
Representation is Everything: Towards Efficient and Adaptable

Similarity Measures for Biological Data

Charu C. Aggarwal

IBM T. J. Watson Research Center

charu@us.ibm.com

Abstract

Distance function computation is an important op-
eration in biological data mining. This is because
the notion of similarity is often required as a key
subroutine in many data mining algorithms such as
clustering, search or indexing. Furthermore, since such
applications typically require repeated distance func-
tion computation, it is desirable to perform this task
as efficiently as possible. A wide variety of alignment
functions have been designed in the literature in order
to determine similarity between biological strings. Typ-
ically, most of these methods such as the edit distance
or the Smith-Waterman algorithm rely on either a local
or global form of alignment between the two string
representations of the biological data. Yet, many of
these methods suffer from a variety of drawbacks both
in terms of effectiveness and efficiency in measuring
similarity. In this paper, we examine the key qualitative
issues in measurement of similarity among distance
functions, and question the fundamental assumptions
in using alignment measures over string representations
of the biological data. We argue that the alignment
approach is rigid and brittle, ignores several relevant
compositional characteristics of the strings, is not easily
trainable from examples, and is inherently resistant to
an efficient data mining process from a representational
point of view. We propose a fundamental overhaul in
the methods for similarity computation of biological
data by changing the underlying representation of the
data. Our proposed methodology (PROSAC) uses
PRObabilistic SAmpling for similarity Computations,
and results in a new representation of the strings at a
higher level of abstraction; yet the abstraction process
has the effect of removing the noise in the distance
measurements of precise alignment techniques. In
addition, some forms of string representation in the
PROSAC approach map to well known representational
and distance computation methods in the data mining
field, and therefore existing data mining software can be
used directly and efficiently on the new representation.

We also show that the approach is amenable to the use
of supervision for parametric determination of efficient
distance functions for particular tasks in biological
analysis.

Keywords: Biological data, distance functions

1 Introduction

One of the important and frequently encountered pro-
cedures in the mining of biological string data is that
of distance function design. This is because distance
function design remains one of the most important sub-
routines used in a variety of data mining applications.
In many cases, the final quality of the mining results are
dependent on the use of an effective distance function
to represent the distances between the different records.
For example, in a computational biology application,
many classifiers are dependent on the use of distance
functions in order to compute the distances between
records. Similarly, many classical clustering algorithms
such as k-means are inherently distance based, and may
require millions of distance computations in order to
create the segmentation of the data.

Biological data is often abstracted out into strings
composed of four bases {A, C, T, G}. In some cases,
the string representation may use the 20 amino-acids,
which can themselves be expressed in terms of the four
bases. Most known methods for measuring similarity in
biological data rely on the use of alignment measures
for similarity. Some examples of such measures are the
Needleman-Wunsch or the Smith-Waterman Algorithm
[8, 11], and their faster variants such as BLAST or
FASTA [2, 9]. These methods try to construct an
alignment of the strings by using global methods as in
[2, 8] or by local methods such as [9, 11]. In global
methods such as the Needleman-Wunch algorithm, we
attempt to construct an alignment, so that the largest
number of positions in the strings are matched. In
the case of local methods such as the Smith-Waterman
algorithm, we try to find two local regions in the strings

Data Set Composition

HS A 0.073 C 0.022 D 0.049 E 0.068
F 0.037 G 0.066 H 0.025 I 0.045
K 0.055 L 0.100 M 0.022 N 0.036
P 0.059 Q 0.045 R 0.055 S 0.078
T 0.054 V 0.064 W 0.014 Y 0.029

YST2 A 0.062 C 0.01 D 0.058 E 0.063
F 0.046 G 0.056 H 0.022 I 0.064
K 0.066 L 0.094 M 0.021 N 0.055
P 0.046 Q 0.038 R 0.043 S 0.088
T 0.059 V 0.061 W 0.012 Y 0.035

Table 1: Compositional Behavior of Two Data Sets

which are matched optimally.
The use of alignment functions for measuring sim-

ilarity in biological data finds its basis in the fact that
closely related biological entities often evolve from one
another by a sequence of mutations or other changes in
the underlying sequence structure of the data. While
this may be true for very closely related strings, such
measures become increasingly noise prone, when the
strings are more distantly related. In more distantly
related entities, the similarity may be defined by a va-
riety of factors such as both the sequence and composi-

tional behavior of the string. For example, two proteins
with very different sequence order but with similar com-
position (in terms of the underlying amino acids) can
often show similar behavior in a number of characteris-
tics. Most alignment-based similarity functions do not
take such characteristics into account. For this reason,
a number of similarity functions have been developed
which utilize the compositional behavior of the strings
[7]. However, these methods do not use the sequencing
of the string structures for computation of similarity.
Ideally, it is desirable to design a similarity function in
which both the sequencing and compositional behavior
are incorporated directly or indirectly.

