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Abstract

In recent years, random projection has been used as a

valuable tool for performing dimensionality reduction of

high dimensional data. Starting with the seminal work of

Johnson and Lindenstrauss [8], a number of interesting

implementations of the random projection techniques

have been proposed for dimensionality reduction. These

techniques are mostly space symmetric random projections

in which random hyperplanes are sampled in order to

construct the projection. While these methods can provide

effective reductions with worst-case bounds, they are not

sensitive to the fact that the underlying data may have

much lower implicit dimensionality than the full dimension-

ality. This may often be the case in many real applications.

In this work, we analyze the theoretical effectiveness of

point sampled random projections, in which the sampled

hyperplanes are defined in terms of points sampled from

the data. We show that point sampled random projections

can be significantly more effective in most data sets, since

the implicit dimensionality is usually significantly lower

than the full dimensionality. In pathological cases, where

space sampled random projections are better, it is possible

to use a mixture of the two methods to design a random

projection method with excellent average case behavior,

while retaining the worst case behavior of space sampled

random projections.

Keywords: Dimensionality Reduction, Random
Projection

1 Introduction

Dimensionality Reduction is well known as an effective
tool to improve the compactness of the data represen-
tation. A well known technique for dimensionality re-
duction is the method of Singular Value Decomposition
[11, 9, 5] (SVD), which projects the data into a lower
dimensional subspace. The idea is to transform the data
into a new orthonormal coordinate system in which the
second order correlations are eliminated. In typical ap-
plications, the resulting axis-system has the property
that the variance of the data along many of the dimen-
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sions in the new coordinate system is very small [9].
These dimensions can then be eliminated, a process re-
sulting in a compact representation of the data with
some loss of representational accuracy.

In recent years, the technique of random projection
[1, 7, 10] has often been used as an efficient alternative
for dimensionality reduction of high dimensional data
sets. The idea in random projection is to use spheri-
cally symmetric projections, in which arbitrary hyper-
planes are sampled repeatedly in order to create a new
axis system for data representation. We refer to this
technique as a space sampled random projection, since
the sampled hyperplanes are independent of the under-
lying data points. To our knowledge, most known re-
sults (such as the seminal Johnson-Lindenstrauss result
[8], and its subsequent extensions for random projec-
tion techniques use space sampled random projections.
A different method is that of point sampled random pro-
jections in which points from the space are sampled in
order to create the projections. Specifically, if we sample
k points from the data, it creates a space with dimen-
sionality at most (k− 1). We note that the use of point
sampled projections automatically eliminates many ir-
relevant subspaces which would be picked by a space
sampled random projection.

In order to intuitively understand this point, we
will illustrate with the use of two examples. The first
example in Figure 1 illustrates 1-dimensional projec-
tions of 2-dimensional data. Consider the data set il-
lustrated in Figure 1 in which we have illustrated two
kinds of projections. In Figure 1(a), the data space
is sampled in order to find a 1-dimensional line along
which the projection is performed. The reduced data
in this 1-dimensional representation is simply the pro-
jection of the data points onto the line, as illustrated
in the lower diagram of Figure 1(a). This correspond-
ing 1-dimensional projection is a poor representation of
the underlying patterns in the data. This is because
space sampled random projections are independent of
the underlying data distribution. In Figure 1(b), we
have illustrated an example of a point-sampled random
projection projection. In this case, this projection hap-
pens to be the 1-dimensional line passing through two
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Figure 1: Point Sampled and Space Sampled Random
Projections (2-dim. example)
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Figure 2: Comparing Point Sampled and Space Sam-
pled Random Projections (3-dim. example)

randomly sampled points in the data. It is clear from
Figure 1(b), that this 1-dimensional line points picks up
the directions of greater variance more effectively than
the space-sampled random projection of Figure 1(a). As
a result, the quality of the reduction in Figure 1(b) is
significantly more effective than that in Figure 1(a).

A similar behavior is illustrated in Figure 2, in
which the space sampled random projection of Figure
2(a) shows very little alignment along the natural sub-
spaces represented by Figure 2(a). This is not the case
for point sampled random projections in which any set
of 3 randomly picked points can define the subspace
along which the data is naturally aligned. Though re-
peated applications of (space sampled) random projec-
tions [1, 8] provide bounds on data reduction quality, it
is also evident that space sampled random projections
are often wasteful, since they do not use the behavior of
the underlying data. In general, the lower the implicit
dimensionality (compared to the full dimensionality),
the more likely it is that point sampled projections can
use the special structure of the underlying data. In this
paper, we will analyze the behavior of point sampled
random projections and show that it is usually more ef-
fective than space sampled random projections. In order
to handle the pathological cases in which space-sampled
random projections are better, we can use a mixture
of the two methods. The mixture can provide results
which are significantly better than the space sampled
method in most cases, and almost as good in the worst

case. In many cases, much fewer number of samples
are required by the point sampled projection process
to achieve the same quality. Therefore, the addition of
point sampled random projections to the mixture im-
proves the efficiency of the reduction method by more
than an order of magnitude.

