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Abstract
The problem of node classification in networks is an important
one in a wide variety of social networking domains. In many real
applications such as product recommendations, the class of interest
may be very rare. In such scenarios, it is often very difficult to learn
the most relevant node classification characteristics, both because
of the paucity of training data, and because of poor connectivity
among rare class nodes in the network structure. Node classification
methods crucially dependent upon structural homophily, and a
lack of connectivity among rare class nodes can create significant
challenges. However, many such social networks are content-rich,
and the content-rich nature of such networks can be leveraged to
compensate for the lack of structural connectivity among rare class
nodes. While content-centric and semi-supervised methods have
been used earlier in the context of paucity of labeled data, the rare
class scenario has not been investigated in this context. In fact,
we are not aware of any known classification method which is
tailored towards rare class detection in networks. This paper will
present a spectral approach for rare-class detection, which uses a
distance-preserving transform, in order to combine the structural
information in the network with the available content. We will
show the advantage of this approach over traditional methods for
collective classification.

1 Introduction
The potential of collective classification to identify inter-
esting entities in social networks is now well known, and
is utilized widely for product and entity recommendations.
A wide variety of methods for collective classification have
been proposed in the literature in recent years [3, 5, 6, 8, 10,
11, 15, 17]. Detailed surveys on the topic may be found in
[1, 2].

In many scenarios, the class of interest may be very rare.
This is quite often the case in many social networks. Some
examples of such scenarios are as follows:

• When the goal of the collective classification problem
is to determine relevant product adoptions in a social
network, very few nodes may be relevant to a particular
product.
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• In some scenarios, the goal of the collective classifica-
tion method may be to identify nodes which are under
some kind of terror threat. In such cases, the class of
interest may be rare.

• The collective classification method may sometimes be
used to identify adversarial entities (eg. terrorists) in the
network. The presence of such entities may be rare, and
the number of labeled examples may be even fewer. Our
experimental section actually uses one such data set.

The rare class detection problem has also been studied
widely in the context of relational data [7]. Two major
challenges of this problem are the difficulty in obtaining
sufficient labeled data belonging to the rare class, and the
cost-sensitivity of the classification process. In the network
context, an additional problem is the poor connectivity of
rare class nodes. Node classification methods are, after
all, based on structural homophily. Despite the obvious
importance of the rare class detection problem in networks,
and the unique challenges in the network context, we are not
aware of any known techniques for this problem.

Conventional network classification often cannot be
used effectively for the problem of rare class detection, be-
cause the effectiveness of label propagation methods reduces
with increasing distance from the nodes. Furthermore, the
effectiveness of such methods is based on their “collective”
nature in which consistent labels at the neighbors of a node
are used in order to infer labels. However, in the rare class
detection problem, this is much more difficult because a
given node may not often have neighbors which belong to
the same rare class. Therefore, more statistical evidence is
needed before a given node may be deemed to belong to a
rare class.

One helpful characteristic of social networks is the pres-
ence of a modest amount of content at the nodes. The goal
is to use this content in order to assist the determination of
the class labels of the unlabeled nodes. Unfortunately, since
most of the nodes are unlabeled in the first place, the con-
tent does not necessarily provide much information in the
form of supervision. Nevertheless, the content can be used
in order to perform co-training, in which the associations be-
tween different kinds of links and features are learned in con-
junction with the clustering structure of the network. This
is helpful for inferring the labels of nodes, because it pro-
vides information about the structural and content similarity



of unlabeled nodes to the rare class, even when they do not
directly contain the same content as rare class class nodes,
or are not directly connected to a rare class node. This is
because of the fact that content and structural correlations in
unlabeled nodes can be used to make inferences about the
features which are more relevant to the rare classes. For ex-
ample, if the word “golf ” is frequently present in labeled
nodes of the rare category, then the co-occurrence of the
word “golf” with other words or links in unlabeled nodes is
useful information which should be leveraged in the classi-
fication model. Similarly, if the word “fore” often co-occurs
with “golf” (not necessarily in rare class nodes), or unlabeled
nodes containing “fore” are often linked to by nodes belong-
ing to the rare class, then this information can be used in
order to expand the learning information for the rare class.
This broader principle is referred to as co-training. As we
will see later, a partially supervised spectral clustering ap-
proach is an effective way to achieve this goal by embedding
the nodes in a new space in which such implicit co-training
information is encoded in the form of distances. The rare-
class categorization can then be performed in the newly em-
bedded space. It should be pointed out that some network
classification methods do use content [7, 6], but not in way
which is specifically helpful for rare class detection. In our
experimental results, we will show the advantages of using
such a focused approach for rare class detection.

