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ABSTRACT
This paper presents a confidence interval quantification of
maximum likelihood estimation of participant reliability in
social sensing applications. The work is motivated by the
emergence of social sensing as a data collection paradigm,
where humans perform the data collection tasks. A key
challenge in social sensing applications lies in the uncer-
tain nature of human measurements. Unlike well-calibrated
and well-tested infrastructure sensors, humans are less re-
liable, and the likelihood that participants’ measurements
are correct is often unknown a priori. Hence, it is hard
to estimate the accuracy of conclusions made based on so-
cial sensing data. In previous work, we developed a maxi-
mum likelihood estimator of reliability of both participants
and facts concluded from the data. This paper presents an
analytically-founded bound that quantifies the accuracy of
such maximum likelihood estimation in social sensing. A
confidence interval is derived by leveraging the asymptotic
normality of maximum likelihood estimation and computing
the approximation of Cramer-Rao bound (CRB) for the es-
timation parameters. The proposed quantification approach
is empirically validated and shown to accurately bound the
actual estimation error given sufficient number of partici-
pants under different sensing topologies.

1. INTRODUCTION
Social sensing, where individuals act as sensors, is a key

emerging category of sensing applications. Yet, quantify-
ing the reliability of data collected from human sources re-
mains one of the main challenges in utilizing social sensing
in mission-critical systems. This reliability problem has long
been known in military scenarios and is becoming increas-
ingly important in commercial and civil settings as well. The
main research question is one of quantifying a level of con-
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fidence in information reported by a group of human ob-
servers.

This paper quantifies confidence in social sensing observa-
tions by computing a confidence interval of a maximum like-
lihood estimator of participant reliability from social sensing
data. The confidence interval is computed based on the ap-
proximation of Cramer-Rao bound (CRB) [4], which quan-
tifies the variance of a minimum-variance unbiased estima-
tor. This bound approximates the CRB by leveraging ob-
servations from participants and knowledge of truthfulness
of facts estimated from an maximum likelihood estimator of
social sensing [14].

We consider a sensing application in which data are col-
lected from a large population, where the reliability (i.e., the
probability of correctness) of individual participants, and
hence observations made by them, is not known a priori .
We aim to derive the confidence interval in the maximum
likelihood estimation of participant and observation relia-
bility given no prior knowledge other than the information
describing who reported which observations. The maximum
likelihood estimation problem itself is not the topic of this
paper. An approach based on expectation maximization [5]
is described in prior work [14]. This paper quantifies the
confidence approximately in the answer reported by such an
estimator.

We concern ourselves with binary measurements only; for
example, reporting whether or not a given person or object
was seen at a given location. Our derivation leverages the
asymptotic normality of maximum likelihood estimation and
computes the approximation of Cramer-Rao bound (CRB)
of the estimation parameters used in an expectation max-
imization scheme. It is shown that the probability of the
estimated participant reliability falling into the derived con-
fidence interval is always greater than the given confidence
level, as long as enough participants report sufficient obser-
vations, and as long as some participants make the same
observation. In other words, it is shown that our confidence
window correctly bounds estimation error.

The rest of this paper is organized as follows: In Section 2,
we review a maximum likelihood estimation approach for
social sensing applications and formulate the problem of de-
riving the confidence interval of participant reliability. The
derivation of the proposed approximation for CRB quan-
tification on maximum likelihood estimation is discussed in
Section 3. Evaluation results are presented in Section 4. We



review related work in Section 5. Finally, we conclude the
paper in Section 6.

2. PROBLEM FORMULATION
First, we review the maximum likelihood estimation ap-

proach for truth discovery in social sensing applications. We
consider a social sensing application model where a group
of M participants, S1, ..., SM , make individual observations
about a set of N measured variables C1, ..., CN in their en-
vironment. Each measured variable denotes the existence
or lack thereof of certain phenomenon of application’s inter-
ests. In this effort, we consider only binary variables and
assume, without loss of generality, that their “normal” state
is negative. Hence, participants report only when a positive
value is encountered. Each participant generally observes
only a subset of all variables. Our goal is to determine the
confidence interval of the participant reliability maximum
likelihood estimation for a given confidence level based only
on the information of which observations are reported by
which participant.