We note that the user of a string similarity function
of a data mining application may have a variety of
criteria in mind for the particular application at hand.
The final quality of the results are dependent upon
these particular criteria which aredefined by the end-
user. Therefore, it is important to provide the ability to
supervise the final creation of the similarity function. In
addition, the distance function may be highly dependent
upon the aggregate statistics of a particular data set. In
order to understand this point better, let us consider the
following examples:

• Let us consider the pair of data sets denoted by
HS and YST2 which are described in better detail

in the experimental section. These data sets were
collected from the SWISS-PROT database and cor-
respond to proteins drawn from homo-sapiens and
yeast respectively. Each of the data sets contains
1000 sequences of amino acids. The details of the
data sets and the collection process are discussed in
detail in the empirical section. In Table 1, we have
illustrated the relative compositions of the different
amino acids in each of the two data sets. We note
that the compositional characteristics of the two
data sets are quite different. We further note that
the similarity between two sequences for a given
data set depends upon the normalized presence of
the amino acids relative to the entire data set. For
example, for the case of Table 1, if two sequences
contain a very high level of the amino acid A, this
should be treated differently from the situation in
which the two sequences have a high level of pres-
ence of the amino acid W. This is because the for-
mer amino-acid is plentiful in both sequences, and
a high presence in both is not very surprising from
a statistical point of view. On the other hand, the
latter amino-acid is rare in the underlying data set
and a high level of presence in both sequences im-
plies a greater level of similarity. Therefore, it is im-
portant to design similarity methods which take the
aggregate statistical behavior of the underlying data

into account. Since this aggregate statistical behav-
ior could vary with the data set, the corresponding
similarity function should vary as well. We note
that alignment methods are typically not sensitive
to the use of a particular data set. For example, the
Smith Waterman algorithm uses the BLOSUM62
matrix to encode fixed domain specific knowledge
to model intra-amino acid similarity. However, the
importance of different amino acids between differ-
ent sequences may vary with the data set, since the
contrasts in distance calculations depend upon the
overall statistical distributions of the amino-acids
for that particular data set. In many domains such
as text [10], such data-specific statistical normaliza-
tions have been extensively studied and validated
in terms of their contributions to the quality of sim-
ilarity search.

• We note that the nature of the distance calcula-
tions are often deeply dependent upon the compo-
sitional behavior of the individual amino-acids in
the sequence. For example, in a given application
such as classification, the overall classification be-
havior may depend upon a combination of composi-
tional similarity, and local or global alignment [7].
Therefore, many data mining algorithms have to
rely on a combination of different ad-hoc methods

for similarity measurement. We note that this is
because while the string representation is effective
in maintaining sequencing information, it is poor
in maintaining compositional behavior over differ-
ent parts of the strings. It is a definite advantage
to choose a representation for the string data which
is such that it encodes both sequencing and com-
positional information together with their relative
importance with the help of a few parameters. Fur-
thermore, the representation should be such that
important data mining operations (such as repre-
senting the centroid of a set of strings) should be
implementable in a form which is similar to the
original data. In many cases, this can allow the
use of existing data mining algorithms and software
with very few modifications.

• One of the drawbacks of alignment approaches is
that it requires the use of computations whose
complexity increases quadratically with string size.
Since biological strings are often extremely long,
this results in limitations in applying the approach
to computationally intensive applications on very
large data sets. Furthermore, since these distance
functions are defined algorithmically rather than in
closed form, it is intuitively more difficult to in-
corporate user-defined criteria through supervised
parametric choices.

One important issue about similarity function de-
sign is that the nature of the features which need to be
used for the purpose of the data analysis are often de-
pendent upon the particular task at hand. Some tasks
may be more amenable to global similarity, others to lo-
cal similarity, and yet others to compositional similarity.
For example, while it may be known that certain amino-
acids are more important for a given task, the relative
importance of their composition and sequencing may
vary with the task at hand. This task may be defined
only in terms of the known similarity of user-defined
examples. This known similarity can then be used in
a supervised setting in which the relative importance of
different amino acids, or the relative importance of the
global or local compositional features can be controlled
with the use of appropriate parameters. One of the dif-
ficulties with sequencing based approaches is that they
try to aim for either exact local matches [2, 9, 11] or
they aim for a global match [8] which does not preserve
local compositions very well. In reality, we are often
looking for matches which use a combination of the se-

quence and composition of the string. In many cases,
the nature of the similarity function may only be de-
fined in a supervised setting, in which a combination of
the local and global behavior may be used in order to

define the similarity function.
In this paper, we will discuss a new approach to sim-

ilarity computations in string data. The idea here is to
use probabilistic sampling at equidistant positions along
an aligned string at varying levels of granularity. Each
sample point is no longer a deterministic alphabet of the
string, but is a probabilistic alphabet depending upon
the local distributions of the alphabets from that point.
We will show that different patterns of sampling (such
as equi-depth or equi-width sampling) may be used in
order to construct representations which are more prone
to global or local similarity in strings of varying lengths.
We will also show that by varying the parameters of the
sampling process, it is possible to obtain different levels
of importance of the global, local or compositional char-
acteristics of the strings. Furthermore, some variants of
the approach allow the construction of distance func-
tions in closed form with parametric decomposability in
terms of the contributions of the local, global as well
as the individual amino-acid compositions. This is very
useful in a setting in which it is desirable to supervise
the construction of the distance function with specific
user-defined criteria or user-derived examples. This is
required in practical settings where the user may have
specific data mining tasks at hand which require differ-
ent definitions of similarity (eg. cluster segmentation
based on structure or function). We do not know of any
other similarity function in the biological domain which
can encode such problem-specific information. The re-
sulting similarity computation method is referred to as
PROSAC (PRObabilistic SAmpling for Similarity Com-
putations) and turns out to be a flexible, effective, and
efficient similarity search method in practice.

This paper is organized as follows. In section 2, we
will discuss the desiderata for effective distance function
design and introduce the PROSAC framework. We will
discuss both the PROSAC representation and the simi-
larity function constructed using this representation. In
section 4, we discuss the use of supervision for develop-
ment of similarity functions which are specific to a given
task. In section 5, we present the effectiveness and ef-
ficiency of the similarity function over a wide variety
of data sets. Finally, the conclusions and summary are
contained in section 6.