1.1 Related Work and Contributions The problem of
node classification has been studied in the graph mining lit-
erature [11], and especially for relational data in the context
of label or belief propagation [13, 16, 17]. Such propaga-
tion techniques are also used as a tool for semi-supervised
learning with both labeled and unlabeled examples [19]. A
technique has been proposed in [10], which uses link-based
similarity for node-classification. Recently, this technique
has also been used in the context of blogs [3].

It has also been shown in [8, 6, 15] that the use of a
combination of structure and content during categorization
improves the classification accuracy of web pages. There are
other semi-supervised statistical relational learning methods
that have been proposed to predict unknown labels using a
network structure [7, 25, 10]. In most of these methods the
class imbalance is not taken into account, and the required
statistical evidence for classifying the unknown node from
the known neighboring labels, especially for the rare class,
is not available sufficiently. The task of cost-sensitive clas-
sification is well-known in machine learning and there are
plenty of related work [2]. However, there are only a few
relational learning methods that address the issues of cost-
sensitivity and class imbalance [26]. However, these pa-
pers ignore the the content information in each node D, and
hence completely missing the aspect of co-training used in
our work. For interested readers, many of these methods are

discussed in more detail in [11, 21, 1].
Since our approach also uses content, it is possible to use

text classifiers such as SVM, particularly when the structure
is not available or does not provide much information. The
problem of text classification [9, 12, 14] has been studied
widely in the information retrieval literature. Detailed sur-
veys may be found in [14]. However, the network structure
is completely ignored in most of these related work.

In this paper, we design a method for rare class detec-
tion, which uses a combination of structure and content to
improve the ability to classify rare classes. We propose an
optimization approach to combine several spectral embed-
dings for such classification. The method is cost-sensitive,
and allows the user to specify appropriate costs in order to
differentiate between the classification of the rare class and
normal class.

2 Rare Class Learning Model
In this section, we will introduce the rare class learning
model. The network is denoted byG = (N,A) with node set
N and edge set A. A very small subset of the nodes R ⊂ N
of the nodes are labeled with the rare class, and another
subset S ⊂ N of the nodes are labeled with the normal class.
The remaining nodes N\(R ∪ S) are unlabeled. The total
number of nodes in N is denoted by n. It is assumed that
each node i is associated with content Di. This content Di

is assumed to be a set of keywords, and may therefore be
treated conceptually as a text document. The entire content
associated with all nodes is denoted by D = {D1 . . . Dn}.

The content at the nodes could be modeled in a wide
variety of ways, depending upon the application-specific
scenario. For example, in a social influence analysis sce-
nario [23], the content at each node could correspond to
items, that the actor at the node may be interested in. In
order to model the labels, a particular item may be consid-
ered “special”, and may be considered the rare class, which
is desired to be found. Note that the presence or absence of
this special item at a given node, may only be known for a
small subset of the nodes. This implies that the vast majority
of the nodes are unlabeled. The use of content and struc-
ture in this scenario for classification corresponds to the use
of structural correlations between the items at the different
nodes in order to predict these rare classes.

It is assumed that the vast majority of the nodes in the
network are unlabeled. This formulation implicitly assumes
binary labels, though the model can be easily generalized
to the case where there are multiple classes, using one-vs-
all or one-vs-one approach [2]. Rare class problems are
typically posed from a cost-sensitive perspective in which
misclassification of the rare class incurs cost cr, whereas
misclassification of the normal class incurs the cost cn.
Typically, it is assumed that cr >> cn. Formally, the cost-
sensitive rare class detection problem, with heavily skewed



class distribution, may be posed as follows:

Problem 1 (Network Rare Class Detection) Given an
undirected network G = (N,A), with node content D, a
set of nodes R labeled with the rare class, a set of nodes
S labeled with the normal class, misclassification costs
for the rare and normal classes denoted by cr and cn
respectively, classify the unlabeled nodes in the network, so
as to minimize the total misclassification cost.

One observation is that the number of nodes in the rare class
is typically small, whereas the cost of misclassification is
rather large. This implies that the smaller amount of training
data is usually available for the more important of the two
cases. In this context, the use of co-training can be very
helpful.

