proportional to the Zipf distribution 1/iθ

for θ > 1. We confirm this by verifying the best fit estimates of
the distribution of flow weights for several flow-path trees in our
experiments on a real-life (Twitter) data set, described in detail in
Section 4. In Fig. 3, we show the flow weight distribution for a
few trees in rank versus frequency plots. We see that average R2 is
0.926 across all flow path trees and the fit was statistically signif-
icant at 5% significance level. We now show that the reduction in
flow weight, drawn from a Zipf distribution, is typically less than
log(α ·N)/log(N).

THEOREM 1. Let the flow weights on the N nodes in the tree
be distributed according to the Zipf distribution 1/iθ for θ ≥ 1.
Then, the total fraction F (N,α) of the flow in the top n = α · N
nodes of the tree is at least equal to:

F (N,α) ≥ log(n)/log(N) = 1− log(1/α)/log(N) (4)

Proof: The cumulative flow weight C(n) for the top n flows is
given by:

C(n) =

n∑
i=1

1/iθ (5)

Here, we are trying to determine the value of C(αN)/C(N).
The function C(αN)/C(N) is an increasing function of θ for α <
1, and θ ≥ 1. This is because the derivative ofC(αN)/C(N) with
respect to θ can be shown to be positive for θ ≥ 1. Therefore, the
minimum value of the function is achieved at θ = 1. Therefore, we
have:

F (N,α) ≥
∑n
i=1 1/i∑N
i=1 1/i

(6)

Note that the value of
∑n
i=1 1/i can be asymptotically approxi-

mated by log(n) for large values of n. The result follows. �

The skew helps significantly in retaining the vast majority of
the heavy flows. For example, in a flow tree with 100, 000 paths,
discarding half the least frequent paths would result in total flow
weight reduction of only 1 − log(50000)/log(100000) = 0.06 of
the flow weight. Thus, the vast majority of the heavy flows are re-
tained, which are the ones most relevant for the influence analysis
process anyway. This suggests that the pruning process can be used
to significantly reduce the complexity of the flow-path tree, while
retaining the effectiveness of analysis. This is essentially because
of the skew in the flows on different paths in the tree.

3.2 Incorporating Decay
A key issue is the incorporation of decay in the computation of

flow weights. At first sight, this looks challenging because it would
seem that it is required to continuously update the flow weights
at each time stamp because of the decay. However, in practice, it
is not necessary to update the flow weights for each time-stamp.
Rather, it is sufficient to perform the updates in a lazy fashion, as
described below. This is because of the multiplicative property of
decay computations.

LEMMA 1 (MULTIPLICATIVE PROPERTY). LetA(P,Ki, t) be
the aggregate flow value at the time t for path P with destination
node ak. Then, if no new message has been transmitted at desti-
nation node ak in the time interval (t1, t2), then the flow values at
times t1 and t2 are related by the following multiplicative rule:

A(P,Ki, t2) = A(P,Ki, t1) · 2−λ(t2−t1) (7)

The key pre-condition in the aforementioned rule is that no mes-
sage should have been transmitted at the destination node ak of
the path. This suggests a lazy approach for performing the multi-
plicative update, in which the decay-based multiplicative update is
performed only whenever a message is transmitted at a node, cor-
responding to which the flow is added. Therefore, for each path,
in the flow tree, each node contains the time-stamp information
about the last time that the flow value of the corresponding path
was updated. This is referred to as the last path update time-stamp.
Whenever a path in the flow tree is updated, the first step is to apply
the multiplicative decay factor to that node, and then add the newly
arriving flow value. The newly arriving flow value (which needs to
be added to the current flow value of the path in the tree) is com-
puted according to Definition 3, rather than the simple addition of
one unit. The last path update time stamp of that node is updated
to the current time.

The incorporation of decay into the flow analysis process has the
additional advantage of reducing the number of updates. Recall
that the algorithm in Fig. 1 performs a backtrack starting at the
destination node at which the keyword currently appears. When
a particular path being examined has a very low aggregate flow
value, then it can be pruned from consideration. In other words, the
path does not need to be extended backwards in Fig. 1, when its
flow value is below a given threshold. Such paths are therefore not
added to the candidate list C. Specifically, a threshold ε on the flow
path value is imposed for pruning purposes.