2 The PROSAC Framework for Similarity
Computations

In this section, we will discuss the PROSAC approach
for similarity computations on string based data. Before
discussing details of the similarity computations, we
will discuss the desiderata for the design of similarity
functions in biological data. The desiderata for the
effective design of similarity functions are as follows:

(1) Data Set Specific: The key characteristic of
a similarity function is to distinguish between the dif-
ferent records in the data set. For this purpose, the
aggregate statistics of the records are useful for distin-
guishing between the different features. For example, in
the text domain, the use of aggregate statistical char-
acteristics of the words are quite common for the mea-
surement of similarity. For example, in the text domain,
the cosine coefficient [10] does not treat the attributes
uniformly but normalizes uses the inverse document fre-
quency across the particular data set. In many practical
data domains such as text, categorical data and time se-
ries data [4, 10], the use of data set-specific aggregate
statistics is considered a natural choice for effective def-
inition of similarity. However, in the case of the biolog-
ical domain, this is constrained by the computational
difficulty of string-based alignment approaches to simi-
larity. In a biological application, the relative presence
of the different amino-acids for a given data set is useful
information in the computation of similarity.

(2) Interpretability, Decomposability and
Closed Form Representation: We note that a vari-
ety of factors can influence the similarity for a given data
set in the biological domain. This can include the global,
local or compositional characteristics of the string. It
is desirable to construct a closed form representation

of the similarity function which is both intuitively in-
terpretable from a probabilistic point of view, and for
which the relative importance of different factors can
be controlled with the use of a few parameters. In this
sense, alignment functions such as the Smith-Waterman
function or the Needleman-Wunsch method [8, 11] are
defined algorithmically rather than in closed form. This
makes it more difficult to control the relative impor-
tance of different factors in the similarity computation
process.

(3) Computational Efficiency: In many bio-
logical applications, the strings can have thousands of
characters over databases containing millions of records.
Furthermore, a given data mining application such as
clustering may require distance computations which
may grow faster than linearly with the number of
records. In spite of recent improvements such as FASTA
or BLAST [2, 9], the process of computing alignments
between long strings continues to be a computationally
challenging problem. This is because of the similarity
computation methods in strings which utilize dynamic
programming methods such as the edit distance. In or-
der to make the approach truly scalable to complex and
computationally intensive data mining problems with
large data sets, it is desirable to design similarity com-
putation methods which are extremely efficient in prac-
tice.

(4) Trainable: We note that the use of a particular
similarity function may depend upon the particular task
at hand. For example, if a given set of proteins need to
be clustered on the basis of function, this is a different
situation than one in which the proteins need to be clus-
tered on the basis of homology. In such cases, training

examples are often available in order to measure simi-
larity. While classification on the basis of particular cri-
teria such as structure or function has been extensively
studied using domain-specific criteria, arbitrary applica-
tions in data mining may require the explicit design of
efficiently implementable similarity functions in closed
form, which work with pre-defined user-defined criteria.
Typically, alignment based functions are more difficult
to train than parametric closed form distance functions
because of their iterative and algorithmic approach of
calculating similarity in the former. This paper will
aim to design similarity functions which are amenable
to such training.

2.1 The Density Based Sampling Approach In
this section, we will discuss the density-based sampling
approach for string similarity search. While our density
based approach derives its origin in an alignment of the
two strings, it provides a higher level of abstraction,
which improves the quality of the similarity function.
We assume that the strings are drawn from the alphabet
of size l which is defined by Σ = {σ1 . . . σl}. In order
to explain the density based sampling approach, let us
consider two sequences S1 and S2 which are currently
aligned using a hypothetical alignment based approach
H. We note that the alignment approach could either
be local or global. In the case of local alignment, only
subsequences of the original strings may be aligned. Let
us define two aligned sub-segments of S1 and S2 by S′

1

and S′
2 respectively. In the case of global alignment,

the string S1 is the same as S′
1, and the string S2 is the

same as S′
2. On the other hand, S′

1 and S′
2 are smaller

(but contiguous) segments in the case of local alignment.
Let us assume that the alphabets in the sub-strings S ′

1

and S′
2 are denoted by a1a2 . . . ap, and b1b2 . . . bq , where

ai, bi ∈ Σ.
Let us now sample k positions from the aligned

strings. We note that each of these aligned positions
could correspond to a gap, or it could correspond
to one of the alphabets from the two strings. For
example, consider the two strings MGSDKERDT and
MPASREDT. The optimal alignment for the two strings
using the edit distance is shown below:

MG-SDKERDT
MPASR-E-DT

We note that this alignment could be different depend-

ing upon the particular algorithm which is used for
alignment purposes. For example, the Smith-Waterman
algorithm or the Needleman-Wunsch Algorithm could
provide very different alignments. We will try to com-
pute the effectiveness of a particular kind of alignment
between two strings using a sampling approach on
the positions in the individual strings. The measure
of alignment between the two strings depends upon
whether a global or local approach is used for the
computation. For this purpose, we assume that certain
positions in the string are sampled at random. Let us
consider the situation in which we have an alignment
of length N between S′

1 and S′
2, and we sample the

kth position in the alignment. While the alignment
itself has a (k/N)th fraction on the left of it (including
itself), the exact alphabet drawn from the two strings
may not correspond to the (k/N)th alphabet from the
two strings. This is because of the presence of gaps
throughout the alignment. Therefore, each sampled
position needs to be represented probabilistically in
terms of the alphabets in the locality of the sampled
position. For this purpose, we use a sampling approach
which constructs a probabilistic profile of the sampled
position of the alignment. We make the weaker assump-
tion that the alphabets for the (k/N)th position of the
alignment are drawn from the locality of the (k/N)th
position in the corresponding aligned substrings S ′

1 and
S′

2. We note that we are using the aligned substrings

rather than the original strings in order to account
for the fact that the alignment may be local rather
than global. First, we assume that the probability
distribution of the (k/N)th position is computed using
a Gaussian model. For this purpose, we define the
indicator function I(σ, m, S) for a particular symbol
σ ∈ Σ and position m of string S = g1 . . . gr as follows:

I(σ, m, S) = 0 if gm 6= σ
1 if gm = σ

For the string S′
1, we define the density f(σ, m, S ′

1)
for alphabet σ at position m < p as follows:

f(σ, m, S′
1) =

q
∑

j=1

I(σ, m, S′
1)√

2 · π · h
e−||(j−m)||2/h2

(2.1)

Here h is the bandwidth of the density estimation
process. We note that the density estimation process
computes the relative density of each symbol at the
sampled position m using a gaussian kernel smoothing
criterion. The parameter h can be used to control the
level of smoothing. We note that a higher value of the
bandwidth creates a greater level of smoothing for the
density estimation process. We note that this approach

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

POSITION

D
E

N
S

IT
Y

 E
S

TI
M

A
TE

INDICATOR FN.

Density h=1

Density h=2

Density h=4

Density h=7

Figure 1: Density Estimation with Indicator Function
for different Bandwidths

is essentially a string version of non-parametric density
estimation [12] often used for quantitative data sets.
Note that the density function for a particular alphabet
is essentially a smoothed version of the indicator
function. For example, consider the string and the
corresponding indicator function for the alphabet A
below:

String: MANMQGLVERLERAVSRLESLSAESHR
PPGNCGEVNGVIAGVAPSVEA
I.Fun.: 01000000000001000000001000000000000
0000100100001

In Figure 1, we have illustrated the density esti-
mates for the corresponding string along with the
indicator function (for alphabet A). It is clear that
different values of h result in a different level of
smoothness in the estimation of the density of a given
symbol in the string. We also note that the bandwidth
h defines a locality in which the compositional behavior
of the string is more relevant than the exact sequencing
of the alphabets. The exact value of the bandwidth
h will be defined by the frequency of sampling along
different points in the string. We further note that
while this smoothing loses some sequencing information
within a locality, it is more noise-free in terms of
representing the compositional behavior within the
locality. Furthermore, the overall combination of the
density characteristics over the different alphabets
provides a comprehensive overview of the behavior of
that locality. Once the composition for a given locality
has been determined, we can use it to construct the
sampling based relative probability estimation of a
given symbol relative to the other symbols. We note
that the density estimate f(·, ·, ·) can be used in order

to construct the relative probability of the different
symbols at a given position. The relative probability
p(σ, m, S′

1) of the symbol σ at position m in string S ′
1

is defined as follows:

p(σ, m, S′
1) =

f(σ, m, S′
1)

∑

σ∈Σ f(σ, m, S′
1)

(2.2)

Thus, the relative probability is computed in terms of
the fractional density of a given symbol in relationship
with the other symbols. Next, we will discuss how
sampling is used in order to construct the probability
estimation over different data localities. In this process,
we pick certain positions in the string and calculate
the density estimates at these sample points. The
probability estimates of the different symbols at these
sampled points are used in order to construct the
similarity function between the two strings. We note
that the exact properties of the similarity function
depend upon the nature of the underlying sampling
policy and bandwidth h. The bandwidth h depends
upon the underlying sampling policy as well. The
sampling policy is defined in a way so as to generate
either a global or local match between the two strings.
The two major sampling policies which are defined are
as follows:

• Equi-depth Sampling: We note that the differ-
ent strings may have widely varying lengths. In
equi-depth sampling, the positions from the string
are sampled in such a way that an equal number of
positions are sampled from each. Therefore, the
distances between individual sample points may
vary with the string. The primary parameter for
the equi-depth sampling process is the number of
positions sampled ns. The equi-depth sampling
process is designed to compute the global match
between the two strings.

• Equi-width Sampling: In equi-width sampling,
we sample positions from the string at equal dis-
tances from one another. We note that a different
number of positions may be sampled from strings
of widely varying lengths. The primary parameter
for the equi-width sampling process is the width be-
tween successively sampled positions in the strings.
This is referred to as the sampling width sw. The
equi-width sampling process is designed to compute
a local match between the two strings since it tries
to compare the local composition of segments of
equal lengths.

We note that the process of density estimation at
the sampled positions creates a new representation of
the string which encodes the adjacency information

among the symbols in an indirect way. This is a key
factor in the creation of a similarity function which
does not require the alignment method of the string
representation. An important factor in the success of
the PROSAC approach is that the representation of the
string is transformed to a new form.

2.2 Choice of bandwidth The choice of bandwidth
is dictated by the rate of sampling. In general, the band-
width should be chosen in such a way that the a the
density at a sampled position is affected by all symbols
between it and the next sampled position, but the posi-
tions at or near the next sampled position do not affect
the corresponding density values substantially. There-
fore, a natural approach is to choose the bandwidth
equal to half the distance between two sampled posi-
tions. This choice can be used for both the equi-depth
and equi-width sampling methods.

2.3 Hierarchical Enhancements We can improve
the algorithms further by using hierarchical enhance-
ments. In these enhancements, we perform the sam-
pling in a hierarchical way in which the granularity of
the higher level sample reduces over the lower level rep-
resentation by a factor of 2. The repeated process of
hierarchical reduction of granularity can be used in con-
junction with both the global and local approach. Thus,
in the case of equi-depth sampling, the number of po-
sitions sampled are reduced by a factor of 2. In the
case of equi-width sampling, the width of the positions
sampled is increased by a factor of 2.

