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Abstract
The problem of community detection is a challenging one because
of the presence of hubs and noisy links, which tend to create
highly imbalanced graph clusters. Often, these resulting clusters
are not very intuitive and difficult to interpret. With the growing
availability of network information, there is significant amount
of prior knowledge available about the communities in social,
communication and several other networks. These community
labels may be noisy and very limited, though they do help in
community detection. In this paper, we explore the use of such
noisy labeled information for finding high quality communities.
We will present an adaptive density-based clustering which allows
flexible incorporation of prior knowledge in to the community
detection process. We use a random walk framework to compute
the node densities and the level of supervision regulates the node
densities and the quality of resulting density based clusters. Our
framework is general enough to produce both overlapping and
non-overlapping clusters. We empirically show that even with a
tiny amount of supervision, our approach can produce superior
communities compared to popular baselines.
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1 Introduction
Network data shows unusually noisy behavior because of
edges across unrelated nodes. The presence of hub nodes
and noisy links can effectively thwart the clustering process,
because these nodes tend to connect unrelated nodes in the
network very strongly. As a result, one of the common
observation in many community detection algorithms, is that
nodes tend to form one large cluster through preferential
attachment to hub nodes [2], and only very careful tuning
of the algorithm is able to achieve balanced clusters. Even
in such cases, the clusters which are found may not be very
intuitive, and may still be dominated by noisy links.

In many scenarios involving very large networks, a
substantial amount of prior knowledge may be available,
which may reflect the application-specific knowledge about
cluster membership. Some examples are as follows:

• In a scientific community network, it may be possible to

∗University of Minnesota - Twin Cities, karthik@cs.umn.edu
†IBM T. J. Watson Research Center, charu@us.ibm.com
‡University of Minnesota - Twin Cities, srivasta@cs.umn.edu
§University of Illinois - Chicago, psyu@cs.uiuc.edu

label a small subset of nodes. While it is not practical to
expect very large scale labeling, it is certainly possible
to perform a small-scale labeling of the nodes.

• In a heterogeneous movie information network such as
IMDB containing different node types such as movies
and actors, some limited information about move genre
may sometimes be available, though most actors or
director nodes may not have such information.

• In a social network application, it may be desirable to
cluster nodes based on their affinity to some products.
While labels may not be known across all nodes, they
may be available for (a very) small subset. For a
target marketing application, goal-oriented clustering is
superior to blind clustering.

The available labels may often be noisy, incomplete, and
are often partially derived from unreliable data sources.
Furthermore, in cases, where a user may wish to direct the
clustering process with manual labeling, it is reasonable to
expect only a very small subset of the network to have labels.
Nevertheless, such sparse and incomplete information can
still be useful in providing important hints that can direct the
clustering process, so that the noisy unsupervised clusters
created by preferential attachment to large hub nodes are
avoided.

A related aspect of this issue has also been recently
been observed in [2], which suggests that different regions
of the network have a different level of local density. As
a result, homogeneous clustering algorithms tend to create
unusually large and incoherent clusters containing a signif-
icant percentage of the nodes from the network. When the
local link density is very different across different network
regions, the use of global analysis can either construct very
small communities in sparse local regions, or report large
and incoherent communities in dense regions. Therefore, it
is important to use local structural analysis for determining
the relevance of communities in a social network. While the
work in [2] is able to achieve some of these goals, it is not
designed for incorporating specific goals or prior knowledge
in the clustering process. In this paper, we will design an
effective approach to incorporate prior knowledge into the
community detection process. We will present experimental
results which test the effectiveness of our approach in differ-
ent scenarios.



1.1 Related Work The problem of unsupervised network
clustering has been widely studied in the graph mining
literature [2, 6, 7, 10]. Discussions of important statistical
properties of web clusters are provided in [10]. Evolutionary
characteristics of dynamic communities are studied in [5, 6].
The problem of clustering has also been studied in the
context of combining node content in order to improve its
effectiveness [12, 13]. While prior knowledge has been
extensively used for clustering multi-dimensional or text
data [3, 9, 14], the problem has remained largely unexplored
for network data. Some methods exist for using pairwise
constraints in clustering, though are largely inappropriate for
the kind of supervision discussed in this paper [11]. In this
paper, we will design a holistic and flexible framework in
which the a very tiny amount of prior knowledge can be used
to greatly improve the clustering process.