This paper is organized as follows. In the next
section, we will discuss and analyze point sampled
random projections. In section 3, we will present the
experimental results. The conclusions and summary are
discussed in section 4.

2 Point Sampled Random Projections:

Discussion and Analysis

In this section, we will discuss the process of perform-
ing point sampled random projections, and analyze its
effectiveness. We will show that while point sampled
random projections do not provide (distribution inde-
pendent) hard bounds like space sampled projections,
they can often be a much more effective tool in pre-
serving the dimensionality of the data. First, we will
provide some understanding of the philosophy behind
space-sampled random projections, and why they work
well for the purpose of dimensionality reduction.

We note that in random projection, we attempt
to create a distance-preserving transform which may
require a linear scaling of the data. The basic idea
behind the approach is that the k-dimensional random
projection of the distance between two points onto a
random set of vectors is equivalent to the projection of
a random vector (of the same length as the distance
between the points) on to any k-coordinates from a
fixed d-dimensional orthogonal coordinate system. It
can be shown that a random vector of length L in d-
dimensional space (when projected onto k dimensions)
has an expected length of

√

k/d · L, and this length is
“sharply concentrated” around the mean. This sharp
concentration is defined in terms of Chernoff bounds,
which provide probabilistic guarantees on the length
lying between

√

k/d · L · (1 − ǫ) and
√

k/d · L · (1 +

ǫ). By scaling the vector by a factor of
√

d/k, it
is possible to obtain a vector which is within a pre-
defined tolerance of the original vector length L using
certain probabilistic guarantees. Thus, in order to
preserve pair-wise distances in the random projection
technique, we project all points onto a randomly chosen
k-dimensional hyperplane, and then scale all data points
by the factor

√

d/k. By picking k = O(log(N)/ǫ2) and
repeating the random projection process N times, it is
possible to show that pairwise distances are preserved
by at least one of these projections to within a tolerance
of ǫ with fixed probability. We note that the above
description of why random projection works is a concise



explanation of the simplification of the original proof [8]
in [4].

2.1 How Strong are the Johnson-Lindenstrauss

Bounds Really? Consider a data set containing only
N = 2 points, and let us examine the effect of the
random projection process on the relative distance of
these two points from the origin. According to the
Johnson-Lindenstrauss bound, the error tolerance ǫ
of the distance of each of this pair of points from
the origin in the projected data grows with

√

1/k
where k is the dimensionality of the projection. This
tolerance needs to be examined in the context of the
overall behavior of high dimensional data. Recent
results [6] show that in high dimensional space, all
pairwise distances become identical because of data
sparsity. Under certain distribution assumptions [6],
the proportionate difference between the maximum and
minimum distances from any target point (such as
the origin) grow with 1/

√
d, where d is the overall

dimensionality of the data.

Lemma 2.1. [6] Consider a distribution of N = 2 data
points drawn from the d dimensional space Fd with i.i.d.
dimensions, where F is any 1-dimensional distribution
with non-zero variance. Let Dmax be the maximum
distance of this pair from the origin, and Dmin is the
minimum distance. Then, we have the following result:

Dmax − Dmin

Dmax

→p 1/
√

d(2.1)

In the above expression, the symbol →p corresponds to
convergence in probability with dimensionality d. Thus,
it has been shown in [6] that (Dmax − Dmin)/Dmin

grows (shrinks) proportionally to 1/
√

d with increas-
ing d. While the distribution assumptions in [6] rely
on i.i.d. dimensions, it can generally be assumed that
this behavior of the expression (Dmax − Dmin)/Dmin

may grow proportionally with 1/
√

d∗, where d∗ ≤ d
is the implicit dimensionality of the data. Therefore,
if the dimensionality of the projection k is chosen less
than d∗, the Johnson-Lindenstrauss tolerance guaran-
tees (which grow with

√

1/k) are asymptotically larger
than (Dmax − Dmin)/Dmin. Therefore, the nearest of
the pair of data points may become the furthest pair (af-
ter projection) and vice-versa. Even when k is chosen to
be larger than d∗, the tolerance may be a large fraction
√

d∗/k of (Dmax − Dmin)/Dmin. This also has impli-
cations for the meaningfulness of worst-case bounds in
nearest neighbor techniques [7], which use random pro-
jection techniques to provide such guarantees. While
much has been made of such bounds in the random pro-
jection technique, the above argument shows that the
Johnson-Lindenstrauss bounds are actually quite weak

when viewed in context of the overall sparsity behavior
of high dimensional data. This does not mean that ran-
dom projection is a poor approach in the average case.
In fact, recent empirical results show [3] that random
projection is indeed a useful tool which provides a high
level of retrieval effectiveness in real applications. How-
ever, it does not leverage the behavior of the underlying
data effectively. It is the aim of this paper to develop
a random projection technique which can leverage the
lower implicit dimensionality of real data sets in order
to further improve both the effectiveness and efficiency
of the projection process in the average case. We will
show that point sampled random projections are much
more effective than space sampled random projections,
when the underlying implicit dimensionality of the data
is small compared to the full dimensionality.