3.3 Generalizing beyond Keywords
So far, we have constructed the flow-path tree with the use of a

single content token. The generalization to full keyword sets can
be easily performed by adding an additional level to the flow-path
tree. Specifically, this additional top most level corresponds to the
choice of keyword being tracked. The first step in this process is
to map each keyword to one of these branches. Subsequently, the
flow paths in that branch are updated using the approach discussed
earlier.

498

It is sometimes helpful to track the influence of users on la-
tent topics. While our algorithm is designed to create a flow-path
tree for each keyword because of its natural connection to query-
processing, it can be very well used for latent topics. To compute
the influence scores on latent topics, one can use the posterior of
each topic given the query keyword, and compute the atomic influ-
ence function for the generalized list of latent topics (Z) as shown
in (8).

I(j, k,Q, tc) =
∑
z∈Z

∑
Ki∈Q

p(z|Ki, tc)V(j, k, z, tc) (8)

This way one can query the topical influencers using latent top-
ics, rather than explicitly using the content tokens in the post. Thus,
the proposed approach is general enough to handle individual con-
tent tokens, n-gram phrases, and latent topics. We refer to our al-
gorithm as QUIS, which is an acronym for QUerying Influencers
in social Streams.

4. EXPERIMENTAL RESULTS
In this section, we will first evaluate the quality of influencers

produced by the real-time flow-based query model compared to
several baselines. Then, we will provide sensitivity and efficiency
analysis of our querying framework. We also discuss several user-
and concept-specific temporal queries to demonstrate the impor-
tance of influence query models in various scenarios.

4.1 Data sets
We evaluate the effectiveness and efficiency in two different data

sets, belonging to the social network and research collaboration do-
mains. For the social data set, we used Twitter, and for the collab-
oration data set we used DBLP.

Twitter Data Set: We used tweets over a period of 37 days
from March 25, 2014 to May 1, 2014 (on the 10% feed of Twitter)
and filtered the stream to contain tweets with one of the following
set of hash tags related to the blocked news in Turkey for Twit-
ter after the corruption allegations: “#turkey, #twitterblockedin-
turkey, #direntwitter, #twitterisblockedinturkey, #25martkorkusu,
#twittericinsokagacikiyoruz, #youtube blockedinturkey, #erdogan,
#1mayis”. The resulting data set contained 1,919,294 (≈ 1.9 mil-
lion) tweets. Each extracted post contained the time stamp, user
identifier and its content. We extracted all the unique hash-tags
from these postings and treated them as the propagated keywords.
This entire stream contained 131,574 unique hash-tags and 293,363
unique users. We constructed the relationship network of these
users using the mentions between them for the past 10 months until
1st of May, 2014. The resulting network contained 293,363 users
and 799,605 edges.

DBLP Data Set: The DBLP data set is publicly available and
can be downloaded from arnetminer.org 4 [28]. This data set con-
tained a stream of documents (2,084,055 papers), which were tem-
porally ordered based on the year of publication (until 2011). The
relationship network G of authors is constructed using their co-
authorship relationship. We excluded all papers that did not have
any authors, abstract or year of publication in our stream. We con-
sidered the abstract of each paper as the message posted by the
authors of the paper. Our keyword set (K) was constructed using
uni-, bi- and tri-grams of the words appearing in these abstracts. In
order to track the interesting keywords, we used the ratio of frac-
tion of keyword occurrences in a specific topic to the fraction of

4http://arnetminer.org/citation

keyword occurrences in the entire corpus. We extracted 24 top-
ics from the field of computer science in the Microsoft Academic
search Website and constructed the list of top 10 conferences for
each topic. If a paper is published in the selected sample of venues
for this topic, then the words in the abstract are counted for that
topic. By using this approach, we extracted the top-1000 interest-
ing keywords (uni- to tri-grams) for all the 24 topics and created a
model based on them. It resulted in 12,974 interesting words across
the entire stream. Our final cleaned data stream contained, 330,000
documents with total of 337,081 distinct authors. We set N = 103

and α = 0.5, for our approach as default values, unless specified
otherwise.