2.1 Broad Overview of Approach In this section, we
will provide a broad overview of a partially supervised
spectral clustering approach which is used for creating an
embedded representation which can encode the relevant
feature-specific information in the form of distances. Note
that the use of spectral methods requires the creation of a
similarity matrix which encodes a combination of structural
and content information. It is important to do this in a
semi-supervised way, so as to maximize the cost-sensitive
classification accuracy of the rare class. The first step is to
add synthetic edges to the network, with weight λ, which are
designed to ensure that nodes belonging to rare classes are
closer together in the embedded representation. The precise
value of λ will be determined later in a semi-supervised way,
so as to maximize the cost-sensitive accuracy. Note that such
a choice of λ does not necessarily ensure that all the rare
nodes cluster together in the embedded representation, but it
will ensure that the clustering is performed in a way, so as
to maximize the cost-sensitive accuracy. This results in an
augmented graph G = (N,A∪Ar), where Ar is the new set
of edges added between nodes belonging to the rare class.
Though we have induced (ghost) edges between rare class
nodes, the actual contribution of these edges also depends on
the content information in these nodes. One may also argue
that the induced ghost edges Ar may blow-up the number of
edges in the adjacency matrix, however, this is not true, as
the number of rare class nodes (especially the ones that are
labeled) are much smaller than the number of nodes (n).

The first step is to define a similarity matrix between
the nodes in the network. This is needed for the process of
spectral analysis. We note that the similarity matrix encodes
a significant amount of information using features that are
not necessarily present in nodes which belong only to the
rare class. Therefore, such an approach implicitly uses co-
training by using the full similarity matrix in the analysis
process. Therefore, for any pair of nodes i, j ∈ N , we
need to define the similarity Sij between i and j. The first

step is define the content-based similarity between the node
pairs. Let vi and vj be the frequency weighted vector-space
representations of the documents Di and Dj at the nodes i
and j. Then, the content similarity Cij between nodes i and
j is defined as the cosine similarity between the documents
Di and Dj :

(2.1) Cij = cosine(vi,vj) =
vi · vj

‖vi‖ · ‖vj‖

Note that the words chosen for content similarity matrix Cij
need to be more representative of the rare class, in order to
increase the content-centric connectivity of nodes containing
features relevant to the rare class. One way to achieve this,
is to retain words that is seen at least once in a rare class
labeled document. Therefore, the feature selection, at the
very beginning of the algorithm, is also performed in order
to maximize the advantages from co-training.

The structural similarity Qij between nodes i and j is
defined on the basis of the edges between i and j, which
occur on the basis of both structural and content-based
similarity. Let Iij be an indicator variable which takes on the
value of 1, if (i, j) occurs in A and 0 otherwise. Similarly,
let Pij be an indicator variable which takes on the value of
1, if (i, j) occurs in Ar and 0 otherwise. Then, the structural
similarity Qij is defined as follows:

(2.2) Qij = Iij + λ · Pij

Then, the total similarity Sij is defined as a weighted com-
bination of the structural similarity Qij and the content sim-
ilarity Cij .

(2.3) Sij = Qij + ν · Cij

Here ν is a weighting parameter which decides the relative
importance of structure and content in the learning process.
The values of ν and λ will be learned later with the use of
an iterative approach in order to maximize the cost-sensitive
accuracy.

2.2 Creating the Embedding In order to perform the
classification, the first step is to set up the embedding. This
is done with the use of the similarity matrix defined by Sij .
Therefore, we have a weight matrix W, for which Wij =
Sij . The diagonal entries of this matrix are set to zero,
i.e Wii = 0. However, we note that the similarity matrix
is defined with the use of the parameters ν and λ, which
are unknown in advance. Nevertheless, in order to provide
a conceptually comprehensible exposition, the creation of
the embedding will be discussed with fixed values of the
parameters ν and λ.

The most popular and well-known k-dimensional em-
bedding of the similarity matrix can be done using Lapla-
cian Eigenmaps. We refer the readers to well-known texts



on this topic [24]. The k-dimensional spectral embedding
of W that minimizes the L2 norm between the data points
(i.e. nodes in our case), can be obtained by computing the
leading k Eigen vectors of the (unnormalized) Laplacian
L = D −W, with necessary scalability constraints on the
embedding. Formally, the solution to the following problem
(2.4) will provide us the necessary spectral embedding.