2.2 Random Projection and PCA We note that
while random projection is often used as an alterna-
tive to other dimensionality reduction techniques such
as Principal Component Analysis (PCA) [9], the two
methods are quite different in many respects. The Prin-
cipal Component Analysis technique uses the covariance
behavior of the data to optimize the direction of the pro-
jection, so that the least amount of variance is lost. On
the other hand, the random projection approach does
not attempt to optimize the direction of the projection,
but depends upon the fact that pair-wise proportion-
ate distances are maintained between different points
by a randomly chosen projection. By choosing an ap-
propriate scaling factor (

√

d/k), absolute distances can
also be maintained within the same factor. After scal-
ing, the new data set may have more or less variance
than the original data. The inability of space sampled
random projections to use the underlying distribution
of the data leads us to naturally explore the possibil-
ity that point sampled random projections may lead to
a much more effective dimensionality reduction, since
it uses the underlying distribution of the data. In the
following description, we will discuss our proposed im-
plementation of point sampled random projections, and
its application to dimensionality reduction.

Another key difference between random projection
and PCA is that random projection should be viewed as
a distance preserving embedding, whereas PCA should
be viewed as a pure axis-rotational transformation. The
reason for this key difference is that random projection
preserves the distance bounds only after multiplicatively
scaling by a factor

√

d/k, whereas the PCA approach
is a pure axis-rotational transformation without any
kind of scaling. (In practice, the multiplicative scaling
never needs to be performed since most data analysis
applications only require preservation of proportional



Algorithm PointSampledProject(Data: D, MaxProjected:k,
MaxSamples: numsamp);

begin

Determine centroid x and variance v
of database D;

Determine numsamp sets of points with k points
S1 . . .Snumsamp;

∀i ∈ {1 . . . numsamp} orthogonalize each set Si

to determine the set Ei;

∀i ∈ {1 . . . numsamp}project database D
onto set Ei to determine Di

while computing centroid xi and variance vi

of projected database;

∀i ∈ {1 . . . numsamp} multiply each entry in Di

by
√

v/vi for normalization while computing the

centroid-distance error;
Pick the projection Di with the least error;

end

Figure 3: The Point Sampled Random Projection Algo-
rithm

distances.)

2.3 A Simple Implementation of Point Sampled

Random Projections In this section, we will discuss
a simple implementation of point-sampled random pro-
jections for dimensionality reduction. As discussed ear-
lier, the point sampled random projection technique re-
quires (k + 1) points from the data in order to generate
a projection of dimensionality at most k. In practice,
we sample the centroid of the data along with k other
random points from the data. This provides us with
(k +1) data points, which we denote by y1 . . . yk+1. We
need to find an orthogonal axis-system E = {e1 . . . ek}
corresponding to the plane on which these k + 1 data
points may be found. The first step is to initialize a set
of vectors f1 . . . fk as follows:

fi = (yi+1 − y1)/||yi+1 − y1||(2.2)

This ensures that E = {f1 . . . fk} is a set of vectors
parallel to the plane defined by y1 . . . yk+1. However,
the vectors f1 . . . fk will typically not be orthogonal
to one another. These vectors can be orthogonalized
efficiently in k iterations by iteratively subtracting out
the components of fi onto the current orthogonal set
e1 . . . ei−1. Therefore, we recursively define the new set
of vectors e1 . . . ek as follows:

ei = (fi −
i−1
∑

j=1

[fi · ej ]ej)/||fi −
i−1
∑

j=1

[fi · ej ]ej ||

It is easy to verify by induction that the set of vectors
e1 . . . ek form an orthonormal axis system.

We note that the time-complexity of performing the
orthogonalization is asymptotically small as compared
to the complexity of performing the random projection
itself. In a later subsection, we will show that the
time complexity of performing a space sampled and
point sampled random projection is asymptotically the
same. Next, we will discuss a straightforward point
sampled random projection algorithm using the above
discussion.