2 Density-Based Clustering Model
In this section, we will introduce the problem of supervised
network clustering. We assume that we have an undirected
network G = (N,A), in which N is the set of nodes, and
A is the set of edges. It is assumed that the number of
nodes in N is n. In many applications, the edges in the
network may be associated with a weight, which indicates
the strength of the relationship. We assume that the weight
of edge (i, j) is denoted by wij . For example, in an author-
relationship network, the weights could represent the number
of papers authored by a pair of individuals. In many network
applications, the weight wij is assumed to be 1, though we
allow the use of a weight if needed for greater generality. A
tiny subset Ns ⊆ N of nodes are labeled. We assume that
there are l different labels denoted by {1 . . . l}. All nodes in
Ns are labeled with one of the values drawn from {1 . . . l},
whereas the nodes in N −Ns are unlabeled. We would like
to partition the nodes in N into k different sets of nodes
C1 . . . Ck. In addition, we have a set of small subgraphs O
which are referred to as the outlier set. For a given node i,
we assume that the edges incident on it are denote by I(i).

The overall idea of the supervised clustering approach
is to design a density-based method in which clusters are
defined in terms of density-connected sets of nodes. A
density connected pair of nodes is one in which a path
of nodes exists between the pair, such that each node has
density above a pre-defined threshold. The concept of
density-connectedness was defined in the context of multi-
dimensional clustering algorithms by the DBSCAN method
[8], and has been used quite successfully in conventional
clustering methods on non-structural data. As we will see
in this paper, the density-based method is also useful for
structural clustering, and particularly so for the supervised
case. On the other hand, the concept of density is much more
challenging to define in the context of structural data.

How should density be defined for structural data? In the

case of multi-dimensional data, pairwise distances between
nodes can be clearly defined, which are useful in defining
kernel-density estimators for the data points. While such
pairwise distances can also be defined for structural data
by using shortest-path distances, the complexity of such
computations increase at least quadratically with the number
of nodes in the network. This can be prohibitive for large-
scale applications. A more intuitive way of understanding
the clustering process is in the context of a page-rank style
random-walk process in which a surfer traverses the different
nodes in the network by randomly picking any neighbor of
a node during the walk. The density of a node is essentially
defined in an identical way to the page-rank computation.

DEFINITION 1. The density of a node i is defined as the
steady-state probability that a random surfer on the network
with a pre-defined set of reset probabilities visits node i at
any given transition.

Intuitively, a random surfer on the network (upon entering
a cluster), tends to get trapped in the cluster because the
nodes in this dense region tend to have much higher visit
probability than the surrounding nodes with lower visit
probability. Therefore, a natural way of demarcating the
boundaries of this cluster would be to exclude nodes from
the cluster for which the density is below a given threshold,
and then considering only connected regions of these high
density nodes as candidates for a cluster.

Before discussing the clustering process in more detail,
we will introduce the fundamentals of random-walk compu-
tation. In the random-walk process, at any given step, the
random surfer either transitions to any node j adjacent to i
with probability proportional to pij = wij/

∑
j∈I(i) wij , or

it resets to a random node in the network with probability
bias vector (or personalization vector) γ. Thus, the condi-
tional probability of transition to node i (in case of a reset)
is denoted by γ(i). We will discuss the choice of bias vector
γ slightly later, as it plays an important role in the supervi-
sion process. The relative probability of a reset is denoted by
α. Therefore, if we assume that the steady-state probability
of node i is denoted by π(i), the random walk equation for
node i can be stated as follows:

(2.1) π(i) =
∑
j∈I(i)

pji · π(j) · (1− α) + γ(i) · α

We will use the values π = (π(1) . . . π(n)) as a proxy for
the density of the node. In addition, since π(i) represents a
probability, we have

∑n
i=1 π(i) = 1.