(2.4)

min
Ȳ

Tr(ȲTLȲ)

s.t. ȲTDȲ = Ik

The Ȳ matrix is the k-dimensional spectral embedding of
the data points, that are obtained by solving the generalized
Eigenvalue problem, LȲ = DΛȲ, which are the k eigen-
vectors corresponding to the smallest k eigenvalues (ignor-
ing the trivial eigenvalue of 0). Here Λ is diagonal matrix
containing the k eigenvalues along the diagonal and Ik is
k × k identity matrix.

The formulation (2.4) can be further rewritten, in a more
general form, as (2.5). We use L =

∑
i αi (Di −Wi)

and W as a linear combination of s different weight ma-
trices W1, . . . ,Ws with corresponding weights α1, . . . , αs.
The formulation (2.5) clearly shows that our approach con-
siders a linear combination of multiple spectral embeddings
L1, . . . ,Ls in order to maximize the with-in cluster and min-
imize the between-cluster similarity in the overall combined
matrix.

(2.5)

max
Ȳ,α

s∑
i=1

αi Tr(ȲTWiȲ)

s.t.

s∑
i=1

αiȲ
TDiȲ = Ik

It should be pointed out that the approach implicitly
incorporates supervision during the embedding, because of
the impact of the variables αi, which are used to define
the combined Laplacian. As we combine only network and
content structure in this paper, α1 and α2 corresponds to
λ and ν respectively. This framework, however, is more
general and can be used for classification problems, where
more than one network is needed for supervision. Of course,
it has not yet been described, how these variables λ and ν are
actually determined. This will be discussed in a later section.

2.3 Illustrative Example We illustrate the notion of com-
binations of spectral embedding using a simple 1-d spec-
tral embedding example. Consider the content and network
structure in Figure 1, the thickness of the edges is propor-
tional to the edge weight.

Content Similarity Network Structure 

Rare Class Node 

Normal Class Node 

Figure 1: An illustrative example of content and network
structure.
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(a) Spectral embedding of content only.
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(b) Spectral embedding of network only.
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(c) Spectral embedding of content and network.

Figure 2: Spectral embeddings of content, network and its
combination.

The corresponding 1-d spectral embedding for the con-
tent and network structure is shown in Figure 2(a) and (b)
respectively. The spectral projection of the nodes are shown
along the X-axis. In both the network- and content-only
embedding no classifier can correctly classify the rare from
the normal class, as there are normal nodes on both sides of
the rare node. When the networks are combined with equal
weights, the resulting combined embedding clearly improves
the classification accuracy and rare class is well separated
from the normal class along the real line (X-axis). This is
shown in Figure 2(c). In the combined embedding, multiple
normal class nodes are overlapping on each other and hence
only two of them are visible.

2.4 Classification Approach The multi-dimensional em-
bedding provides an effective way to perform the classifi-
cation. Since the representation of each node is in multi-
dimensional form, in which the implicit relationships be-



tween the (unsupervised portion of the) feature space are
well represented, it can be used to perform classification ef-
fectively. The key here is that the value of λ and ν are not
known a-priori. However, we will describe a classification
model under the assumption that these values are known.
Later, we will describe how to find these parameters so as
to maximize the cost-sensitive accuracy.

In our particular case, we use a weighted k-nearest
neighbor classifier. For the test node, we find the k nearest
neighbors based on the euclidian distances on the embedded
representation. Let us assume that the number of nodes
belonging to the rare class is kr and the number of nodes
belonging to the normal class is kn, such that kr + kn = k.
The rare class is reported as the relevant class if cr · kr >
cn · kn, and the normal class otherwise.

3 Learning Cost-Sensitive Variables for Embedding
The multidimensional embedding created in the previous
case can be converted into a classification model. The key
here is that the model is dependent on the parameters λ and
ν which define the cost sensitive accuracy. Therefore, the
effectiveness of the training model for a particular value of
λ and ν needs to be evaluated. For this purpose, a cross-
validation approach is used. The training data is divided into
q segments. For each value of the parameters ν and λ, the
model accuracy is evaluated by training on q − 1 segments
and testing on the remaining one. The value of q is typically
picked to be a small number such as 2 or 3.