The overall algorithm for performing the random
projection is illustrated in Figure 3. We assume that
the centroid and variance of the original database D are
denoted by x and v respectively. In order to perform
the projection, we pick samples of k data points along
with the centroid x of the original data in order to
create (k +1) representative data points. The ith set of
(k + 1) representative points is denoted by Si. We first
use the orthogonalization process discussed above to
create the orthogonal set of vectors Ei from Si. We find
all the orthogonalized subspace representations from
the different samples before actually performing the
projection. This is done so that the final projections can
be performed using a single pass over the data. Once all
the orthogonalized subspace representations have been
computed, we determine the projections of the original
database onto these subspace representations. During
the projection process, the variance vi of the projected
database Di is computed. We note that this can be done
during the projection process itself since the variance
can be computed in a single scan of the data. Each
subspace representation is normalized with the factor
√

v/vi, which is analogous to the normalization of space

sampled random projections with the factor
√

d/k.
Then, we compute the normalized average error of the
projection, which is defined in terms of how much the
distance of each data point to the centroid has changed
because of the transformation. Let dist(Di, x,Xj)
denote the distance of the data points Xj ∈ D from
from x, in the projected and normalized representation
corresponding to database Di. Then, the centroid error
CE(Di,D) for the database Di is defined as follows:

CE(Di,D) =
∑

Xj∈D

||dist(D, x,Xj) − dist(Di, x,Xj)||
(N · dist(D, x,Xj))

Note that we have chosen to define the error in terms of
intra-point distances, because unlike PCA (which is an
energy preserving transform), both space sampled and
point sampled random projections are actually embed-
dings which preserve intra-point distances. However, in-
stead of measuring worst-case intra-point distances (as
in the Johnson-Lindenstrauss result), we have used the
average fractional error of the distance to the centroid



as a more stable representative of the qualitative results
in real applications. This error quantification provides
an idea of the proportion of the error in distances which
are maintained by the reduction process.

2.4 Computational Complexity The computa-
tional complexity of point sampled random projections
is asymptotically the same as that of space sampled
random projections. The space sampled random pro-
jection process requires us to project the data onto each
of numsamp k-dimensional projections. Therefore, the
space sampled random projection has a computational
complexity of O(k ·N ·numsamp) d-dimensional vector
operations for a database with N points. This projec-
tion process needs to be performed for the point sam-
pled random projection process as well, except that we
need to perform an additional orthogonalization pro-
cess, which requires k iterations, and the ith iteration
requires i d-dimensional vector operations. Therefore,
the overall complexity of the orthogonalization process
is O(k2 · numsamp) d-dimensional vector operations.
Thus, the overall time complexity of point sampled ran-
dom projections is given by O(k · (k + N) · numsamp)
vector operations. We note that the dimensionality of
the projection k is typically negligible compared to the
number of data points N , and therefore the overall com-
plexity of point sampled random projections is given
by O(k · N · numsamp) vector operations, which is the
same as that of space sampled random projections. Fur-
thermore, our subsequent analysis and experimental re-
sults will show that since point sampled random pro-
jections leverage the behavior of the underlying data,
they typically require orders of magnitude fewer projec-
tion samples to achieve the same or better qualitative
results. This will mean that in practice, the point sam-
pled random projection process will have significantly
better computational complexity.

2.5 Theoretical Analysis of Point Sampled

Random Projections In this section, we will analyze
the theoretical effectiveness of point sampled random
projections. We note that the effectiveness of point
sampled random projections depends upon the fact that
the data is often embedded in a much lower dimensional
subspace than the full dimensional space. Thus, we will
try to analyze the effectiveness of the process in such
situations. To begin, we make the following straightfor-
ward observation about point sampled random projec-
tions.

Observation 2.1. If all data points in D are embedded
in a k-dimensional linearly independent subspace H,
then any set of (k + 1) sampled linearly independent
points from D will define H.

In many cases, the data sets may show this kind of
behavior because of particular domain specific char-
acteristics which constrain the data to a very low di-
mensional projection. In such cases, point sampling is
a straightforward way to discover the underlying sub-
spaces. In other cases however, this may only be ap-
proximately true. For example, it may be possible to
find a k-dimensional hyperplane in H from which all
data points in D lie at a distance of only ǫ > 0 from
H. In many practical scenarios, such a k-dimensional
hyperplane can be found that the value of ǫ is orders
of magnitude smaller than the data variance, and the
value of k is significantly smaller than the full dimen-
sionality d. In such cases, it is interesting to analyze the
effectiveness of point sampled random projections. We
make the following claim:

Lemma 2.2. Let H be a hyperplane such that all data
points in D lie at a distance of at most ǫ from H. Let
S be a set of randomly sampled k linearly independent
points from D, and S(H) be the projection of all data
points onto H. Let x be any data point from D and
xH be the projection of x onto H. Let L be any line
passing through xH and the convex hull of S(H). Let p
be the length of the segment in L corresponding to the
two points of intersection of L with the convex hull of
S(H), and let q be the smallest distance along L from xH

to the convex hull of S(H). Let HS be the hyperplane
passing through S. Then, the projection of xH onto HS
is at a distance of at most 2 · ǫ · (p + q)/q from xH.