The sampling process is used to construct new
representations of the strings which reflects the relative
presence of the different symbols in the localities of
the sampled positions. We note that the construction
of the new string representations is a pre-processing
phase which is completed at the very beginning of
the algorithm. The new sampled representations are
used in order to design the corresponding matching
algorithms (global algorithms for the equi-depth case,
and local algorithms for the equi-width case). We will
discuss these algorithms in the next section. In order
to facilitate the discussion of these algorithms, we will
introduce some additional notations and definitions.
For the global case, since the number of positions
sampled are ns, and there are a total of l symbols, the
number of probability values stored is equal to l∗ns. We
assume that the probability of the ith sampled position
taking on the symbol σj ∈ Σ in string S′

1 is denoted
by P (i, j, S1). The notation for the local case is exactly
similar, except that in this case, the number of sampled
positions will depend upon the length of the string (and
the sampling width).

3 Matching Algorithms

In this section, we will discuss the matching algorithms
which are used for the similarity computations. We will
discuss the matching algorithms for both the global and
local case.

3.1 Global Matching Algorithm The global
matching algorithm is extremely straightforward be-
cause of the nature of the equi-depth sampling. We
note that the probability of the two ith sampled posi-
tions in the strings S1 and S2 containing the symbol σj

is given by P (i, j, S1)∗P (i, j, S2). Therefore, the proba-
bility of a match at the ith sampled position is given by
∑l

j=1 P (i, j) ∗ P (i, j). Therefore, the expected number
of matches M(S′

1, S
′
2) over all the ns positions is given

by the following:

Exp. Num. of Matches = E[M(S1, S2)] =
ns
∑

i=1

l
∑

j=1

P (i, j, S1) ∗ P (i, j, S2)

As mentioned in an earlier section, the similarity func-
tion should be tailored to the aggregate characteristics
of the data set. While, the above expression may pro-
vide the expected number of matches, it does take into
account the fact that a match on a rare amino-acid may
be more indicative of similarity than a match on a more
frequent amino-acid. A typical example of such a nor-
malization is often done in the Information-Retrieval do-
main in which we use the inverse-document frequency to
weight the importance of a given word. Therefore, we
associate the normalization factor sj with the amino-
acid j, which indicates the importance of amino-acid
j. The corresponding normalized expected number of
matches EN [M(S1, S2)] is given by the following expres-
sion:

EN [M(S1, S2)] =

ns
∑

i=1

l
∑

j=1

sj ∗ P (i, j, S′
1) ∗ P (i, j, S2)

We note that the normalization factor may be con-
structed using a variety of heuristics such as a direct
generalization of the idf-normalization used in the text
domain. In this case, the value of sj is chosen as the
inverse frequency of the relative presence of the different
symbols. In addition, it is also possible to pick the val-
ues of the normalization factor sj in a supervised way.
Such supervised techniques for picking the normaliza-
tion factor can be useful in tailoring the similarity func-
tion to a specific application. We note that this is a
specific advantage of using this kind of decomposable
technique to retain the training ability of the method.

P(1, *, S2) P(2, *, S2) P(3, *,S2) P(4, *, S2)

P(1, *, S1) P(2, *, S1) P(3, *, S1) P(4, *, S1) P(5, *, S1) P(6, *, S1)

P(1, *, S1) P(2, *, S1) P(3, *, S1) P(4, *, S1) P(5, *, S1) P(6, *, S1)

P(1, *, S1) P(2, *, S1) P(3, *, S1) P(4, *, S1) P(5, *, S1) P(6, *, S1)

P(1, *, S2) P(2, *, S2) P(3, *,S2) P(4, *, S2)

P(1, *, S2) P(2, *, S2) P(3, *,S2) P(4, *, S2)

Figure 2: Local Matching Alignment

In the experimental section, we will show the advan-
tages of using such an approach, in which we tailor the
distance function based on arbitrary criteria.

In the above description, we have used the dot prod-
uct as a natural method for similarity computations.
However, it is also possible to use other metrics such
as the sum of the differences in the density distribu-
tions of the two strings over the different symbols. This
effectively maps to the (weighted) Manhattan metric.
The distance using this Manhattan metric L1(S1, S2) is
defined as follows:

L1(S1, S2) =

ns
∑

i=1

l
∑

j=1

sj ∗ |P (i, j, S′
1) − P (i, j, S2)|

In this case, a lower value of the distance function
implies a greater level of similarity.

3.2 Local Matching Algorithm The local match-
ing algorithms are much more difficult because we need
to account for the varying number of positions at which
the matches could take place between different pairs of
strings. Therefore, we need to normalize for the num-
ber of positions. Let us assume that the two strings
which are used for matching purposes have N1 and N2

symbols in them respectively. Then, the number of sam-
pled positions in the two strings S1 and S2 are given by
n1 = [N1/sw] and n2 = [N2/sw] respectively for a sam-
pling width sw. Now, we need to deal with the tricky
issue of comparing the distributions of the two strings.

In order to compare the distributions of the two
strings, we need to use an iterative matching algorithm
between the two segments of length n1 and n2. Let
us assume without loss of generality that n1 > n2. In
order to find the optimal local match, we use an algo-
rithm in which we try to find all possible contiguous

matches between S1 and S2. In a contiguous match

we do not account for a gap between sampled posi-
tions. This is a reasonable assumption, if the gaps be-
tween successively sampled positions (and the magni-
tude of the smoothing bandwidth) is larger than the
typical gaps between alignments found by traditional
algorithms such as the Smith-Waterman or Needleman-