The first step is to define the misclassification cost M
as follows:

(3.6) M(A,C, Gt, λ, ν) = cr ·mr + cn ·mn

Here mr and mn represents the number of nodes misclas-
sified for the rare and normal class respectively. Using the
ground truth class labels Gt and the classifier described ear-
lier, classify the points using an optimal combination of net-
work structure A and content similarity matrix C. The value
of ν and λ used for the combination are computed with the
use of the cross-validation approach. In order to determine
the optimal classification accuracy, the algorithm uses an it-
erative search approach. At the starting point, the value of
ν and λ are both set to 0. An arbitrary upper bound is also
set for these values at 103. This provides the initial range in
which to perform the binary search. The values of λ and ν
are then alternately adjusted with the use of binary search.
In the first step, the optimal value of ν = ν1 is computed
using binary search, while keeping the value of λ fixed to its
initial value of 0. When the locally optimal value of ν = ν1

is determined, the optimal value of λ = λ1 is determined
with binary search, while fixing the value of ν = ν1. In the
kth iteration, the value of ν = νk is determined by fixing
λ = λk−1, and the optimal value of λ = λk is determined
by fixing ν = νk. In each iteration, the difference in the

Algorithm RareNet(Network Adjacency List: A,
Content similarity matrix: C,
Ground truth labels: Gt)

begin
Initialize t = 1, λ1 = 10−6, ν1 = 10−6;
repeat
νt+1 = argminνM(A,C,Gt, λt, ν);
λt+1 = argminλM(A,C,Gt, λ, νt+1);
t = t+ 1;

until(λt and νt not converged);
Construct W and D using A, Ar, C, λt and νt;
Compute L = D−W;
Y = Leading k Eigenvectors of L;
Cn = k-means clusters on normal class in Y;
Cr = k-means clusters on rare class in Y;
for each unknown label node
Classify using the k nearest neighbor classifier

on centroids of (Cn) and (Cr);
endfor

end

Figure 3: RareNet Outline

value of νk from the last iteration is determined. When the
difference between the values in a pair of iterations is less
than a pre-defined threshold, it is desired to terminate. The
outline of the RareNet algorithm is listed in Figure 3.

4 Experimental Results
In this section, we will present experimental results illustrat-
ing the effectiveness of the RareNet algorithm compared to
several well established baselines. We will study the effec-
tiveness in terms of rare class accuracy and overall misclas-
sification cost.

4.1 Data sets We used two real-life data sets. One is the
Database List of Publications (DBLP), that deals with the
co-authorship network, while the other is the terror attack
(PIT) data set that describes co-located terror attacks.

DBLP Data Set: We downloaded the publicly available
DBLP data set 1, and extracted the abstract, venue and author
details for each of the published document. Furthermore,
we created the ground truth labels for each of the authors,
assigning them to one of the 22 areas of computer science
as grouped in academic.research. microsoft.com, using
the list of top 10 conferences in each area. We then created a
co-authorship network with dominant class as Data Mining
(DM), and the rare class nodes as Privacy and Security (PS)
authors. To this end, we considered all published papers that
had at least one DM author, and we removed authors from

1http://arnetminer.org/citation

http://arnetminer.org/citation


other communities except DM and PS. Our final network had
6973 author nodes, which includes 180 authors from PS area,
6793 authors from DM area, and 36614 co-authorship edges.
For every author node i, we constructed a word-feature
vector vi based on all the abstracts of the papers included in
our processing. The j-th element of this vector vi contains
the tf-idf score of the j-th word from our dictionary. We
removed stop words, stripped off punctuations and stemmed
the words while constructing our dictionary. The size of
resulting dictionary was 4486 words.

PIT Data set: The Profiles In Terror (PIT) data set2

contains geographically co-located terror attacks, attributes
related to each terror attack, and its category. We extracted
a co-located terror attack network with Bombing as the
dominant class and Arson as the rare class. Each node in this
network corresponds to a terror attack and an edge denotes
if they are co-located. The number of nodes in the network
was 560 including 31 nodes that correspond to Arson (rare)
category. There were 2850 edges in the network. Each node
in this data set contains 106 binary attributes corresponding
to the attack, which we treat as the content (or attribute)
vector vi for the corresponding node i.

4.2 Baselines We used different baseline classifiers that
considers only content, only network and both content and
network structure for classification. Also, our choice of base-
line includes both cost-sensitive and insensitive categories.
In addition, they represent three popular classes of literatures
corresponding to, low dimensional embedding, max-margin
and label propagation classifiers. The following is the list of
baselines we used in our evaluation.