We note that the above computation of density does not
incorporate any class information into the estimation pro-
cess. The use of the random walk framework for density esti-
mation allows a seamless framework for controlling the level
of supervision in the density estimation process. Specifically,
this can be achieved by controlling the reset vector of the



random walk. In the unsupervised case, we assumed that a
single random walk was performed, for which the value of
the reset vector γ(i) was equal to 1/n for each i. In this
case, we perform l different random walk computations in
order to create l different class-specific sets of densities.

Let m1 . . .ml be the number of nodes belonging to the
l different classes. Therefore, we have:

(2.2) |Ns| =
l∑
i=1

mi

The class-specific bias-vector ηi for class i contains a value
of 1/mi for nodes belonging to class i. Otherwise, the value
of ηi is set to 0. This class-specific bias vector can be used
in order to determine the class-specific density πi. We note
that the restart probability regulates the level of bias which
is incorporated by the supervision process. If the restart
probabilities are very low, and the (undirected) network is
fully connected, then the steady state probabilities are very
similar across the different nodes.

We note that the class-specific density πi provides a
different way to define the overall density of the clustering
process. Specifically, we define the dominant density π∗(j)
of a node j as its maximum density over all the different
classes.

DEFINITION 2. (DOMINANT DENSITY) The dominant
density π∗(j) of the node j is defined as the maximum of
l different class-biased density values. In other words, we
have:

(2.3) π∗(j) = maxiπi(j)

We note that this definition of the dominant density will
result in peaks of the value of π∗(j) in regions of high
density for specific classes. While it will still allow some
mixing of nodes belonging to different classes, the clustering
process will continue to be biased by the identity of the
labels.

The partially supervised clustering process needs to
combine the different class-specific densities effectively for
the purposes of classification. For this purpose, we will use
an approach which first determines the clusters separately for
the different classes, and then combines them by using the
structural behavior of the components found by the different
classes. This will be described in detail in the next section.

The restart probability regulates the level of bias which
is incorporated into the random walk vectors because of the
supervision process. Thus, the supervision is still “partial”
because the personalization vectors only bias the densities,
whereas the actual cluster creation algorithm will allow the
mixing of nodes belonging to different classes. The mixing
of different node labels in the same cluster is likely to
occur in cases, where they are placed in the same structural

locality. Such partial supervision is especially useful, when
the node labels may be incorrect, noisy, or may incompletely
represent the classes in the data. In some cases, correlated
(but different) node labels may belong to the same structural
locality, and therefore ought to be placed in the same cluster
in a partially supervised algorithm. In such cases, the density
bias provides good hints for cluster localization, but is not
an absolute guideline, since structural locality is allowed to
trump class membership.

3 Community Detection with Prior Knowledge
The density-based method in the last section can be used
to encode significant prior knowledge about the underlying
clusters, even when a small percentage of the labels are spec-
ified. Therefore, this can be used in order to meaningfully
define clusters in a biased way, when the class-specific den-
sities are used for the analytical process. We define the con-
cept of a density-connected cluster with respect to the density
vector π. The concept of density-connected clusters is anal-
ogous to this concept [8] in the case of multi-dimensional
data, except that we generalize it here to the case of struc-
tural data. We will first define the density-connected clusters
with respect to general class probability vectors π. Later we
will see how supervision can be used in order to further im-
prove the quality of the classification.

DEFINITION 3. (DENSITY CONNECTED PAIR) Two nodes
i and j are said to be density connected at level δ with
respect to the density vector π, if the following conditions
are satisfied:

• π(i) ≥ δ and π(j) ≥ δ

• There exists a path in the network G denoted by
iq1q2 . . . qrj, such that for each node qm on the path,
we have π(qm) ≥ δ

We can generalize the concept of a density-connected pair of
nodes to that of a density-connected set.

DEFINITION 4. (DENSITY CONNECTED SET) A set of
nodes S in G are density connected at level δ with respect
to π, if for every pair i, j ∈ S, the nodes i and j are density
connected at level δ with respect to π.

