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Introduction

• Distance metrics are often more easily designed in some data

domains than others:

– Some domains may have more semantically well-defined

features than others eg. text vs images

– More training data may be available in some domains

• Goal: Use of semantic knowledge propagation for text to

image distance learning.



Semantic Challenges

• The semantic challenges of image features are evident, when

we attempt to recognize complex abstract concepts.

– The visual features often fail to discriminate such con-

cepts.

• Distance functions naturally work better with features that

have semantic interpretability.

– Similarity is usually designed on the basis of application-

specific semantic criteria.

• Text features are inherently friendly to the similarity compu-

tation process in a way that is often a challenge for image

representations.



Observations in the Context of Web
and Social Networks

• In many real web and social media applications, it is pos-

sible to obtain co-occurrence information between text and

images.

• Tremendous amount of linkage between text and images on

the web, social media and information networks

– In web pages, the images co-occur with text on the same

web page.

– Comments in image sharing sites.

– Posts in social networks.



Learning from Semantic Bridges

• The copious availability of bridging relationships between text

and images in the context of web and social network data

can be leveraged for better learning models.

– The goal is to learn similarity in one domain with the use

of knowledge from another

• It is reasonable to assume that the content of the text and

the images are highly correlated in both scenarios.

• The relationships between text and images can be used in

order to facilitate the learning process.



Modeling with Topic Spaces

• Develop a mathematical model for the functional relation-

ships between text and image features, so as to indirectly

transfer semantic knowledge through feature transforma-

tions.

• This feature transformation is accomplished by mapping in-

stances from different domains into a common space of un-

specified topics.

• This is used as a bridge to semantically connect the two

heterogeneous spaces.



Broad Approach

• Design a transfer function which represents the functional

relationships between images and text (from the common

topic space).

• Both the correspondence information and auxiliary image

training set are used to learn the transfer function.

– Links the instances across heterogeneous text and image

spaces.

– Follow the principle of parsimony and encode as few topics

as possible.

• After the transfer function is learned, the similarity knowledge

can be propagated from one domain to the other.



Notations and Definitions

• Let R
s and R

t be the source and target feature spaces, with
dimensionalities s and t respectively.

• Each instance in the source space is represented by a feature
vector y ∈ R

s, and the target instances are represented by
feature vectors x in the target space R

t.

• The source space may use a particular kind of similarity func-
tion, which is the most effective for processing in that do-
main.

– Eg. Cosine in text domain

• The connection between source and target domains is pro-
vided by a set C = {(xk,yk)} of observed pairs of relevant
instances between the two domains.



Source Similarity Kernel Function

• We use a kernel function k(y, ỹ) in order to encode this metric

structure in the source space, which measures the similarity

of y and ỹ in the source space.

• Assume all the source instances are sampled from a true

distribution p(y).

• The kernel similarity together with p(y) completely describes

the metric structure between source instances.



Transfer Function Definition

• We define a transfer function T(x,y) to measure the proba-

bility of x and y being relevant to each other, over R
s × R

t

as

T : Rs × R
t → [0,1], (x,y) �→ T (x,y) (1)

• In order to transfer the metric structure from source domain

to target domain, we define a random variable 1IRel(x,y)

to indicate the cross-domain relevance between a target in-

stance x and a source instance y.

• The cross-domain relevance variable 1IRel(x,y) follows the

Bernoulli distribution B(T(x, y)) parameterized by the trans-

fer function, i.e., p(1IRel(x,y) = 1) = T(x,y) and

p(1IRel(x,y) = 0) = 1− T(x,y).



Leveraging the Transfer Function

• Use the cross-domain metric sampling process to compute

the similarity between the target instances x and x̃, and take

expectation over multiple samples:

– Sample a pair of source instances y and ỹ from p(y).

– Sample 1IRel(x,y) ∼ B(T(x, y)) and 1IRel(x̃, ỹ) ∼ B(T(x̃, ỹ))

to decide whether y and ỹ are relevant to x and x̃, respec-

tively.