• Spectral-NN: This is a low dimensional embedding
classifier, where the network structure using A and
Ar undergoes a spectral embedding, followed by a K-
nn classifier. This classifier does not use the content
information. It uses only the network structure available
in the training data. We computed the 10 leading
eigenvectors for computing the spectral embedding and
the value of K was set to 3 in the K-nn algorithm.

• SVM: We used the cost-sensitive Support Vector Ma-
chine (SVM) classifier to classify the nodes to rare or
dominant classes, based only on its content information.
In this baseline, we used only the content information
and excluded the network structure. The content infor-
mation for node i is the vector vi, as described in the
data set.

• Iterative Classifier: We use an iterative classification
technique for relational data [7], to classify a node using
its immediate neighborhood information. The local

2http://linqs.cs.umd.edu/projects/projects/lbc/

classifier used at each node was Naive Bayes with a
cost sensitive prior that takes in to account the number
of samples in each class along with its cost. When
the cost for a class is set higher the prior increases
proportionally. This baseline explicitly uses both the
content and the network structure and is cost sensitive.

4.3 Evaluation Measures We use two important evalua-
tion measures to examine the effectiveness of the classifiers:
(1) Recall and (2) Cost sensitive error rate. The Recall mea-
sures the fraction of correctly classified rare class nodes out
of the total number of rare class nodes. Let the number of
test examples for normal class be nn and those for rare class
be nr. Let mn and mr be the number of misclassified nor-
mal and rare class nodes respectively. Then, the recall (R)
for rare class is defined as follows:

(4.7) R = 1− mr

nr

The recall cannot fully capture the effectiveness, because an
arbitrary classifier could assign all nodes to the rare class,
and do well in terms of recall. Therefore, we also used a
cost sensitive error rate (f ), which measures the error rate
in a cost sensitive way. Formally, let cn and cr be the cost
of misclassification for normal and rare class respectively.
Then, the cost sensitive error rate, f is defined as follows:

(4.8) f =
crmr + cnmn

crnr + cnnn

When the costs are equal (cn = cr), then the value of f is
equal to the error rate. When the classifier classifies every
test example correctly, then f = 0. On the other hand, when
all test examples are misclassified, then f = 1.

4.4 Effectiveness Results The evaluation measures were
computed in terms of three control parameters, by varying
the amount of training data provided in terms of normal and
rare classes, and also varying the cost ratio of the rare class
to the normal class. By varying the amount of training data,
we are also able to show the impact of availability of training
data. This is particularly important in the rare class scenario,
where rare class examples are hard to obtain. The results of
the variations in these parameters are shown in Figure 4 and
5 for DBLP and PIT data sets respectively.

In Figure 4(a), we gradually increased the fraction of
rare class labels from 0.25 to 0.85 for the DBLP data set,
while keeping the misclassification costs fixed at cr = 10
and cn = 1. We also set the fraction of normal class la-
bels exposed to 0.75. We observe that the rare class recall
of all classifiers gradually increased as a greater number of
rare class labels were exposed. Our approach (RareNet) out-
performs the best performing baseline consistently by up to
10% over all exposure levels. The spectral-NN baseline per-
forms the best in this experiment, because the co-authorship

http://linqs.cs.umd.edu/projects/projects/lbc/
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Figure 4: Experimental Results for DBLP data set
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Figure 5: Experimental Results for PIT data set



network contains significant information about class associ-
ations. The content-only classification using SVM performs
quite poorly. The iterative classifier combining the structure
and content performs midway between the two baselines.

In the PIT data set, increasing the rare class expo-
sure does increase the rare class recall, as shown in Figure
5(a). However, the rate of increase was very different for
each baseline. The content-only SVM classifier performs ex-
tremely well in this data set, as opposed to DBLP. Thus, the
other baselines performed inconsistently across data sets, be-
cause of varying impact of content, structure and rare class
connectivity. The key observation here is that our approach is
able to pick the right combination of network and structure
in order to perform the classification. The plots of Figures
4(a) and 5(a) clearly shows, that our approach RareNet com-
bines the network and content information appropriately to
consistently outperform both content-only and network-only
classifier. Another important point to note is that the iter-
ative classifier does moderately improve either the content-
only (in DBLP) or network-only classifiers (in PIT). This is
primarily due to the lack of statistically significant number
of rare class nodes in the immediate neighborhood. Our ap-
proach overcomes this problem by looking for neighbors in
the space formed by the Eigenvectors, and does not neces-
sarily rely on a single channel of information.