Therefore, our goal is to determine density connected sets
in the network in order to determine the underlying clusters.
One challenge with using the density connected approach di-
rectly is that in typical networks, the clusters are of widely
varying sizes, and correspondingly, the densities at the dif-
ferent nodes may vary by orders of magnitude. This can
be easily noticed in page rank computations [4] on the web,
in which the underlying page rank values of different nodes
may vary wildly, and yet good clusters can be found at all
these different levels of densities. Thus, by setting the den-
sity threshold δ too high, we may lose many relevant smaller



clusters in the sparser regions, whereas picking the density
threshold low enough to capture such clusters may fabricate
false clusters in denser regions.

We note that the aforementioned problem arises as a
direct result of the heterogeneity [2] of networks in which
different local regions of the data have different levels of
density. Therefore, the use of a global analysis for the
clustering process is likely to result in clusters which do not
reflect the underlying trends in the data well. In order to
handle the complications associated with this heterogeneity,
we use a residual network approach in which we determine
only the most significant network clusters in a given iteration
for a given class. Then, we work with a residual network
which does not include the excessively dense regions which
have already been determined to be clusters. We then
iteratively create the next most significant clusters, and keep
removing nodes from the residual network, until it becomes
“sufficiently” disconnected with only small components.
The significant clusters discovered in these iterations are
the prototype clusters, with which the remaining smaller
connected components are either consolidated or declared
outliers. We will first define the concept of a δ-residual
network formally.

DEFINITION 5. (δ-RESIDUAL NETWORK) The δ-residual
network of G with respect to the density vector π is denoted
by Gδ , and is defined by removing all the nodes from G for
which the density is greater than δ.

We note that G1 is equal to the original network G,
because the density values are probabilities, and therefore all
nodes have density values at most 1. The smaller the value
of δ, the more disconnected the residual network Gδ will
be. Our density-based algorithm picks successively smaller
values of δ in order to pick out more density-connected
prototype clusters from the network in succession. The
choice of δ is based on the statistical mean and variances
of the densities of the different nodes, and an additional
parameter β, which is known as the slice factor. The overall
process of the algorithm uses four main phases:

• Prototype Creation: In this phase, prototype clusters
are created separately for the different labels. This
is achieved by slicing the label-specific density-based
network repeatedly. We further note that most of the
nodes are not included in the clusters for a particular
class.

• Prototype to Orphan Consolidation: In this phase,
the prototypes from different labels are consolidated
together. Furthermore, the orphans are consolidated
with the clusters to which they are best connected. At
the end of this stage, some nodes may be missing from
any cluster and other nodes may be present in multiple
clusters.

Algorithm FindDensityClusters(Graph: G
Min. Cluster Size: min thresh, SliceFactor: β );

begin
Determine density values πj with

for the different classes j with
the random-walk equations;

for each class j do
Pj = R = {}; { Initialize the

prototype and orphan clusters };
{ Phase I begins: Prototype Cluster Creation }
for each class r do
begin
δ0 = 1; G′δ0 = G; { Initialization }
k = 0; { Iteration Number }
repeat
k = k + 1;
Compute µk and σk on G′δk−1 ;
δk = µk + β · σk;
Determine all the density connected components S at

level at least δk in G′δk−1 ;
Add all connected components in S with at least
min thresh nodes to Pr and the remaining toRr ;

Compute residual network Gδk ;
Add any components in Gδk with less than
min thresh nodes toRr and let the
remaining network be G′δk ;

until(Pr did not increase in last iteration);
Remove any components fromRr for which
avg. class-specific density is less than unsup. density;

Remove any components from Pr for which
avg. class-specific density is less than unsup. density;

end
{ Phase II: Prototype to Orphan Consolidation } ;
for each class r do
begin
repeat
Determine all components inRr for which a

maximum number of outgoing links are connected
to one component in Pr ;

Consolidate the prototypes in Pr with their
matching components inRr , and remove these
components fromRr ;

until(Rr did not reduce in last iteration);
O = O ∪Rr ;

end
{ Phase 3: Inserting Missing nodes }
Insert all missing nodesO globally over all
network components for the different classes
using a similar approach to Phase 2,
except that prototype set is the union over
all classes, and orphans are all individual
missing nodes;
{ Phase 4 } Final node re-assignment }
Perform final hard or soft assignment of nodes

based on class-specific probabilities;
end

Figure 1: Finding Density-based Clusters



• Missing Node Insertion: In this phase, nodes which
are missing from any cluster are re-inserted into their
best matching cluster based on the density connected-
ness in the network. At this stage, no nodes are miss-
ing from any cluster, but some nodes may be present in
many clusters.