Proof. Let the two points of intersection of L with the
convex hull of S(H) be P and Q respectively. Let the
set of k points in S be denoted by Z1 . . . Zk respectively.
Let the projections of P , Q, xH, Z1 . . . Zk onto H be
denoted by P ′, Q′, x′

calH , Z ′
1 . . . Z ′

k respectively. Let the
linear transformation corresponding to this projection
be denoted by f(·) : Rd → Rd. Since P and Q lie on
the convex hull of SH, there most exist sets of scalars
λ1 . . . λk, and µ1 . . . µk satisfying the following:

P =

k
∑

i=1

λi · Zi

k
∑

i=1

λi = 1

Q =

k
∑

i=1

µi · Zi

k
∑

i=1

µi = 1

By applying the linear transformation to both sides, we



have:

f(P ) = f(
k

∑

i=1

λi · Zi) =
k

∑

i=1

λi · f(Zi)

f(Q) = f(
k

∑

i=1

µi · Zi) =
k

∑

i=1

µi · f(Zi)

We note that the linear decomposability follows from
the linearity of the transformation f(·). Since P ′ =
f(P ), Z ′

i = f(Zi), and Q′ = f(Q), we have:

P ′ =

k
∑

i=1

λi · Z ′
i

k
∑

i=1

λi = 1

Q′ =

k
∑

i=1

µi · Z ′
i

k
∑

i=1

µi = 1

Therefore, we have:

P − P ′ =

k
∑

i=1

λi · (Zi − Z ′
i)

k
∑

i=1

λi = 1

Q − Q′ =

k
∑

i=1

µi · (Zi − Z ′
i)

k
∑

i=1

µi = 1

Therefore, we have:

||P − P ′|| ≤
k

∑

i=1

λi · ||Zi − Z ′
i||

≤ ǫ · (
k

∑

i=1

λi) = ǫ||Q − Q′||

≤
k

∑

i=1

µi · ||Zi − Z ′
i||

≤ ǫ · (
k

∑

i=1

µi) = ǫ

The above result follows from the triangle inequality.
Now let us examine the line L′ passing through P ′ and

Q′. This is essentially the projection of the line L onto
hyperplane H, and it will also contain the projection x′

H

of xH. Since each of P and Q are perturbed at most a
distance of ǫ during the projection process of this line L,
it follows from proportionate distance scaling that the
point xH is perturbed by a distance of no more than
2 · ǫ · (p + q)/q.

A simple corollary of the above result is the following:

Corollary 2.1. Let H be a hyperplane such that all
data points in D lie at a distance of at most ǫ from
H. Let S be a set of randomly sampled k linearly
independent points from D, and S(H) be the projection
of all data points onto H. Let x be any data point from
D and xH be the projection of x onto H. Let L be any
line passing through xH and the convex hull of S(H).
Let p be the length of the segment in L corresponding
to the two points of intersection of L with the convex
hull of S(H), and let q be the smallest distance along
L from xH to the convex hull of S(H). Let HS be the
hyperplane passing through S. Then, the projection of x
onto HS is at a distance of at most 2 · ǫ · (p+ q)/q +2 · ǫ
from x.

We note that Lemma 2.2 is different from Corollary 2.1
only in the last line, in which we prove the result with
respect to x rather than xH, and modify the maximum
distance by 2 ·ǫ. The truth of this corollary follows from
the simple fact that the distance between x and xH is
at most ǫ.

We note that the results of Lemma 2.2 and Corol-
lary 2.1 provide some intuition on the nature of the dis-
tance between a data point x and its projection onto the
point sampled hyperplane HS. The results show that if
a hyperplane H can be found such that all data points
are at a distance of at most ǫ from it, then any set of lin-
early independent points S will define a hyperplane HS
such that the distance between x and its projection onto
HS depends upon ǫ. The exact distance depends upon
the nature and size of the convex hull of the set S of
sampled points. Thus, the results provide the intuition
that as long as a hyperplane H exists which defines the
distribution of the points in database D, the use of point
sampled random projections is likely to yield accurate
results.

2.6 Pathological Cases: The Problem and a

Solution Our discussion in the previous section leads
us to the following question: are there cases in which
space sampling is better than point sampling? In
this section, we will show that there are indeed such
cases, though we will also show in the empirical section
that they rarely arise in the context of real data sets.



Furthermore, we will show that even in such cases, a
mixture of point and space sampling can provide almost
comparable results to the best of the two methods.