– If both are relevant, i.e., 1IRel(x,y) ·1IRel(x̃, ỹ) = 1, output

k(y, ỹ) as the target similarity between x and x̃; otherwise,

output 0.



Estimating the Source Distribution

• The underlying p(y) of source instances is unknown before-
hand.

• We use the empirical version of the true target similarity.

• Given a set of source instances yi,1 ≤ i ≤ n i.i.d.
sampled from p(y), the empirical distribution is pn(y) =
1

n

∑n
i=1 δ[y − yi] with the Dirac’s delta function δ[·].

• Substituting p(y) with pn(y), we obtain the following empir-
ical target similarity:

sn(x, x̃) =
∫
Δ×Δ T (x,y)T (x̃, ỹ) k (y, ỹ) pn(y)pn(ỹ)dydỹ

=
1

n2

n∑
i,j=1

{
T (x,yi)T

(
x̃,yj

)
k
(
yi,yj

)}
(2)



Learning the Transfer Function

• The key to an effective transfer learning process is to learn

the function T .

• We need to formulate an optimization problem which maxi-

mizes the correspondence between the two spaces.

• Set up a canonical form for the transfer function in the form

of matrices which represent topic spaces.

• The parameters of this canonical form will be optimized in

order to learn the transfer function



Learning the Transfer Function

• We propose to optimize the following problem to learn the

semantic transfer function:

min
T

γLε(T, C) + η

2

m∑
p,q=1

g
(
Qp,q, dtgt (xp,xq)

)
+Ω(T) (3)

• η is a balancing parameter

• Q(p, q) measures the similarity of xp and xq in original target

space



Co-Occurrence Term

• We choose the negative logistic loss to estimate the transfer

function by maximizing the likelihood over the pairs of the

relevant instances in C:
Lε(T, C) =

∑
C − log {(1− ε)T(xk,yk) + ε(1− T(xk,yk))}

(4)

• Minimizing this term makes the output of the transfer learn-

ing process consistent with observations of the paired source

and target samples.



Designing the Transfer Function

• We will design the canonical form of the transfer function in

terms of underlying topic spaces.

• This provides a closed form to our transfer function, which

can be effectively optimized.

• Topic spaces provide a natural intermediate representation

which can semantically link the information between the two

domains



Designing the Transfer Function

• Topic spaces are represented by transformation matrices.

U ∈ R
r×s : Rs → R

r, y �→ Uy

V ∈ R
r×t : Rt → R

r, x �→ V x

• The transfer function is defined as a function of the source

and target instances by computing the inner product in our

hypothetical topic space, which is implied by these transfor-

mation matrices:

T(x, y) = f(〈V x, Uy〉) = f(xTV TUy) = f(xTSy)

• The function f(·) is the logistic sigmoid function:

f(θ) = 1/(1 + e−θ) (5)



Observations

• The transfer function maps to [0,1] because of the use of

the logistic sigmoid function

• The choice of the transformation matrices (or rather the

product matrix V TU) impacts the transfer function T directly.

• We will use the notation S in order to briefly denote the

matrix V TU .

• It suffices to learn this product matrix S rather than the two

transformation matrices separately.



Regularization

• Use conventional squared norm for regularization.

• Ω(T) = 1
2

(
‖U‖2F + ‖V ‖2F

)

• Use trace-norm as a substitute to force convexity

• It is defined as follows:

‖S‖Σ = inf
S=V TU

1

2

(
‖U‖2F + ‖V ‖2F

)



Objective Function after Regularization

• The regularized objective function can be rewritten as fol-

lows:

min
S

γ
∑
C
− log

{
(1− ε)f(xTk Syk) + ε(1− f(xTk Syk))

}
+ηtr

(
KΞ(S)LΞ(S)T

)
+ ‖S‖Σ

(6)

• Ξ(S) = [vT (x1) ,vT (x2) , · · · ,vT (xm)] is a n×m matrix

• L is the Laplacian of the similarity matrix Q

• Objective function has been rewritten after regularization and

simplification of second term



Objective Function Decomposition

• Objective function contains a differentiable part and non-

differentiable part

• Separate out into differentiable and non-differentiable com-

ponents

O = F (S) + ‖S‖Σ

• Differentiable part is:

F (S)

= γ
∑
C
− log

{
(1− ε)f(xTk Syk) + ε(1− f(xTk Syk))

}
+ηtrace

(
KΞ(S)LΞ(S)T

) (7)



Objective Function Gradient

• The gradient of the function needs to be evaluated in order

to enable the iterative method

• The gradient ∇F (Sτ) can be computed as follows:

∇F (S) = γ
∑
C

{
− (1− 2ε)f ′(ak)
(1− ε)f(ak) + ε(1− f(ak))

xky
T
k

}

+ηΓ
(8)

• Γ is the t× s gradient matrix of tr
(
KΞ(S)LΞ(S)T

)
w.r.t. S



Proximal Gradient Method

• In order to optimize this objective function, the proximal gra-

dient method quadratically approximates it by Taylor expan-

sion at current Sτ and Lipschitz coefficient α as follows

Q (S, Sτ) =
α

2
‖S −Gτ‖2F + ‖S‖Σ + F (Sτ)

− 1

2α
‖∇F (Sτ)‖2F

(9)

• Where Gτ is as follows:

Gτ = Sτ − α−1∇F (Sτ) (10)

• S can be updated by minimizing Q (S, Sτ) with the fixed Sτ

iteratively.

– Can be solved by singular value thresholding



Evaluation

• Need to design a method for qualitative evaluation of the

distance metrics.

• Distance metrics are often used as subroutines in the context

of different kinds of applications.

– One can test the effectiveness of a nearest neighbor clas-

sifier with the use of different kinds of distance metrics.

– Indirect measure of quality.



Data Sets

• Tested the method on number of real data sets.

• Use Wikipedia and Flickr data for text and associated images

• Used Corel data set for images.

• We use 10 categories to evaluate the effectiveness on the

image classification task.

• To collect paired image and text collections for experiments,

the names of these 10 categories are used as query keywords

to crawl web pages from the Flickr web site and Wikipedia.



Error Rates of Different Methods
Category ED KML-DML HTL DT-Lin DT-Cos

birds 0.2639±0.0012 0.2481±0.0008 0.2619±0.0015 0.2421±0.0010 0.2559±0.0011
buildings 0.2856±0.0002 0.2625±0.0004 0.2707±0.0021 0.2157±0.0000 0.2145±0.0004
cars 0.3027±0.0073 0.2414±0.0054 0.3065±0.0030 0.2107±0.0044 0.2031±0.0026
cat 0.2755±0.0043 0.3333±0.0040 0.2525±0.0038 0.3131±0.0084 0.2929±0.0053
dog 0.2252±0.0039 0.1802±0.0057 0.2343±0.0037 0.1802±0.0027 0.1712±0.0031
horses 0.2667±0.0019 0.3000±0.0015 0.2500±0.0021 0.2517±0.0014 0.2467±0.0018
mountain 0.3176±0.0010 0.2974±0.0008 0.3097±0.0003 0.2974±0.0005 0.2952±0.0005
plane 0.2667±0.0009 0.2633±0.0011 0.2133±0.0008 0.2633±0.0009 0.2617±0.0005
train 0.2716±0.0029 0.2593±0.0068 0.2716±0.0118 0.1924±0.0058 0.1852±0.0049
waterfall 0.2611±0.0008 0.2476±0.0015 0.2435±0.0009 0.2409±0.0002 0.2425±0.0001



Error with Varying Co-Occurrence Set
Size
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Computational Time

Category Computing Time

ED N/A
KML-DML 562.52
HTL 4536.07
DT-Lin 678.93
DT-Cos 719.25



Conclusions and Summary

• New method for similarity transfer learning between text and

web images

• Uses co-occurrence data as a bridge for the transfer process

• Builds new topic space based on co-occurrence data

• Leverages topic space for similarity transfer

• Experimental results show advantages over competing meth-

ods