• Final Node Re-Assignment: While overlapping clus-
ters are quite common in network scenarios, we use a
flexible approach in which nodes are either allowed to
belong to a particular cluster with a given soft probabil-
ity, or they belong to exactly one cluster.

Our algorithm, illustrated in Figure 1, is referred to as
CODEK, which corresponds to COmmunity DEtection using
prior Knowledge. The input to the algorithm is the network
G, and a minimum thresholdmin thresh on the component
size of the prototype clusters. In addition, a slice factor β
is used, which regulates how aggressively the network is
sliced based on the density distribution. As we will see later,
this factor regulates the number of clusters found from the
network.

The first phase of the algorithm partitions all the nodes
into sets of prototype clusters separately for each class r.
The set of prototype clusters for class r are denoted by Pr,
(which is a set of cluster sets) or a set of orphan clusters
denoted byRr. In the second phase of the algorithm, each of
the orphan clusters for class r will be assigned to either one
of the prototype clusters or to the outlier set O. Therefore,
the first phase is referred to as the prototype phase, while the
second phase is referred to as the consolidation phase.

The algorithm starts off by computing πr for the net-
work G with the use of the random walk computation spe-
cific to the class r. The prototype set Pr and orphan set Rr
are both initially set to null for the class r. Let µ1 and σ1 be
the mean and standard deviation of the initial density vector
πr, which is specific to the class r. We use this to set the
initial density threshold δ1 = µ1 + β · σ1. All the density
connected nodes in the graph G are removed, and each con-
nected component is added to the prototype set Pr, if it con-
tains more thanmin thresh nodes. Otherwise, it is added to
the orphan setRr. For the next iteration, we reconstruct Gδ1
by removing all the density connected sets which were added
to Pr and Rr from the network together with their incident
edges. The removal of such nodes may also result in the fur-
ther disconnection of the network into smaller components.
If some of these components have less than min thresh
points, then they are added to the orphan set as well. There-
fore, the network Gδ1 is adjusted to remove these nodes to
create an even smaller network G′δ1. In the next iteration,
we compute µ2 and σ2 in the (adjusted) δ1-residual network
G′δ1 . The new threshold is then set to δ2 = µ2 + r · σ2. We
note that since the high density nodes in the network have
already been removed, we will have δ2 < δ1. Thus, we may

find new nodes which were not δ1-density connected in G,
but may be δ2-density connected in G′δ1 . As before, we re-
move the δ2-density connected components from Gδ1 , and
add them either to the prototype set or the orphan set. This
process is repeated in order to successively construct G′δk ,
which continues to become smaller and more disconnected.
This process is repeated until in a given iteration the remain-
ing network is either the null set, or no node in G′δk has
density greater than δk+1 = µk+1 + β · σk+1. The residual
network is discarded. In many cases, this residual network
may contain a majority of the nodes in the network which
are not relevant to that particular class. Thus, each set of the
set of prototype clusters Pr is biased towards the class r.

The first phase of the algorithm thus creates a set of pro-
totype clustersPr and orphan clustersRr for the class r. The
second phase of the algorithm builds around these prototype
clusters by adding orphan clusters to them. For each orphan
cluster, we determine the prototype cluster to which it has
the maximum number of connecting links. After scanning
all the orphan clusters for linkage with prototype clusters,
we merge the assigned orphaned cluster with their respective
prototype clusters (and also add the connecting links) in or-
der to increase the size of the prototype clusters. At the same
time, the assigned orphaned clusters are removed from the
setRr. We note that the increase of the size of the prototype
clusters in Pr may result in some new components inRr be-
coming significantly connected to the (expanded) clusters in
Pr. Therefore, this entire process is repeated iteratively, un-
til either no orphan cluster is assigned in an iteration, or the
setRr becomes empty.