In order to find pathological cases, we need to
find a scenario in which the preconditions of Lemma
2.2 are not met. We note that the precondition of
Lemma 2.2 assumes that a global hyperplane H of
lower dimensionality is available along which the data
points in D can be approximately reduced. A counter
example to this case is one in which the data has
full global dimensionality, but the local behavior of
the data is very different in different regions. We
note that while local implicit dimensionality is often
lower than global implicit dimensionality [2], the global
implicit dimensionality is usually much lower than the
full dimensionality. This is because the global reduction
subspaces usually subsume the local subspaces. In
such cases, point sampled global random projections
continue to work quite well. However, in the unusual
case that such a correlation does not exist and the data
has full implicit dimensionality, we do not expect point
sampled random projections to work very well. This is
because in such cases, the local subspaces do not share
global defining characteristics. Hence, there is no global
direction of correlation. A point sampled hyperplane
will typically contain some of the local directions of
correlation, and completely miss the others. On the
other hand, a space sampled random projection is
likely to be less unbiased in representing the different
directions.

For example, consider the case when the d-
dimensional data is partitioned into d different clusters,
each of which is distributed along a 1-dimensional line.
We also assume that the d lines are orthogonal to one
another. In such a case, the data has full implicit dimen-
sionality, but the local correlations are not similar to
the (non-existent) directions of global correlation. We
will show in the empirical section that in such cases,
space sampled random projection may provide superior
results. However, even in these cases, it is possible to
obtain reasonable results by using an equally weighted
mixture of space and point sampled random projections.
The final representation is the best reduction among all
the different point and space sampled projections. By
doing so, we can obtain the best of the two methods
by using twice the number of samples. For the same
number of samples, the mixture provides results which
are only slightly worse than the better of the two meth-
ods. In the experimental section, we will show that in
both cases of pure point and space sampled random pro-
jections, the best sampling results are obtained within
the first few iterations. Therefore, when a large number
of samples are used, the difference in quality between

the better of the two (pure) methods and the mixture
is small. It also retains the excellent average case be-
havior of point sampled random projections at the ex-
pense of a little reduction in quality. This provides ex-
cellent average-case behavior without compromising on
the worst-case behavior in pathological instances.

3 Experimental Results

In this section, we will analyze the effectiveness of point
sampled and space sampled random projections. We
will show that point sampled random projections are
significantly more effective than point sampled random
projections in a variety of circumstances. We will also
show that a mixture of point and space sampled random
projections provides results which are almost as good as
the best of the two methods. We will show the results
on both synthetic and real data sets. While the results
on real data sets show that point sampled random pro-
jections can provide significantly more effective results
in practical situations, the synthetic data sets can be
used to illustrate the behavior of the underlying data on
the effectiveness of point sampled random projections.
The real data sets were obtained from the UCI machine
learning repository. The aim of the testing process was
to show that the point sampled random projection pro-
cess was significantly more effective than the method
of space sampled random projections. In general, the
point sampled random projection process was not only
able to achieve a superior qualitative reduction, but it
was also able to do so in a far fewer number of projection
samples. Furthermore, the mixture of the two methods
provided almost comparable results to the best of the
two methods, while retaining robustness in reduction
quality even in pathological cases.

The first data set tested was the musk data set,
which had 160 dimensions. In Figure 4(a) we have
illustrated the average error behavior of space sampled
projections, the point sampled random projections, and
a mixture of the two methods. On the X-axis, we have
illustrated the dimensionality of the projection, whereas
on the Y-axis, we have illustrated the average error-
metric for both methods as defined earlier. In each case,
the value of numsamp was chosen to be 200. It is clear
that the point sampled random projection process had a
significantly lower error than the space sampled random
projection process. Even for a projection dimensionality
of 97, the space sampled random projection process
continued to have 3 − 4% distance errors. Such errors
can be significant for high dimensional applications. On
the other hand, the point sampled random projection
technique had a much smaller level of error across the
board. We also note that the equally weighted mixture
of point and space sampled random projections had
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(a) Musk (w.r.t dimensionality)
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(b) Musk (w.r.t samplesize)
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(c) Corel (w.r.t. dimensionality)
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(a) Corel (w.r.t samplesize)
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(b) Arrythmia (w.r.t dim.)
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Figure 5:
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Figure 6:

an error which was almost comparable to the point
sampled random projection method in each case. This
illustrates that the use of a mixture can provide similar
average case behavior, while preserving the worst-case
behavior in some pathological cases. Even further
insight was obtained by examining the behavior of
the reduction with an increasing number of projection
samples numsamp, when the projection dimensionality
was fixed at 20. The results are illustrated in Figure
4(b). It is interesting to see that even when the value
of numsamp is chosen at 7,500 in the space-sampled
random projection process, the errors are significantly
greater than those of point sampled or mixture based
random projections with numsamp ≤ 10. We will
see that this behavior is repeated for the other real
data sets. Since the computational complexities of each
sample in both methods are exactly the same, this
translates to not only a qualitative edge, but also orders
of magnitude improvements of efficiency with the use of
point sampled random projections.