Let SiCj denote an observation reported by participant

Si claiming that Cj is true. Let P (Ct
j) and P (Cf

j ) denote
the probability that the actual variable Cj is indeed true
and false, respectively. Different participants may make dif-
ferent numbers of observations. Let the probability that
participant Si makes an observation be si. Further, let the
probability that participant Si is right be ti and the proba-
bility that it is wrong be 1− ti. Note that, this probability
depends on the participant’s reliability, which is not known
a priori . Formally, ti is defined as:

ti = P (Ct
j |SiCj) (1)

Let us also define ai as the (unknown) probability that
participant Si reports a variable to be true when it is indeed
true, and bi as the (unknown) probability that participant
Si reports a variable to be true when it is in reality false.
Formally, ai and bi are defined as follows:

ai = P (SiCj |Ct
j)

bi = P (SiCj |Cf
j ) (2)

From the definition of ti, ai and bi, we can determine their
relationship using the Bayesian theorem:

ai = P (SiCj |Ct
j) =

P (SiCj , C
t
j)

P (Ct
j)

=
P (Ct

j |SiCj)P (SiCj)

P (Ct
j)

bi = P (SiCj |Cf
j ) =

P (SiCj , C
f
j )

P (Cf
j )

=
P (Cf

j |SiCj)P (SiCj)

P (Cf
j )

(3)

The key input to the maximum likelihood estimator algo-
rithm is a matrix SC, where SiCj = 1 when participant Si

reports that Cj is true, and SiCj = 0 otherwise. Let us call
it the observation matrix . For initialization, we also define
the background bias d to be the overall prior probability that
a randomly chosen measured variable is true. Note that, this
value can be known from past statistics. It does not indi-
cate, however, whether any particular measured variable is
true or not. To initialize the algorithm, we set P (Ct

j) = d
and set P (SiCj) = si. Plugging these, together with ti into
the definition of ai and bi, we get the initial values:

ai =
ti × si
d

bi =
(1− ti)× si

1− d (4)

The best (in the sense of maximum likelihood) estimate
t̂∗i of the reliability of each participant Si can be obtained
by using the Expectation Maximization (EM) algorithm [5].
In the EM algorithm, a latent variable Z is introduced for
each measured variable to indicate whether it is true or not
(i.e., zj is 1 when the measured variable Cj is true and 0
otherwise). The observation matrix SC is treated as the
observed data X, and θ = (a1, a2, ...aM ; b1, b2, ...bM ) is the
parameter vector of the model we want to estimate. The
EM algorithm iteratively performs an expectation step (E-
step) and a maximization step (M-step) to compute the best
estimate of the parameter θ that maximizes the expected
logarithm likelihood function. The likelihood function used
by EM scheme is given by:

L(θ;X,Z) = p(X,Z|θ)

=

N∏
j=1

{
M∏
i=1

a
SiCj

i (1− ai)(1−SiCj) × d× zj

+

M∏
i=1

b
SiCj

i (1− bi)(1−SiCj) × (1− d)× (1− zj)

}
(5)

An output of the EM algorithm is the maximum likelihood
estimation of each participant’s reliability, which is most
consistent with the observation matrix SC. However, an
important problem that remains unanswered from the max-
imum likelihood estimation of the EM scheme is: what is
the confidence interval of the resulting participant reliability
estimation? Only by answering this question, can we com-
pletely characterize estimation performance, and hence par-
ticipant reliability in social sensing applications. The goal
of this paper is to demonstrate, in an analytically founded
manner, how to compute the confidence interval of each par-
ticipant’s reliability. Formally, this is given by:

(t̂MLE
i − clower

p , t̂MLE
i + cupperp ) c% (6)

where c% is the confidence level of the estimation inter-
val, clower

p and cupperp represent the lower and upper bound
on the estimation deviation from the maximum likelihood
estimation t̂MLE

i respetively. We target to find clower
p and

cupperp for a given c% and an observation Matrix SC.