4.2 Baselines
We used some of the most popular baselines used in several other

recent influence analysis works [15, 10, 9]. The first baseline is the
PMIA algorithm discussed in [9]. It is the prefix excluded exten-
sion of Maximum Influence Arborescence (PMIA) model. This
algorithm takes a network structure with predefined edge probabil-
ities as input. We have used the weighted cascade model proposed
in [15] to compute the edge probabilities. Our next baseline algo-
rithm is DegreeDiscountIC, which is the degree discount heuristic
of [10] developed for the uniform IC model. For the PageRank
baseline, we used the power-iteration method to compute the page
rank values and the restart probability was set to 0.15. The stop-
ping criteria was set 10−7, which is the difference in the L1 norm
between two successive iterations. We also used the degree and
weighted-degree as additional baselines.

4.3 Evaluation Measures
We evaluated the effectiveness of our approach in terms of the

quality of the influencers returned by different queries. We com-
pared the top-k influencers returned by our approach against the
ground truth of influencers for each query. We used the precision
and recall evaluation measures, shown in Equations (9) and (10),
respectively, to compare against the baselines. The list of top-k
influencers returned by each approach is compared with the list of
ground-truth influencers. The precision measures the fraction of
users retrieved that are relevant, while recall measures the fraction
of relevant users that are successfully retrieved.

precision = |relevant∩retrieved|
|retrieved| , (9)

recall = |relevant∩retrieved|
|relevant| . (10)

The ground-truth used for the DBLP data set was based on the
citation counts of authors for each topical area, and the venue was
used to decide the topic for each paper. Because the influence anal-
ysis needed to be performed in a time-sensitive way, the ground-
truth was also computed at various time-points. The ground truth
for Twitter data set contained the retweet counts for each user until
a specific time point (based on the time parameter in the query).
There were no specific topics in the Twitter data set, because the
data set was already focused on the Turkey event. The re-tweet
counts were counted only for the tweets in our stream.

4.4 Effectiveness Results
We evaluated the quality of the influencers discovered by each

approach in comparison with the ground truth. For our approach,
we generated the list of top-1000 influencers using the influencer
search queries as described in Section 2.2. The precision and re-
call values were computed by sweeping through the top-1000 in-
fluencers (from 1 to 1000) for each method. For Twitter, our query
was a set of hashtags related to the Turkey incident: “#turkey, #twit-

499

http://arnetminer.org/citation

Method DM NW ML CV HW SE
QUIS 0.096 0.092 0.042 0.084 0.146 0.028
PMIA 0.022 0.01 0.014 0.055 0.061 0.014
DDIC 0.02 0.012 0.017 0.037 0.089 0.014
PR 0.035 0.018 0.029 0.067 0.114 0.025
DEG 0.012 0.006 0.013 0.026 0.062 0.006
WTDDEG 0.021 0.009 0.013 0.056 0.064 0.013

Table 1: AUC computed for PR plots for six different computer
science fields in 2005

Method DM NW ML CV HW SE
QUIS 0.097 0.101 0.037 0.083 0.121 0.057
PMIA 0.019 0.009 0.008 0.045 0.03 0.006
DDIC 0.021 0.015 0.016 0.034 0.078 0.011
PR 0.036 0.016 0.02 0.068 0.099 0.014
DEG 0.016 0.012 0.015 0.028 0.066 0.006
WTDDEG 0.017 0.008 0.007 0.044 0.032 0.006