The second data set was the 32-dimensional corel-
histogram data set containing 68040 records. We
stripped out the first field in the data which only con-
tained the line number. In Figure 4(c) we have illus-
trated the behavior of the different kinds of reduction
on the data sets with varying projection dimensional-
ity. We used numsamp = 100 in this case. As in
the previous cases, the point sampled random projec-
tion process is more effective than that of space sampled
random projections for different projection dimension-
alities. The mixture of point and space sampled random
projections showed an effectiveness which almost over-
lapped with that of the effectiveness of point sampled
random projections. In Figure 5(a), we have also il-
lustrated the behavior of the two methods for different
number of samples, when an 20-dimensional projection
was used. As in the previous case, it turns out that
the error of the point sampled method with 1 sample is
much lower than the error of the space sampled method
with even a thousand samples. This again illustrates the
tremendous benefits of using point sampling for dimen-
sionality reduction. Furthermore, the equally weighted
mixture of point and space sampled random projection
almost matched the effectiveness of the best of the two
methods.

The results for the 279-dimensional arrythmia data
set are illustrated in Figures 5(b) and 5(c) respectively.
In the case of Figure 5(b), we have used numsamp =
200, whereas in the case of Figure 5(c), we have
used a projection dimensionality of 40. As earlier,
the results of Figure 5(c) show that even the use
of 10,000 space sampled random projections cannot
match the behavior of a small number of point sampled
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Figure 7: Pathological Data Set (w.r.t. Dim.)
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Figure 8: Pathological Data Set (w.r.t. samplesize)

projections. As in the previous cases, the behavior of
the equally weighted point and space sampled random
projections was almost the same as the effectiveness
of point sampled random projections. In order to
explore this point further, we picked 1000 samples of the
40-dimensional random projection in both cases, and
plotted a histogram of the distribution of errors over
these projection samples. The results are illustrated
in Figure 6(a). The results show that even the best
of 1000 space sampled random projections (right of
vertical line in Figure 6(a) has a higher error than
the worst of 1000 point sampled random projections
(left of vertical line in Figure 6(a) Furthermore, the
variation in the error over different space sampled
random projections is higher than the variation in error
over different point sampled projections. This point
conclusively demonstrates the relative robustness of the
point sampled random projection process.

3.1 Some Interesting Cases with Varying Im-

plicit Dimensionality In this section, we will discuss
the relative behavior of point sampled and space sam-
pled random projections with varying implicit dimen-
sionality. This section will illustrate the fact that the
advantages of the point sampled random projection pro-
cess arise from the fact that real data often has lower im-
plicit dimensionality than the full dimensionality. When
the data is uniformly distributed, the point sampled
random projection process has no advantages over space
sampled random projection, and therefore both meth-
ods are expected to perform similarly. In fact, the space
sampled random projection process has a slight advan-
tage, since it has better flexibility in picking the projec-
tions.

In order to test the effects of implicit dimensional-
ity, we generated a series of data sets with varying levels
of correlation in the data. In order to generate such a
series of data sets, we first generated an axis system
with random orientation. This axis system represents
the directions of correlation. The level of correlation
can be varied by changing the variances along the dif-
ferent axis directions. Note that in a data set with low
implicit dimensionality, most of the variance is concen-
trated along a few of the axis-directions which are also
referred to as principal components. Therefore, in order
to create skew in the variance along the different princi-
pal components, we determined the standard-deviation
along the ith axis direction using the Zipf- distribution
1/iθ. Therefore, the implicit dimensionality can be var-
ied by changing the value of θ. A choice of θ = 0 corre-
sponds to a uniform distribution, whereas the implicit
dimensionality rapidly reduces with increasing values of
θ. However, we first need to create a crisp definition



of the implicit dimensionality for experimental testing
purposes. This term is generally loosely used to refer to
the number of significant principal components in the
data, but we are not aware of a more concrete defini-
tion. Therefore, for experimental testing purposes, we
defined the pseudo-implicit dimensionality of a data set
as the number of axis directions in the optimal principal
component transform [9] which retains 98% of the vari-
ance in the data. This turns out to be a fairly intuitive
definition for testing purposes.

In practice, a choice of θ = 3 can concentrate all
the variance in only 2 or 3 axis directions. For example,
when we generated a series of data sets with N = 1000
points in d = 100 dimensions, the implicit dimensional-
ities of data sets with choices of θ = 0, 0.8, 1.0, 1.12,
1.22, 1.32, 1.5, 1.75, 2, and 3 correspond to data sets
with implicit dimensionalities 96, 91, 85, 80, 75, 68,
51, 28, 14 and 2 respectively. We used this series of
data sets in order to test the effectiveness of point sam-
pled and space sampled random projections. In Figure
6(b), we have illustrated the error behavior of this series
of data sets with varying implicit dimensionality, when
a 10-dimensional projection is picked from the trans-
formed data with numsamp = 200 samples. It is clear
that the point sampled random projection process has
a great advantage over the space sampled random pro-
jection process when the implicit dimensionality is very
low compared to the full dimensionality. The most in-
teresting special case is that when θ = 0. This corre-
sponds to the uniformly distributed data set in which
the point sampled random projection process has no
special advantage over space sampled random projec-
tions. We note that this is a pathological case which is
never encountered in real data sets. This corresponds
to the rightmost point in Figure 6(b) with a pseudo-
implicit dimensionality1 of 96. In this case, the error
behavior of both methods are almost the same. In fact,
the space sampled random projection process is slightly
better, which is possibly because of the greater flexibil-
ity of picking the projection during repeated sampling.
The other very interesting cases are the extreme ones in
which the data sets have extremely low implicit dimen-
sionality compared to the full dimensionality. We note
that since we are picking a projection with a dimen-
sionality of 10, an effective reduction approach should
have negligible errors for data sets with implicit dimen-
sionalities which are less than 10. In order to exam-
ine what happens in this case, we look at the leftmost