3. RELIABILITY DERIVATION
In this section, we derive a confidence interval based on

the approximation of Cramer-Rao Bound and the afore-
mentioned formulation of maximum likelihood estimation of
participant reliability. The log-likelihood function (or log-
probability density function) of the maximum likelihood es-
timation we get from EM can be expressed as:

lem(x; θ) = log pem(x; θ)

=

N∑
j=1

{
zj ×

[
M∑
i=1

(SiCj log ai + (1− SiCj) log(1− ai) + log d)

]
+ (1− zj)

×

[
M∑
i=1

(SiCj log bi + (1− SiCj) log(1− bi) + log(1− d))

]}
(7)



The likelihood (or probability density function) is:

pem(x; θ) = exp(lem(x; θ)) (8)

The goal here is to show that the confidence interval of the
estimated parameter θ can be asymptotically characterized
by the approximation of Cramer-Rao bound (CRB) given
the observation matrix as well as estimated truthfulness of
each measured variable from EM scheme.

In statistic mathematics and information theory, the Fisher
information is a way of measuring the amount of informa-
tion that an observable random variable X carries about an
estimated parameter θ upon which the probability of X de-
pends. The partial derivative of the log-likelihood function
l(x; θ) with respect to θ is called the score. A score vector
ψ(x; θ) for a k × 1 estimation vector θ = [θ1, θ2, ..., θk]T is
defined as:

ψ(x; θ) = [
∂l(x; θ)

∂θ1
,
∂l(x; θ)

∂θ2
, ...,

∂l(x; θ)

∂θk
]T (9)

The Fisher information is defined as the second moment
of the score vector:

I(θ) = EX [ψ(X; θ)ψ(x; θ)T ] (10)

where the expectation is taken over all values for X with
respect to the probability function p(x; θ) for any given value
of θ.

Hence, the Fisher information for the above estimation
vector θ takes the form of an k× k matrix, the Fisher Infor-
mation Matrix, with the representative element:

(I(θ))i,j = EX [(
∂l(x; θ)

∂θi
)(
∂l(x; θ)

∂θj
)] (11)

If l(x; θ) is twice differentiable with respect to θ (which
happens to be the case for EM model), under certain reg-
ularity conditions, the Fisher Information Matrix may also
be written as [10]:

(I(θ))i,j = −EX [
∂2l(x; θ)

∂θi∂θj
] (12)

In estimation theory and statistics, the Cramer-Rao bound
(CRB) expresses a lower bound on the variance of estima-
tors of a deterministic parameter. In its simplest form, the
bound states the variance of any unbiased estimator is at
least as high as the inverse of the Fisher information [10].
The estimator that reaches this lower bound is said to be
efficient.

The maximum likelihood estimator posses a number of at-
tractive asymptotic properties. One of them is called asymp-
totic normality, which basically states the MLE estimator is
asymptotically distributed with Gaussian behavior as the
data sample size goes up, in particular[3]:

√
n(θ̂MLE − θ0)

d→ N(0, I−1(θ̂MLE)) (13)

where n is the sample size, θ0 and θ̂MLE are the true value
and the maximum likelihood estimation of the parameter θ
respectively. The Fisher information at the MLE is used to
to estimate its true value [10]. Hence, the asymptotic nor-
mality property means that in a regular case of estimation
and in the distribution limiting sense, the maximum likeli-
hood estimator θ̂MLE is unbiased and its covariance reaches
the Cramer-Rao bound (i.e., an efficient estimator).

Since the estimator we obtain from the EM algorithm is a
maximum likelihood estimator of the parameter θ, we now
show how to leverage the asymptotic normality and the ap-
proximation of Cramer-Rao bound to derive a confidence
interval that quantifies the estimation accuracy of the esti-
mated parameter θ for the model of the EM scheme.