The cost sensitive error rate variation with increasing
number of exposed rare class labels for the DBLP and PIT
data sets are illustrated in Figures 4(b) and 5(b) respectively.
As in the previous case, the order of baselines and the rate
of decrease vary with data set. In Figure 4(b) (DBLP data
set), the iterative and SVM classifiers have lower error rate
compared to the RareNet algorithm after exposing 65% of
the labels, even though RareNet is still superior in terms
of the recall. Therefore, on an overall basis, the RareNet
approach is much more robust, and varies far less with
choice of data set and performance measure. Interestingly,
the spectral-NN method performs well in terms of recall,
but the overall cost sensitive error of the classifier is poor.
As the number of rare class examples are increased, larger
number of normal class examples are classified as rare by
the spectral-NN method. This problem is not faced by the
RareNet approach, which is able to redefine locality with
both structure and content.

We also varied the fraction of labels exposed in both rare
and normal class equally. The corresponding performance
of the classifiers are illustrated in Figures 4(c) and 5(c)
respectively. While, the results have a similar broad trend
to that obtained by varying only the rare class labels, the
performance of the iterative classifier has improved in this
measure. SVM performs poorly in DBLP and well in PIT
data set. In both data sets, our method performs consistently
well compared to all baselines. This again underlines the
wide variations across different baselines over different data

sets and validity measures, whereas RareNet is the only
baseline, which achieved a high level of consistency. This
kind of consistency is important, when using a particular
classifier for an arbitrary scenario.

We also evaluated the performance of all methods by
varying the ratio of costs cr

cn
. The RareNet and Iterative

Classifier are sensitive to cost. It is evident that the recall
increases, as the ratio of cost increases, in Figures 4(e) and
5(e). This is not surprising, because an increase in the
cost increases the importance of classifying the rare class
accurately. Among the baselines, SVM performs the best in
the PIT data set, and spectral-NN in terms of rare class recall.
Despite the variations in data sets, our method combines
the content and network structure optimally and consistently
gives good performance in terms of recall and f values in
both data sets.

The cost-sensitive error rate levels off, as the classifiers
cannot improve the rare class accuracy, despite increasing
costs, beyond a certain point. This is clearly illustrated in
Figure 5(f), where increasing the cost ratio beyond 300 does
not improve the error rate. Most of the increase occurs in the
earlier part of the plot. In order to illustrate this more clearly,
we show the variations over a smaller range in Figure 4(f)
for the DBLP data set. As in all other cases, our method
consistently outperforms all other baselines.

4.5 Efficiency Results We evaluated the efficiency of our
method, using the running time in seconds. Table 1 shows
the running time for both data sets. Unlike other classifica-
tion settings, the network setting is one, where it is difficult
to separate the training time clearly from the testing. For ex-
ample, in the iterative classifier, the training and testing is
performed in parallel using an iterative approach. Therefore,
the overall running times for classifying all test instances is
reported for the different classifiers. All the running times
reported are in seconds, and averaged over 10 runs, with the
rare and normal class exposure set to 0.25 and 0.75 respec-
tively.

Most of the running time for spectral methods is spent
in the Eigen decomposition. This computation is obviously
expensive, though the running time is not very different for
smaller data sets such as PIT. In large data sets, other base-
lines such as SVM also consume significant time to solve the
underlying Quadratic Program. We used the interior point
method to solve the underlying QP in all our experiments.
The running time for the iterative classifier depends signif-
icantly on the number of examples exposed. which deter-
mines the iterations needed for convergence. Overall, our
method is quite comparable with iterative classifier and SVM
baselines in terms of runtime, while outperforming these
baselines in terms of recall and error rate measures in both
data sets. Therefore, our approach provides the best overall
performance in terms of effectiveness and efficiency.



Method DBLP PIT
Spectral-NN 35.79 9.18
SVM 1446.07 4.62
Iterative Classifier 301.66 8.70
RareNet 566.07 11.88

Table 1: Running Time (seconds) for various classifiers

5 Conclusions
In this paper, we explored the problem of rare class detection
in networks. Rare class detection is much more difficult
in networks because of the poor connectivity of the nodes
and using the concept of homophily effectively. Combining
the structure with the content in a careful way, helps in
defining a spectral embedding, in which the locality of the
rare class nodes are much more informative. This is reflected
in the superior and consistent performance of our classifier,
with respect to the baseline methods, including network
methods which combine structure and content for standard
classification scenarios.
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