At this stage, many nodes are included in multiple
clusters, and other nodes are not included in any cluster. In
fact, at the end of the first phase, it is possible that significant
parts of the network may not be included in any cluster at all.
However, since the class-based prototypes provide excellent
reference points to build the clusters around, it is possible to
insert the remaining nodes in reference to these high quality
prototypes. Even when most of the nodes are not included in
any prototype, this approach is still able to find better clusters
for such nodes than a purely unsupervised method which
uses no prior information at all. As in the case of the second
phase, an iterative approach is used in which the data points
are repeatedly inserted in clusters, based on the cluster to
which they have the highest connectivity. Such an approach
may sometimes merge multiple prototype clusters (possibly
generated from different classes), when they are connected
to such clusters. This is actually quite reasonable, because
cluster overlaps may exist among the different classes. Such
overlaps need to be properly accounted for in the final cluster
creation process.

After the third phase, many nodes may belong to mul-
tiple clusters. Such overlaps among different clusters are
quite common in many real networks. On the other hand,



in many applications, it may be desirable to perform hard-
partitioning, in which each node belongs to only a single
cluster. Therefore, we use two variations in order to perform
the final assignment of data points to clusters:

• Soft Partitioning: For nodes which belong to multiple
clusters, each occurrence of a node in a particular
cluster is associated with a density value. This density
value was the random walk probability of that node at
the time it was separated out from the network as a
prototype or orphan cluster. The probability of a node
belonging to that cluster is estimated as the fractional
random walk probability for that instance. We refer to
this variant of our algorithm as CODEK-S.

• Hard Partitioning: In this case, each node is assigned
to its best matching cluster. The best matching cluster is
picked by using the highest density for that node. This
version of the algorithm is called CODEK-H.

The resulting hard or soft partitioning is reported as the final
result found by the algorithm.

4 Experimental Results
In this section, we will present a number of experimental re-
sults illustrating the effectiveness of the proposed technique.
We will study both the soft and hard partitioning approaches
compared to several well established baselines.

4.1 Data Sets We tested our approach on the DBLP and
IMDB data sets.
DBLP Data Set: We downloaded the DBLP XML file from
[19], on January 23, 2012. We extracted the title, author and
venue information for several published document types, in-
cluding, articles, proceedings, inproceedings, and thesis. We
further cleaned the DBLP data set to remove documents with
missing meta-information such as author, date, and confer-
ence proceedings name. After cleaning, the DBLP dataset
contained 1,008,883 distinct authors and 1,810,117 docu-
ments. We constructed a DBLP co-authorship network using
this data, which contained 1,008,883 nodes and 3,383,570
edges. An edge (i, j) in this relationship represents co-
authorship between authors i and j. The average degree per
node was 1.86.
IMDB Data Set: The IMDB data set is an international col-
lection of movies, documentary and short films. It contains
actors, actresses, crew, plot and many more details of each
movie. The data set was downloaded from [18]. The tele-
vision serials were excluded from our data set, and we fo-
cussed on the remaining 37% of movies, which translated
to 840,542 movies. A co-actor network was constructed in
an analogous way to DBLP. To reduce the effect of unin-
formative nodes and edges, we choose only actors who had
acted in at least 2 movies and edges which correspond to at

least 2 co-acting relations. The size of the resulting network
was, 423,281 nodes with 3,625,196 edges. The average node
degree was 8.56.

Each of these data sets had class labels, which were
used for supervision. For DBLP, we extracted the list of
top 10 conferences from the 22 different areas of computer
science as grouped in academic.research.microsoft.com.
We counted the number of conference publication for each
author in each of these domains and picked the maximum
publication domain as the ground truth community for the
author. Similarly for IMDB, we counted the number of
movies acted by each actor in top 3 genres: Short, Drama,
and Documentary. As the movie participated in several
genres, unlike a publication in DBLP, we split the credit
equally to all the participating genres for that movie. The
actor is then assigned a genre as the community label based
on dominant behavior.

4.2 Evaluation Measures We tested our algorithm for
clustering effectiveness using the average cluster purity mea-
sure. We also measure the distribution of cluster sizes and
average cluster entropy to measure the quality of the com-
munities obtained.

We measure the cluster purity of a cluster as the fraction
of the nodes belonging to the dominant label. This is
averaged in a weighted way over different clusters in order
to create a composite cluster purity measure.