We first compute the approximation of Fisher Informa-
tion Matrix from the log-likelihood function given by Equa-
tion (7). Note that this computation utilizes the estimated
truthfulness of each measured variable from EM scheme,
hence offers approximated results. According to prior work [14],

the maximum likelihood estimator θ̂MLE is given by:

âMLE
i =

∑
j∈SJi

Zc
j∑N

j=1 Z
c
j

b̂MLE
i =

Ki −
∑

j∈SJi
Zc

j

N −
∑N

j=1 Z
c
j

(14)

where SJi is the set of measured variables reported by par-
ticipant Si and Zc

j is the converged value of Z(t, j) (i.e.,

p(zj = 1|Xj , θ
(t))) from EM algorithm. Observe that each

âMLE
i or b̂MLE

i is computed from N independent samples
(i.e., measured variables). The Fisher information in a ran-
dom sample of size n is n times the Fisher information in
one observation [10], and hence

In(θ) = nI(θ) (15)

Plugging lem(x; θ) given by Equation (7) into the Fisher
Information Matrix defined in Equation (12), we have:

(I(θ̂MLE))i,j (16)

=


0 i 6= j

−EX

[
1
N

∂2lem(x;ai)

∂a2
i

|ai=âMLE
i

]
i = j ∈ [1,M ]

−EX

[
1
N

∂2lem(x;bi)

∂b2i
|bi=b̂MLE

i

]
i = j ∈ (M, 2M ]

Observe that the Fisher Information Matrix of the maximum-
likelihood estimator from the EM scheme is a diagonal ma-
trix, hence the inverse of this matrix is:

(I−1(θ̂MLE))i,j (17)

=


0 i 6= j

−EX

[
N

∂2lem(x;ai)

∂a2
i

|ai=âMLE
i

]
i = j ∈ [1,M ]

−EX

[
N

∂2lem(x;bi)

∂b2
i

|bi=b̂MLE
i

]
i = j ∈ (M, 2M ]

From the asymptotic normality of the maximum likeli-
hood estimator specified by Equation (13), we know that

(θ̂MLE − θ0)
d→ N(0, 1

N
I−1(θ̂MLE)). Therefore, substitut-

ing (I−1(θ̂MLE)) by Equation (17) into Equation (13), we

obtain the covariance matrix Cov(θ̂MLE) of the asymptotic
normal distribution for the maximum likelihood estimation
of EM scheme, which is given by:

(Cov(θ̂MLE))i,j (18)

=


0 i 6= j

−EX

[
1

∂2lem(x;ai)

∂a2
i

|ai=âMLE
i

]
i = j ∈ [1,M ]

−EX

[
1

∂2lem(x;bi)

∂b2
i

|bi=b̂MLE
i

]
i = j ∈ (M, 2M ]

Using the converged log-likelihood function of Equation (7)
and substituting Equation (14) into Equation (18), the above
covariance matrix can be further written as:



(Cov(θ̂MLE))i,j (19)

=


0 i 6= j
âMLE
i ×(1−âMLE

i )

N×d
i = j ∈ [1,M ]

b̂MLE
i ×(1−b̂MLE

i )

N×(1−d)
i = j ∈ (M, 2M ]

Note that, the actual CRB bound is a function of both M
and N. However, the approximation CRB bound derived is
independent of M. Let us denote the variance of estimation
error on parameter ai as V ar(âMLE

i ). Recall the relation
between participant reliability and estimation parameter ai
is ai = ti×si

d
. For a given topology, si and d are known

constants, (t̂MLE
i − t0i ) also follows a norm distribution with

0 mean and variance given by:

V ar(t̂MLE
i ) =

(
d

si

)2

V ar(âMLE
i ) (20)

Hence, we are able to derive the confidence interval that
can be used to quantify the estimation accuracy of the max-
imum likelihood estimation from the EM scheme. The con-
fidence interval of the reliability estimation of participant Si

(i.e., t̂MLE
i ) at confidence level p is given by:

(t̂MLE
i − cp

√
V ar(t̂MLE

i ), t̂MLE
i + cp

√
V ar(t̂MLE

i )) (21)

where cp is the standard score (z-score) of the confidence
level p. For example, for the 95% confidence level, cp = 1.96.
Note that the derived confidence interval of the participant
reliability maximum likelihood estimator can be computed
by simply using the converged maximum lieklihood estima-
tion of the EM scheme. This completes the deriviation.