Table 2: AUC computed for PR plots for various computer sci-
ence fields in 2011

terblockedinturkey, #direntwitter, #twitterisblockedinturkey, #25-
martkorkusu, #twittericinsokagacikiyoruz, # youtubeblockedinturkey,
#erdogan, #1mayis”. In the context of DBLP we evaluated field-
specific influencers, because the influencers were different for each
field (such as Data Mining, Networking, etc.). In order to con-
struct the query keywords, that were representative of each field,
we selected the ten most cited papers and further filtered the 30
most frequent phrases for each field. These phrases form the query
for each area. We computed the influencers for 6 different areas
corresponding to Data Mining (DM), Networking (NW), Machine
Learning (ML), Computer Vision (CV), Hardware (HW), and Soft-
ware Engineering (SW). Each of the baseline methods required an
interaction network with edge weights. In order to make the net-
works query-specific, we extracted the co-authorship network for
the query by selecting the co-authorship relationships in papers
that contained at least one of the query words. The edge weights
were constructed by counting the number of query words present in
the co-authored publications. This value represents the strength of
query-specific co-authorship interactions. The top influencers com-
puted from these methods were used to determine the precision and
recall.

The precision-recall (PR) curves for the data mining and net-
working areas, at the beginning of year 2011 and 2005, are shown
in Fig. 3(a) and (b), respectively. The precision-recall plot for the
Twitter data set computed at the beginning of day May 1, 2014 is
shown in Fig. 3(c). Due to limited space, we show the area un-
der the curve (a point-wise value) for PR plots for 2005 and 2011
for six different fields in Tables 1 and 2, respectively. The influ-
encers of the Turkey incident were evaluated on May 1 and April
13, 2014. As per the AUC values, our approach provides the best
performance in context-specific queries. The main reason for the
performance of our approach is that we look at path-level interac-
tions of influence, while the propagation model based methods [10,
9] look only at pairwise interactions. Also, the abstraction of all
the query information into a single edge-wise probability score is
too unstable. This is especially true when the query-words overlap
with more than one area. These issues do not affect our approach as
we track specific keywords or phrases and use the phrase-level in-
fluence to compute a query-specific influence score. This may also
be the reason for the inconsistency in baseline performance. For
example, while PageRank performs better than the other baselines
in DBLP, PMIA does better in Twitter.

Method May 1, 2014 April 13, 2014
QUIS 0.141 0.125
PMIA 0.092 0.102
DDIC 0.095 0.101
PR 0.053 0.053
DEG 0.084 0.088
WTDDEG 0.096 0.104

Table 3: AUC computed for PR plots for Turkey incident on
Twitter at two different time points.

DBLP Twitter
α mean(∆x) dev(∆x) mean(∆x) dev(∆x)
0.25 0.00045 0.0000466 0.08979 0.00585
0.50 0.00031 0.0000355 0.07435 0.00491
0.75 0.00021 0.0000233 0.06101 0.00418
0.95 0.00013 0.0000164 0.05218 0.00378

Table 4: Mean and deviation of ∆x for DBLP and Twitter data
sets computed at 2011 and May 1, 2014 respectively.

4.5 Sensitivity Analysis
The value of α denotes the pruning parameter and ranges from

0 to 1. Larger values of α result in reduced pruning. In order to
measure the impact of pruning on effectiveness, we computed the
value ∆x(α) = (I(x, ∗, ∗, t)−Iα(x, ∗, ∗, t))/I(x, ∗, ∗, t). Here,
I(x, ∗, ∗, t) denotes the total influence of user x with no pruning,
and Iα(x, ∗, ∗, t) is the total influence computed after pruning with
parameter α. Similarly, the quantity ∆w(α) = (I(∗, ∗, w, t) −
Iα(∗, ∗, w, t))/ I(∗, ∗, w, t) computes the fractional loss of influ-
ence scores per word w. We reported the mean and deviation of
∆w in Fig. 4, and those of ∆x in Table 4. As discussed earlier, by
retaining even a small fraction α = 0.25 of the nodes, we are able
to provide an excellent estimate of the total influence in both data
sets.

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10−4

α

∆ w

QUIS

0.2 0.4 0.6 0.8 1
0.04

0.05

0.06

0.07

0.08

0.09

0.1

α

∆ w

QUIS

(a) DBLP (2011) (b) Twitter (May 1, 2014)

Figure 4: Mean and deviation of ∆w for DBLP and Twitter
data sets for various α values, computed at the beginning of
2011 and May 1, 2014 respectively.