A disadvantage of this measure is that it depends only on
the dominant label of the cluster, and ignores the distribution
of non-dominant labels. The cluster entropy for cluster i is
measured as follows:

(4.4) hi = 1−
L∑
l=1

p2il

Here, L is the total number of ground truth communi-
ties, and pil is the fraction of class labels of community l in
cluster i. The cluster entropy is then averaged over the dif-
ferent clusters. The cluster purity effectiveness measure can
be computed in a comparable way for both the hard and soft
versions of the algorithm, by appropriately assigning por-
tions of “shared credit” for each data point to the appropriate
clusters, when a data point belongs to multiple clusters.

As mentioned earlier, the extreme unevenness of cluster
sizes is a concern for many algorithms. While some methods
such as METIS are able to force this via hierarchical parti-
tioning, this continues to be an issue for many of the algo-
rithms which use flat partitioning. Therefore, we measured
the variance in cluster sizes as follows:

(4.5) V =

K∑
i=1

f2i /K − 1/K2

Here, fi is the ratio of size of cluster i to the number of
nodes in the network, and K is the number of clusters. Note



that Equations. 4.5 and 4.4 are applicable only for hard
partitioning algorithms.

4.3 Baselines We use three well-established graph cluster-
ing baselines of different types to compare against our algo-
rithm. They are METIS [15], GRACLUS [16] and SSC[17].

• METIS: This is a multi-level k-way graph partitioning
algorithm. We used the implementation available from
[15]. We specify the number of partitions of the graph
as the input to the program.

• GRACLUS: This is a fast kernel-based multi-level
graph clustering algorithm. We used the code from [16].
All parameters were set to their default values, except
the number of clusters.

• SSC: This is a fast Sparse Spectral Clustering [17]
(SSC) approach proposed for graph clustering. We used
the SSC algorithm implementation available in [17].
The parameter σ was set to 0.1.

4.4 Effectiveness results We present the effectiveness re-
sults for DBLP and IMDB in terms of the average cluster
purity and cluster entropy measured against various clus-
ter sizes. As discussed earlier, our algorithm CODEK has
two variants, soft (CODEK-S) and hard (CODEK-H) parti-
tioning. We set the random walk restart probability to 0.1
and stopping criteria threshold to be 10−4 and 10−6 for
DBLP and IMDB data sets respectively. The parameters
min thresh is set to 50 and number of exposed labels are
1375 and 4200 for DBLP and IMDB respectively for any bias
class. Note that this set of labels is very small compared to
the size of the entire network (about 2.9%). The number of
clusters was controlled by using the slice factor parameter,
as discussed in sensitivity analysis section. For other algo-
rithms, the same number of clusters were used as an input
parameter, in order to obtain results which could be reason-
ably compared with one another.

Figures 2(a) and 2(b) show the effectiveness of the pro-
posed approach CODEK-H and CODEK-S using the average
cluster purity. In both DBLP and IMDB data sets, both the
soft and hard versions of the proposed approach consistently
outperform the baselines. In DBLP, the average cluster pu-
rity of CODEK-H is at least twice that of the baselines. The
soft version CODEK-S performs especially well for large
cluster sizes. Note that, the baseline methods do not per-
form consistently in the same order in both data sets. For ex-
ample, in DBLP, METIS performs better, whereas in IMDB,
SSC performs better than METIS. However, we see that our
proposed approach consistently performs better because of
its use of local density connected clusters. This robustness
is significant; if the performance of a clustering algorithm is
erratic over different data sets, it cannot be trusted to perform
effectively in different scenarios. We have also presented the

results with the use of our other measure corresponding to
cluster entropy. The results for DBLP and IMDB are shown
in Figures 2(c) and 2(d) respectively. One can see that the
average entropy of our method was better than all the base-
lines in DBLP and much better in reasonably large clusters
in IMDB.