1Note that the pseudo-implicit dimensionality is always likely
to be less than 100 even for the uniform distribution, when
the data set is of finite size. Therefore, the pseudo-implicit

dimensionality of the uniformly distributed data set is 96, and
not 100.

point in Figure 6(b). In this case, the 100-dimensional
data set is (almost) embedded on a plane with only
2-dimensions. The interesting result is that even a 10-
dimensional space-sampled random projection contin-
ues to have greater than 3% distance errors. Therefore,
even a choice of projection dimensionality significantly
greater than the pseudo-implicit dimensionality is not
able to reduce the error level to a negligible level for the
space sampled random projections. On the other hand,
the point sampled random projection process continues
to have very little error for data sets of implicit dimen-
sionality which are less than 15. This shows that the
space sampled random projection process often misses
obvious reductions in the data, because it is blind to the
underlying distribution. The results also show that this
can be leveraged by the point sampled random projec-
tion process. The results of Figure 6(b) show that even
for data sets with slight correlations (implicit dimen-
sionality greater than 85), the point sampled random
random projection process has significantly lower error.
In Figure 6(c), we have illustrated the variation in error-
behavior of the 10-dimensional random projection (with
different values of numsamp) for an instantiation of the
100-dimensional synthetic data set with pseudo-implicit
dimensionality of 94. The results in Figure 6(c) show
that the point sampled random projection process is sig-
nificantly more effective even for this relatively uncor-
related data set. Furthermore, the quality of the point
sampled random projection with the use of 5 samples
is significantly better than the space sampled projec-
tion process with a choice of even 10,000 samples. This
is consistent with our observations on real data sets in
which point sampled random projections process are sig-
nificantly superior to space sampled projections.

We also tested our algorithm on the pathological
case discussed in Section 2.6. In this case we generated
a 10-dimensional instantiation of such a data set in
the unit cube with 1000 data points. In Figure 7,
we have illustrated the error of the projection for
different values of the projection dimensionality when
we used numsamp = 200. Since this data set has full
implicit dimensionality but misleading local variations
in the data behavior it resulted in the point sampling
approach to pick projections which were sometimes
orthogonal to many of the true directions of local
correlation. As a result, some of the points had large
errors. We also note that the data was specifically
generated in a particular way so that the different
local correlations were orthogonal to one another. This
particular pathological structure resulted in the point
sampling not being as effective as space sampling.
However, even in this pathological case, the mixture
method continued to be almost as effective as the best of



the two methods. We have also illustrated the behavior
of the methods for different numbers of projection
samples in Figure 8 when a projection dimensionality
of 5 was used. These results also show that while space
sampling was better in this case, the mixture method
continued to provide very robust results. These results
show that even in the contrived cases in which space
sampling is superior, the mixture method continues to
provide robust results.

4 Conclusions and Summary

In this paper, we presented methods for using point
sampled random projections for dimensionality reduc-
tion. Our results show that point sampled random pro-
jections can perform the dimensionality reduction effec-
tively when the underlying data has low implicit dimen-
sionality compared to the full set of dimensions. We also
provide theoretical results which show that point sam-
pled random projections are very effective at preserving
the underlying variance of the data. The point sampled
dimensionality reduction is not only more accurate, but
can significantly improve the efficiency of the reduction
process by requiring a number of projections which are
orders of magnitude fewer. In addition, the point sam-
pled random projection process can achieve qualitative
results which cannot be achieved by a practical num-
ber of iterations in the space sampled random projec-
tion process. We also present empirical results which
show the effects of the underlying implicit dimension-
ality on the relative effectiveness of point sampled and
space sampled random projections. The results show
that the relative effectiveness of the point sampled ran-
dom projection process is particularly high when the
implicit dimensionality of the data is low compared to
the full dimensionality. Even in pathological cases, in
which the space sampling method has an advantage,
we discussed the robustness of using a mixture of point
and space sampled random projections for dimension-
ality reduction. This mixture typically provides results
which are competitive with the best of the two methods
across a wide spectrum of data sets.
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