4.6 Case Study of Context and User-specific
Queries

In this section, we show how our framework can be used for
querying context and user-specific influence values at different time
points. In order to evaluate the context specific queries, we selected
the query “frequent itemsets fpgrowth fptree,” and we determined
the top-3 influencers using our framework for every year from 2000
to 2011. We discuss the top-3 influencers for this keyword in 2000
and 2002, when this query gained traction. In 2000, the top influ-
encers were Philip Yu, Jeffrey Ullman, and Shalom Tsur, because
keywords such as fp-growth and fp-tree were not yet recognized. In

500

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RECALL

P
R

E
C

IS
IO

N

QUIS
PMIA
DD−IC
PageRank
Degree
WeightedDegree
Random

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

RECALL

P
R

E
C

IS
IO

N

QUIS
PMIA
DD−IC
PageRank
Degree
WeightedDegree
Random

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

RECALL

P
R

E
C

IS
IO

N

QUIS
PMIA
DD−IC
PageRank
Degree
WeightedDegree
Random

(a) Data mining query (2011) (b) Network query (2005) (c) Twitter Turkey query (1st May 2014)

Figure 3: Precision-Recall (PR) plots for two fields in DBLP and Turkey incident in Twitter data set are shown. The quality of
influencers found by each approach is evaluated using the PR plot. Our approach performs consistently better in multiple field-
specific queries and at multiple time points.

2000 2002 2004 2006 2008 2010
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

YEAR

IN
FL

U
E

N
C

E
 S

C
O

R
E

Query1 = dbscan density based
Query2 = aop aspectj aspect oriented
Query3 = frequent itemsets fpgrowth fptree

Figure 5: Growth and decay of influence for various concept-
based queries.

2002, the most influential individuals were Jiawei Han, Yiwen Yin
and Jian Pei. The temporal aspects of influence queries can be used
to understand the historical trends of a specific query in terms of its
influence. For instance, in the case of the aforementioned query on
frequent pattern mining, the influence values change over time, as
illustrated in Fig. 5. Such queries can be used to understand the
growth and decay of the influence of specific concepts. We refer to
these queries as “concept-specific temporal queries” in Section 2.2.

One can also use our framework to query for the most influen-
tial keywords for specific individuals. For example, we queried
DBLP for “Jiawei Han” in 2002 and obtained “fpgrowth” as the
most influential keyword. However, in 2006 and 2008, the word
“skylines” was the most relevant one. For Hans-Peter Kriegel, the
keyword “dbscan” was the most influential one in 2000 and 2002.
Such user-centered queries can be used to understand the change
in the user-specific behavior over time.

4.7 Efficiency Analysis
We evaluate the efficiency in terms of the number of objects pro-

cessed per second in the stream, and the total running time for each
query. The variation in the number of objects processed per second
versus the number of stream objects processed (i.e., progression of
stream) is shown in Fig. 6. The processing rate reduces initially,
because the number of objects indexed in the cascades are initially
very small, and they gradually increase over time. As the increase
in the number of objects stabilizes over time because of pruning,
the processing rate stabilizes. The plot also shows the effect of
pruning on the running time as well. As the value of α increases,
a larger number of objects are retained in the index. Therefore, the
approach is slower in this case.

0 2 4 6 8 10
x 106

0

0.5

1

1.5

2

2.5

3

3.5
x 104

STREAM PROGRESSION (t)
O

B
JE

C
TS

 P
R

O
C

E
S

S
E

D
 P

E
R

 S
E

C
. (

r)

QUIS (N=103, α=0.25)

QUIS (N=103, α=0.50)
QUIS (N=103, α=0.75)

QUIS (N=103, α=0.95)

9.4 9.45 9.5
x 106

950

960

970

980

t

r

0 1 2 3 4 5 6 7 8
x 105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 104

STREAM PROGRESSION (t)

O
B

JE
C

TS
 P

R
O

C
E

S
S

E
D

 P
E

R
 S

E
C

. (
r)

QUIS (N=103, α=0.25)

QUIS (N=103, α=0.50)
QUIS (N=103, α=0.75)

QUIS (N=103, α=0.95)

1.5 1.55 1.6
x 105

1100

1120

1140

1160

t

r

(a) DBLP (b) Twitter

Figure 6: Number of objects processed per second with stream
progression. The inset shows the computational reduction level
due to pruning.