One of the challenges of community detection algo-
rithms is their tendency to have uneven cluster sizes. While
some algorithms such as METIS avoid this with a hierar-
chical approach of always dividing the largest cluster, this
comes at the expense of purity. In order to examine how
balanced the different clusters are in different scenarios, we
compared the cluster size distribution by plotting the top-
10 cluster sizes ranked in descending order of size. The
10-th cluster is replaced by an average of the cluster sizes
over the remaining clusters (excluding the top nine). These
cluster size distributions are shown in Figures 2(e) and 2(f)
for both the DBLP and IMDB data sets. One can see that
METIS produces similar size clusters, as it is by the design of
the algorithm. The GRACLUS and SSC algorithms as noted
earlier produces highly uneven size clusters. Furthermore,
these algorithms behave in an unpredictable way over dif-
ferent data sets. In IMDB, GRACLUS performs slightly bet-
ter than in the case of the DBLP data set. We also plot the
overall variance in cluster sizes, over different granularity in
partitioning. This summarizes the entire cluster sizes rather
than the top 10, and is shown in Figures 2(g) and 2(h). In
both DBLP and IMDB, our algorithm closely competes with
METIS (which produces even clusters by design), whereas
the other algorithms behave poorly on at least one of the data
sets.

4.5 Sensitivity analysis As our algorithm has a few im-
portant parameters the controls the size of clusters, the num-
ber of clusters and the amount of supervision, we perform
sensitivity analysis of these parameters in this section. In
Figures 2(i) and 2(j), we show the sensitivity of changing
the slice factor and the effect in the number of clusters gen-
erated by CODEK. In general, as the slice factor increases,
the number of clusters generated in the prototype clustering
phase decreases. Hence, the resulting number of clusters is
also lower. We also vary the min thresh factor to show
the effect of this parameter on the number of clusters. As
the min thresh parameter is lowered the number of clus-
ters that are density connected with in min thresh factor
increases, resulting in a larger number of clusters. This rate
of decrease in the size of clusters for increasing slice factor is
different for different data sets, depending the sparsity of the
graph. For DBLP, the graph is much more sparse compared
to IMDB and hence the slope of the curves are much more
steeper.

The effect of supervision level on the average cluster
purity for the two data sets is illustrated in Figures 2(k)
and 2(l). In each case, the slice factor was chosen so as
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Figure 2: Experimental Results for DBLP and IMDB data sets



Method DBLP IMDB
CODEK-S 3.610 2.561
CODEK-H 3.642 2.574
METIS 0.126 0.085
GRACLUS 0.862 0.938
SSC 35.992 7.694

Table 1: Running time reported for baselines and CODEK

to hold the number of clusters to about 250, though this
cannot be exactly controlled. We note that as much as
2% of supervision is sufficient for our algorithm to perform
significantly better than baseline methods. This suggests
that a very small amount of prior information can have
drastic results. The behavior of CODEK-H and CODEK-
S algorithms are very similar in both data sets to the level
of supervision. As the supervision increases the algorithm
performs better in terms of the average cluster purity. As
the baseline algorithms are not supervised, the corresponding
cluster purity is almost horizontal, but with some variations
because of varying number of clusters (which was chosen to
be the same as the CODEK algorithm).

4.6 Efficiency results The efficiency of our algorithm is
comparable to that of the baseline algorithms. In Table 1, we
compare the runtime for our algorithm versus baselines for
both data sets. We present the run-time for both soft and hard
partitioning of our algorithm. In terms of run time, METIS
performs the best. Our algorithm is highly comparable to
GRACLUS. The SSC method is an expensive eigenvector-
based method. Hence, the algorithm is extremely slow
for large cluster sizes. The run time numbers in Table 1
are reported in minutes for a cluster size of 202 and 220
for DBLP and IMDB respectively. The hard partitioning
algorithm requires a small amount of extra time in the final
phase because of the process of determining assignments of
nodes to clusters.

5 Conclusions and Summary
Many network clustering algorithms frequently create imbal-
anced clusters of very low quality. This paper proposes a
method for incorporating prior knowledge in network clus-
tering applications. The results show that even a tiny amount
of prior knowledge provides significant information for clus-
tering. The resulting clustering is balanced, robust, and gen-
erally of much higher quality than state-of-the-art commu-
nity detection methods in the literature. At the same time, it
is able to retain reasonable efficiency.
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