Wunsch algorithms. The smoothing effect of the den-
sity estimation process accounts for the gaps within a
corresponding data locality. In Figure 2, we have il-
lustrated an example of the three possible matches be-
tween the two strings of lengths 4 and 6 respectively.
In general, for two strings of length n1 and n2 which
satisfy n1 > n2, we can have n1 − n2 + 1 possible align-
ments. However, we first need to define the correspond-
ing matching function between the contiguous segments
of the strings. First, we need to define the similarity be-
tween a pair of positions in the strings. First, we define
the default probabilities for the different positions and
symbols. Let us assume that the default probabilities of
the symbol σj at the ith position for string S is denoted
by P 0(i, j, S). We note that the default probabilities
are defined using the aggregate behavior over the entire
data set. Then, for the ith position in string S1, and
kth position in string S2, the corresponding similarity
value denoted by Sim(i, k, S1, S2) is defined as follows:

Sim(i, k, S1, S2) =
l

∑

j=1

[P (i, j, S1) ∗ P (k, j, S2)] −

P 0(i, j, S1) ∗ P 0(k, j, S2)

We note that this definition for similarity is quite
similar to the global case, except that we are also
subtracting out the matching probability using the
default rates of presence of the different symbols. Such
a computational process ensures that two randomly
generated strings from the data-specific composition of
symbols will have average matching probability of zero.
Furthermore, the contribution of a given position can be
positive or negative depending upon its deviation from
expected values. This is useful in comparing the relative
similarity of different pairs of strings of differing lengths.
For each i ∈ {0 . . . n1 − n2}, the overall similarity for a
given alignment from position i to position i + n2 of
string S1 to the string S2 is given by the sum of the
corresponding similarity values over all positions:

Align(i, S1, S2) =

n2
∑

j=0

Sim(j + i, j, S1, S2)

The local similarity is the maximum similarity
over all possible such alignments, and is given by
maxiAlign(i, S1, S2). The aim of finding the maximum
similarity over all possible alignments is to ensure that
the best possible local matching is chosen for the pur-
poses of alignment.

We note that a number of variations are possible on
this basic approach with the use of density differentials
as opposed to the probabilistic estimate. The only
difference is in how Sim(i, k, S1, S2) is calculated. In

this case, we compute this differential as follows:

Sim(i, k, S1, S2) =

l
∑

j=1

[P (i, j, S1) − P (k, j, S2)] −

l
∑

j=1

√

P 0(i, j, S1) ∗ (1 − P 0(k, j, S2))

We note that the second term in the expression repre-
sents the standard deviation of a bernoulli distribution
using the default probabilities of occurrence of the dif-
ferent symbols. This second term is included in order
to normalize between alignments of varying lengths. In
this case, smaller values of the function imply greater
similarity. Correspondingly, the optimal alignment is
computed by minimizing the objective function over
all possible alignments. One observation about the lo-
cal alignment method is that it replicates a number of
features of the gap based alignment method by substi-
tuting with density-based smoothing. In other words,
the smoothing process in density estimation substitutes
for the process of finding gaps in subsets of the data
streams. As a result, it is able to compute the similar-
ity values in a fairly straightforward way by using con-
tiguous segments. As will be evident from our results
in the empirical section, such an approach is extremely
efficient and does not lead to a reduction in accuracy.

3.3 Supervision for Distance Functions In many
applications, the concept of distances may not be con-
cretely defined, but may vary with the application cri-
teria. One advantage of our approach is that it al-
lows the use of supervision in distance function design
at least in the case of global alignments. This is be-
cause the distance function can be represented in closed
form as illustrated in the aforementioned expressions
for EN [M(S1, S2)] and L1(S1, S2). In the previous sec-
tion, we have discussed that the normalization factor sj

is chosen using the inverse frequency method as in the
text domain [10]. While the normalization approach is
a natural choice in the absence of additional informa-
tion about the relationship of the different amino-acids
to the similarity values, this may not be the case in
particular applications involving protein structure and
function. In the supervised case, it is possible to train
for the values of the different parameters sj . We note
that in an arbitrary application, the aims of the user
may influence the importance of a given symbol, and
therefore the value of the parameter sj . For example,
this is useful in a clustering application in which we are
processing proteins based on particular kinds of struc-
ture or function. In such cases, it may be desirable
to use a supervision process (as discussed in [1]) in or-
der to determine the final solution. In this case, it is

Data Set Name Keywords

YST1 Yeast
YST2 Yeast
MS Mouse
HS Homo Sapiens

Table 2: Keywords used in SWISS-PROT database

assumed that we have a training data set containing
pairs of records together with the corresponding sim-
ilarity value. We construct a solution by fitting the
model parameters s1 . . . sl to these user defined similar-
ity values. A standard least squares error minimization
technique can be used for the regression, as discussed
in [1]. We note that such a technique is not possible
in the case of alignment techniques such as the Smith-
Waterman method, or the Needleman-Wunsch method.
This is because such methods cannot directly repre-
sent the similarity function in closed form in terms of
a symbol-specific set of parameters. Furthermore, the
computational intensiveness of these methods precludes
the development of practical approaches for these meth-
ods. We will illustrate a number of advantages of using
the supervised approach in the next section.

4 Empirical Results

In this section, we will discuss some experimental re-
sults illustrating the effectiveness and efficiency of the
similarity search method. We note that the problem of
measuring effectiveness of a similarity function is a dif-
ficult one, since the qualitative notion of similarity de-
pends upon the application at hand. This has generally
been an issue with many classical similarity functions
[11, 8], which are designed to encode mutation-based
distances (as the primary qualitative notion) but their
effectiveness with arbitrary notions of similarity remains
unknown. In this paper, we will study the behavior
of these objective functions with soft notions of simi-
larity which are generated from the meta-information
in the SWISS-PROT database. We use a combination
of the taxonomy and the keyword fields in the meta-
information to create a textual representation of the
salient characteristics of the protein. We note that the
combination of the taxonomy and keyword fields cre-
ate a textual description of the protein which reflects
many of its characteristics, but it does not define a
“hard” objective function witha pre-defined meaning.
This is particularly useful for testing the behavior of dif-
ferent similarity search methods. The cosine similarity
between two such textual representations was defined
as the similarity between two strings. We note that

while the notion of similarity may vary depending upon
the application, such a soft definition of similarity is
useful for determining how widely known methods such
as the Smith-Waterman and Needleman-Wunsch algo-
rithm would perform for arbitrary criteria in a variety of
applications. Furthermore, since most alignment based
methods are not easily amenable to training, such soft
testing methods expose the advantages of supervision
which is natural to our approach. For the testing pro-
cess, we will use three variants of our algorithm. These
three variants correspond to the following:

• PROSAC-G: This is the global version of the
PROSAC algorithm.In each case, the strings were
compressed to 32 positions. The smoothing band-
width was chosen using the relationship described
earlier. The actual similarity function was com-
puted using the variation on the Manhattan dis-
tance metric.

• PROSAC-L: This is the local version of the
PROSAC algorithm. In each case, the strings were
compressed by a factor of 10 (with rounding). As
in the previous case, the similarity function was
computed using the variation on the Manhattan
distance metric which was discussed in this paper.

• PROSAC-S: This is the supervised version of
the PROSAC algorithm. In this case, the global
version of the algorithm was used in conjunction
with training for the weights of the different amino-
acids. This approach is particularly useful in
tailoring the similarity function to a particular kind
of application. In this case, we used a separate
data set of 1000 records to perform the training.
This data set was not used for testing the similarity
function.

We used the Smith-Waterman and Needleman-Wunsch
algorithms as baselines in order to evaluate the effec-
tiveness of the PROSAC algorithm. For the case of
the Smith-Waterman algorithm, we used a much higher
open gap penalty than the gap extension penalty in
line with observations made by other researchers [13].
Specifically, we used the BLOSUM62 matrix in conjunc-
tion with an open gap penalty of 10 and a gap exten-
sion penalty of 0.5 as suggested in [13]. For the case
of the Needleman-Wunsch algorithm, we used an open
gap penalty of 10.

4.1 Data Sets In order to generate the data sets
for testing the algorithm we used repeated queries on
the SWISS-PROT database. A number of data sets
were generated using the keywords discussed in Table
2. Specifically, we queried the web interface of the

SWISS-PROT database using the above keywords. The
corresponding data set names are illustrated in the
same table. In each case, we only used the first 1000
entries from the data set to test the effectiveness of
the similarity computations. The only exception was
the Yeast database in which two sets of 1000 entries
were used to create the two data sets YST1 and YST2
respectively. For the case of the supervised approach,
we used the last set of 1000 entries for training purposes.
The aim of using a disjoint set of training entries was
to avoid data set-specific overtraining for the choices of
parameters in the similarity function.

4.2 Evaluation Criteria A number of evaluation
criteria were used to test the effectiveness of the different
similarity functions: (1) The first criterion was the cor-
relation between the true similarity values and the sim-
ilarity values determined using the PROSAC approach.
This correlation value ranged between 0 and 1 and was
typically very noisy. Clearly, higher values of the corre-
lation were more desirable. We will present the results
for different variations of the PROSAC approach along
with the corresponding results from alignment based
methods. (2) The second criterion was the efficiency
of the approach. In this case, we tested the running
time of the approach for different methods. Clearly, in
order for an approach to be effective in data mining
algorithms which require repeated applications of the
similarity function, it is desirable for the computational
complexity of the approach to be as low as possible. One
disadvantage of alignment based methods such as the
Smith-Waterman algorithm or the Needleman-Wunsch
algorithm are the extremely high running times because
of the dynamic programming methodology in similarity
computations. This makes it difficult to use alignment
based approaches in computationally intensive subrou-
tines of data mining algorithms.

4.3 Effectiveness Results In Figures 3, 4, 5 and
6, we have illustrated the qualitative behavior of the
similarity functions for the data sets YST1, YS2, MS,
and HS respectively. As discussed earlier, the qualita-
tive behavior of a similarity function was defined as the
correlation between the computed value (from the dif-
ferent similaryity functions) and true value (using our
soft keyword based criterion). Since some of the sim-
ilarity functions are minimization functions and oth-
ers are maximization functions, we used the modulus
of the correlation in each case. It is interesting to see
that in each case, most variations of the PROSAC ap-
proach perform better than either the Smith-Waterman
or the Needleman-Wunsch algorithms. In the case of
the HS data set (Figure 6), the relative advantage of

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

METHOD

C
O

R
R

E
LA

TI
O

N

SMITH−WATERMAN

NEEDLEMAN−WUNSCH

PROSAC−L

PROSAC−G

PROSAC−S

Figure 3: Accuracy of Different Methods (YST1)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

METHOD

C
O

R
R

E
LA

TI
O

N
SMITH−WATERMAN

NEEDLEMAN−WUNSCH

PROSAC−L

PROSAC−G

PROSAC−S

Figure 4: Accuracy of Different Methods (YST2)

0 1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

0.12

METHOD

C
O

R
R

E
LA

TI
O

N

SMITH−WATERMAN

NEEDLEMAN−WUNSCH

PROSAC−L

PROSAC−G

PROSAC−S

Figure 5: Accuracy of Different Methods (MS)

Data Smith-Wat. Need.-Wunsch PROSAC-G PROSAC-L PROSAC-S PROSAC-S
(training)

YST1 723.5 s 536.3 s 3.3 s 14.7 s 3.2 s 135.2 s
YST2 741.6 s 561.7 s 3.2 s 15.1 s 3.1 s 141.7 s
MS 1013.5 s 805.4 s 3.7 s 17.3 s 3.9 s 163.6 s
HS 1234.7 s 871.7 s 4.2 s 22.5 s 4.4 s 205.2 s