The efficiency can be evaluated in terms of model building and
query execution. Model building is incremental, and therefore we
report the incremental time taken to build a model for a year for
DBLP, and a day for Twitter. These time-spans reflect the time-
scales at which these respective data sets were analyzed. The query
execution time is the total time required to access the influence
scores computed at time t from the incrementally updated tree-
index, and determine the top-k influencers for the query. For the
baselines, the model-building time is the total time taken to ex-
tract the context-specific network structure, and the querying time
is equal to that required to list the top-k influencers using its ap-
proach. There is no straightforward one-to-one comparison of the
running time, because our approach is incremental and query-based,
for which there is no other (known) baseline. The degree-centrality
measures are computed in linear time and can be extremely scal-
able for large networks. However, the model-building time to make
them query-sensitive is large. On the other hand, arborescence-
based methods such as PMIA are computationally expensive, and
their query-time is very high. Our approach does much better in
terms of total time as it maintains the model incrementally, and the
querying process simply sums several influence scores in a linearly
scalable way. The running times in Table 5, are in seconds and
computed for DBLP in the beginning of 2011, and for the Twitter
data sets on May 1, 2014.

5. CONCLUSIONS
The ability to understand the dynamics of influence in a context-

specific way is very important in various applications. In this paper,
we address this problem by proposing an influence-query frame-
work. By using this framework, one can query for individual in-

501

DBLP Twitter
Method Model Query Total Model Query Total
QUIS 65.68 0.15 65.83 12.25 0.051 12.30
PMIA 192.31 43.05 235.36 180.47 1959.36 1959.36
DDIC 192.31 1.05 193.36 180.47 2.25 182.72
PR 192.31 0.09 192.40 180.47 0.68 181.15
DEG 192.31 0.01 192.32 180.47 0.50 180.97
WTDDEG 192.31 0.01 192.32 180.47 0.62 181.09

Table 5: Running time (seconds) for various methods.

fluence values, context-specific influence values, or the temporal
influence evolution. We enable a streaming and incremental ap-
proach, which suits the social stream scenario. Furthermore, we
show that the quality of influencers obtained by our approach is su-
perior to those obtained from the baselines. We anticipate that our
scheme will enable broader classes of influence functions, which
will be helpful in various industrial applications. This will be the
focus of our future work.

6. ACKNOWLEDGMENTS
This research was sponsored by the Defense Advanced Research

Project Agency (DARPA) agreement number W911NF-12-C-0028,
U.S. Army Research Laboratory (ARL) cooperative agreement num-
ber W911NF-09-2-0053 and IBM Ph.D. Fellowship. The views
and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the DARPA, ARL, or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation here on.

7. REFERENCES
[1] C. Aggarwal and K. Subbian. Event detection in social

streams. In SDM, volume 12, pages 624–635. SIAM, 2012.
[2] C. Aggarwal and K. Subbian. Evolutionary network analysis:

A survey. ACM Computing Surveys (CSUR), 47(1):10, 2014.
[3] C. C. Aggarwal. Mining text and social streams: a review.

SIGKDD Explorations, 15(2):9–19, 2013.
[4] C. Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates.

Online topic-aware influence maximization queries. In
EDBT, pages 295–306, 2014.

[5] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social
influence propagation models. Knowledge and information
systems, 37(3):555–584, 2013.

[6] M. S. Bernstein, B. Suh, L. Hong, J. Chen, S. Kairam, and
E. H. Chi. Eddi: interactive topic-based browsing of social
status streams. In UIST, pages 303–312, 2010.

[7] S. Bhagat, A. Goyal, and L. V. Lakshmanan. Maximizing
product adoption in social networks. In WSDM, pages
603–612, 2012.

[8] B. Bi, Y. Tian, Y. Sismanis, A. Balmin, and J. Cho. Scalable
topic-specific influence analysis on microblogs. In WSDM,
pages 513–522. ACM, 2014.