4. EVALUATION
In this section, we carry out simulation experiments to

evaluate the performance of the computed confidence inter-
val of participant reliability in social sensing. We built a
simulator in Matlab 7.10.0 that generates a random number
of participants and measured variables. A random probabil-
ity Pi is assigned to each participant Si representing his/her
reliability (i.e., the ground truth probability that they report
correct observations). For each participant Si, Li observa-
tions are generated. Each observation has a probability Pi

of being true (i.e., reporting a variable as true correctly) and
a probability 1 − Pi of being false (reporting a variable as
true when it is not). One can think of these variables as
observed “problems”. Participants do not report “lack of
problems”. Hence, they never report a variable to be false.
We let Pi be uniformly distributed between 0.5 and 1 in our
experiments1.

We evaluate the derived confidence interval on participant
reliability over three different observation matrix scales: small,
medium and large. The simulation parameters of the three
observation matrix scales are listed in Table 1. The aver-
age observations reported by each participant is set to 100.
For each observation matrix scale, we run the EM algorithm
and compute the confidence interval on participant reliabil-
ity based on Equation (21). We repeat the experiments 100

1In principle, there is no incentive for a participant to lie
more than 50% of the time, since negating their statements
would then give a more accurate truth

times for each observation matrix scale and call the exper-
iments with the actual estimation error falling outside the
confidence interval outliers. We choose three representative
confidence levels (i.e., 68%, 90%, 95% 2), respectively. For
a given confidence level, we further define the participant
who has the largest number of outliers over all experiments
as the worst-case participant. Hence, we record the number
of ourliters of every worst-case particpant for a given con-
fidence level and compare it with the theoretical maximum
number of outliers.

Observation
Matrix
Scale

Number
of Partici-
pants

Number of
True Mea-
sured Vari-
ables

Number of
False Mea-
sured Vari-
ables

Small 50 200 200
Medium 100 500 500
Large 200 1000 1000

Table 1: Parameters of Three Typical Observation
Matrix Scale

Figure 1 shows the confidence interval bounds on the par-
ticipant reliability estimation error with three different con-
fidence levels for the small observation matrix. Note that
the CRB is simply a function of the ground truth parameter
values. However, it is reasonable to substitute the true (but
unknown) parameter values with their ML estimates [10].
This is the reason that bounds in the figure appear to fluc-
tuate rather than being flat. Observe that the actual es-
timation error on participant reliability is well bounded by
its corresponding confidence interval. Specially, the num-
bers of outliers for the worst-case participant at confidence
levels 68%, 90% and 95% are 28, 7 and 4 out of 100 experi-
ments. They are less than the theorectial maixmum number
of outliers for the three confidence levels (i.e., 32, 10 and 5
out of 100 experiments, predicted using our derived bound).
Similar results are observed for the medium and large ob-
servation matrices as well, which are shown in Figure 2 and
Figure 3.

A summary of the comparison between confidence interval
bounds in estimating participant reliability and the theoret-
ical results is shown in Table 2. We observe that the proba-
bility of the estimated participant reliability falling into the
derived confidence interval is always greater than the corre-
sponding confidence level.

Since the derived bound is an approximation of true CRB
(i.e., it depends on the correct estimation of truthfulness
of measured variables from EM scheme), we study the con-
ditions when such approximated bound fails to bound the
actual error of the estimation parameters. We fix the true
and false measured variables to be 1000 respectively, the av-
erage observations per participant is set to 100. We vary the
number of participants from very small (i.e., 5) to large (i.e.,
205). Reported results are averaged over 100 experiments.
Figure 4 shows the square root of the average MSE (mean
squared error) of 3 confidence interval bounds on the esti-
mated parameter ai and bi when the number of participants
varies. Observe that the high confidence bounds (i.e., 95%
or 90% ) fail to bound the root of MSE on ai or bi only when
the number of participants (M) is very small. This is due to

2They correspond to one, two and three times standard de-
viation confidence intervals of normal distribution



(a) 68% Confidence Bound (b) 90% Confidence Bound (c) 95% Confidence Bound

Figure 1: CRB Confidence Bounds on Participant Reliability for Small Observation Matrix

(a) 68% Confidence Bound (b) 90% Confidence Bound (c) 95% Confidence Bound

Figure 2: CRB Confidence Bounds on Participant Reliability for Medium Observation Matrix

(a) 68% Confidence Bound (b) 90% Confidence Bound (c) 95% Confidence Bound

Figure 3: CRB Confidence Bounds on Participant Reliability for Large Observation Matrix

(a) Confidence Bound on ai (b) Confidence Bound on bi

Figure 4: CRB Confidence Bound on ai and bi versus Vaying M

the poor estimation results of measured varibles when too
few participants report their observations. However, when
M is reasonablly sufficient (e.g., 25 in the experiment), high
confidence bounds always bound the square root of the av-
erage MSE on the estimated parameters correctly.