[9] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-scale
social networks. In KDD, pages 1029–1038. ACM, 2010.

[10] W. Chen, Y. Wang, and S. Yang. Efficient influence
maximization in social networks. In KDD, pages 199–208.
ACM, 2009.

[11] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning

influence probabilities in social networks. In WSDM, pages
241–250. ACM, 2010.

[12] A. Goyal, F. Bonchi, and L. V. Lakshmanan. A data-based
approach to social influence maximization. VLDB,
5(1):73–84, 2011.

[13] A. Goyal, W. Lu, and L. V. Lakshmanan. Celf++: optimizing
the greedy algorithm for influence maximization in social
networks. In WWW, pages 47–48. ACM, 2011.

[14] A. Goyal, W. Lu, and L. V. Lakshmanan. Simpath: An
efficient algorithm for influence maximization under the
linear threshold model. In ICDM, pages 211–220, 2011.

[15] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In KDD, pages
137–146. ACM, 2003.

[16] J. Kleinberg. The flow of on-line information in global
networks. In SIGMOD, pages 1–2. ACM, 2010.

[17] K. Kutzkov, A. Bifet, F. Bonchi, and A. Gionis. Strip: stream
learning of influence probabilities. In KDD, pages 275–283.
ACM, 2013.

[18] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. Glance. Cost-effective outbreak
detection in networks. In KDD, pages 420–429. ACM, 2007.

[19] J. Leskovec, M. McGlohon, C. Faloutsos, N. S. Glance, and
M. Hurst. Patterns of cascading behavior in large blog
graphs. In SDM, volume 7, pages 551–556. SIAM, 2007.

[20] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. Jour. of the Amer. soc. for info.
sci. and tech., 58(7):1019–1031, 2007.

[21] L. Liu, J. Tang, J. Han, M. Jiang, and S. Yang. Mining
topic-level influence in heterogeneous networks. In CIKM,
pages 199–208. ACM, 2010.

[22] B. A. Prakash, D. Chakrabarti, N. C. Valler, M. Faloutsos,
and C. Faloutsos. Threshold conditions for arbitrary cascade
models on arbitrary networks. KAIS, 33(3):549–575, 2012.

[23] A. Ritter, O. Etzioni, S. Clark, et al. Open domain event
extraction from twitter. In KDD, pages 1104–1112, 2012.

[24] K. Subbian, C. Aggarwal, and J. Srivastava. Content-centric
flow mining for influence analysis in social streams. In
CIKM, pages 841–846. ACM, 2013.

[25] K. Subbian and P. Melville. Supervised rank aggregation for
predicting influencers in twitter. In SocialCom, pages
661–665. IEEE, 2011.

[26] K. Subbian, D. Sharma, Z. Wen, and J. Srivastava. Social
capital: the power of influencers in networks. In AAMAS,
pages 1243–1244, 2013.

[27] J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence
analysis in large-scale networks. In KDD, pages 807–816.
ACM, 2009.

[28] J. Tang, D. Zhang, and L. Yao. Social network extraction of
academic researchers. In ICDM’07, pages 292–301, 2007.

[29] M.-H. Tsai, C. Aggarwal, and T. Huang. Towards
classification of social streams. In SIAM Conference on Data
Mining, 2015.

[30] H. Zhuang, Y. Sun, J. Tang, J. Zhang, and X. Sun. Influence
maximization in dynamic social networks. In ICDM, pages
1313–1318. IEEE, 2013.

502

	Introduction
	Contributions and Organization
	Related Work

	Real-Time Flow-based Influence Analysis
	The Flow-based Query Model
	General Flow-based Query Processing
	Relationship with Katz Measure
	Challenges and Intuition

	Influencer Tracking Algorithm
	Speeding up by Pruning
	Incorporating Decay
	Generalizing beyond Keywords

	Experimental Results
	Data sets
	Baselines
	Evaluation Measures
	Effectiveness Results
	Sensitivity Analysis
	Case Study of Context and User-specific Queries
	Efficiency Analysis

	Conclusions
	Acknowledgments
	References