5. RELATED WORK

Social sensing has received significant attention due to the
great increase in the number of mobile sensors owned by in-
dividuals and the proliferation of Internet connectivity. To
assess the credibility of participants and facts reported in
participatory sensing and other social sensing applications,
a relevant body of work, called fact-finders, in the machine
learning and data mining communities performs trust analy-
sis. The basic fact-finders include Hubs and Authorities [11],



Observation
Matrix
Scale

Confidence
Level of Esti-
mation

Theoretical
Maximum
Outliers/Total
Experiments

CRB Bound
Worst Case
Outliers/Total
Experiments

Small

68% 32/100 24/100
90% 10/100 8/100
95% 5/100 5/100

Medium

68% 32/100 25/100
90% 10/100 6/100
95% 5/100 4/100

Large

68% 32/100 25/100
90% 10/100 9/100
95% 5/100 2/100

Table 2: CRB Bound on Participant Probability ver-
sus Theoretical Results

Average.Log [12], and TruthFinder [15]. Other fact-finders
enhance the basic framework by incorporating analysis on
properties or dependencies within assertions or sources [9,
2, 8, 7, 6]. Fact-finding in the case of social sensing is more
challenging due to the highly dynamic nature of social sens-
ing applications [1]. Moreover, the outputs of fact-finders
are generally rankings of credibility values of participants
and facts. Such rankings cannot be used to directly quan-
tify the participant reliability or fact correctness.

Recent work presented a Bayesian Interpretation scheme [13]
representing an initial effort to provide a probability inter-
pretation of ranking outputs from fact-finders. However, it
remains an approximation approach in which the accuracy
of truth estimation is very sensitive to initial conditions of
iterations. Due to this limitation, a maximum likelihood es-
timation approach using EM algorithm is proposed to pro-
vide the first optimal solution to the truth discovery problem
in social sensing [14]. The EM scheme was shown to out-
perform Bayesian interpretation and other state-of-art fact-
finders. However, only average estimation accuracies were
reported in both of above schemes. The confidence interval
of the estimation accuracy has not been found. In contrast,
this paper derives, for the first time, the confidence inter-
val of participant reliability based on the approximation of
CRB, hence completes the quantification of participant re-
liability estimation in social sensing.

In estimation theory and statistics, the Cramer-Rao bound
refers to a lower bound on the variance of estimators of a
deterministic parameter [4]. The bound states the variance
of any unbiased estimator is lower-bounded by the inverse of
Fisher information [10]. One of the key properties of maxi-
mum likelihood estimation is asymptotic normality. An EM
scheme provides maximum likelihood estimation of partic-
ipant reliability for social sensing applications. This pa-
per provides the first quantification approach to compute
the confidence interval for participant reliability maximum-
likelihood estimation based on the approximation of CRB by
leveraging results from estimation and information theory.

6. CONCLUSION
This paper described a quantification approach to com-

pute the confidence interval of the maximum likelihood es-
timation on participant reliability based on the approxi-
mation of CRB in social sensing applications. This quan-
tification approach completely characterizes the estimation
performance of participant reliability without knowing the
trustworthiness of participants a priori . The derived confi-

dence interval is obtained by leveraging the asymptotic nor-
mality of maximum likelihood estimation and can be easily
computed from the approximated Fisher information con-
tained in participants’ reliability estimations. Evaluation
results show that the error in the estimated participant re-
liability is well bounded by the computed bound. In future
work, a tighter CRB bound can probably be derived without
knowing the truthfulness of each measured variable. This
actual CRB bound is expected to better track the actual
MSE of the estimated parameters.
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