Table 3: Efficiency Results

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.05

0.1

0.15

0.2

0.25

METHOD

C
O

R
R

E
LA

TI
O

N

SMITH−WATERMAN

NEEDLEMAN−WUNSCH

PROSAC−L

PROSAC−G

PROSAC−S

Figure 6: Accuracy of Different Methods (HS)

the PROSAC approach was particularly large. The rel-
ative quality of the two alignment approaches varied
with the data set, but were almost always superseded
by the different versions of the PROSAC method. We
note that this data set contained proteins which could
often be quite distant from one another, and in many
cases, the alignments based similarity function was too
noisy to provide robust results. On the other hand, the
smoothing methodology of the PROSAC approach was
able to abstract out the similarity even in distantly re-
lated strings.

The other observation is that the global version of
the PROSAC approach is very robust in most cases,
whereas for the case of the alignment approaches, both
the global and local approaches provides comparatively
similar results. The reason for the effectiveness of the
global PROSAC approach is that while it performed a
global matching for the purposes of overall similarity
measurement, the smoothing approach helped in reduc-
ing the noise in the segment-wise local alignments. In
all cases, the supervised approach was always superior
to the other methods in terms of the quality of similar-
ity search. This is because the supervised approach was
able to isolate and use the data set specific behavior for

similarity search. The data set specific behavior was en-
coded in the varying importance of the different amino
acids, as was learned during the training phase of the
supervised approach. We note that in many data min-
ing applications, the nature of similarity may be defined
by the domain of the data. In such cases, the super-
vised approach can be very useful when training labels
are available. We note that the supervised approach
was made possible by the use of a representation which
reduces the need for a dynamic programming represen-
tation.

4.4 Efficiency Results One of the key weakness of
the different alignment methods are their high com-
putational requirements. The high computational re-
quirements of the alignment methodology can often
make them impractical for very computationally inten-
sive data mining applications. Our new representational
scheme for similarity computations is very efficient since
it uses simple distance computations akin to standard
Euclidean computations. This is key to the potential
use of this technique in applications which require large
numbers of repeated distance computations.

All results here are presented on a 1.6 GHz laptop
running the Windows XP system and with 1GB of main
memory. In Table 3, we have illustrated the running
times in seconds (over all similarity computations) for
the different data sets and methods. For the case of
the supervised approach, we have illustrated both the
distance computation and the training times. We note
that since the training process needs to be performed
only once, these running times are less critical than
those for the distance computations. The training
process is applied only once on the data set, and once
the parameters are learned, the distance computation
process can be applied repeatedly.

We note that the (distance computation) running
times for all versions of the PROSAC approach are at
least an order of magnitude better than both the align-
ment based methods. Among the different variations
of the PROSAC approach, the PROSAC-L method re-
quired the greatest amount of running time. This is

because the PROSAC-L approach required a compari-
son between different kinds of (simplified) alignments.
These simplified alignments were significantly more effi-
cient to compute than the dynamic programming meth-
ods of the Smith-Waterman and Needleman Wunsch
method. In the case of the PROSAC approach, straight-
forward additive distance computations need to be per-
formed on a compressed density representation of the
string. This results in improved efficiency. The im-
proved efficiency is critical for the use of the approach
in data mining algorithms such as clustering which may
require millions of such computations in one applica-
tion of the method. In such cases, the alignment based
methodologies become impractical because of the large
running times. Furthermore, the global variation of the
PROSAC approach provides a quantitative representa-
tion of fixed dimensionality on which most current data
mining algorithms can be applied. This is because most
operations of classical clustering algorithms such as av-
eraging or centroid determination can be easily defined
on the fixed dimensionality quantitative representation.
This obviates the need to re-design different kinds of
data mining applications on biological data. The good
qualitative results of similarity functions defined the
PROSAC approach make it likely that such similarity-
driven applications can be used effectively while retain-
ing substantial advantages in computational efficiency.
In future work, we will investigate the use of such den-
sity based string representations on a variety of classical
data mining algorithms.

5 Conclusions and Summary

The problem of distance function design has been exten-
sively studied in the biological domain because of its ap-
plicability to a wide variety of problems. In spite of the
large amount of research on the topic alignment-based
methods rely on fixed definitions of similarity, and are
often not very useful for arbitrary applications in which
the similarity criterion may vary with the application at
hand. In this paper, we discussed the importance of a
string representation in the measurement of similarity.
We showed that density based approaches can be used
in order to create similarity functions which are effective
for both local and global matching over arbitrary sim-
ilarity functions. Furthermore, representational trans-
formations can make the similarity computation process
very efficient. This is particularly useful in many data
mining applications such as clustering in which the sim-
ilarity function may be computed millions of times over
different pairs of strings. Furthermore, some of the sim-
ilarity functions from this approach can be expressed in
closed form. Such a closed form expression is naturally
amenable to developing a parameter based supervised

approach which is not easily possible with non-closed
form similarity functions such as alignment based meth-
ods. Such supervision based approaches are particularly
useful for a variety of arbitrary applications in which the
particular structure or function being measured depend
upon the application at hand. Our results show that the
PROSAC approach can retain its effectiveness in both
the supervised and unsupervised case, and is also signif-
icantly more efficient from a computational perspective.

References

[1] C. C. Aggarwal, Towards Systematic Design of Dis-

tance Functions for Data Mining Applications, ACM
KDD Conference, (2003), pp. 9–19.

[2] S. F. Altschul, W. Gisha, W. Millerb, E. W. Meyersc
and D. J. Lipman, Basic Local Alignment Search Tool,
Journal of Molecular Biology, 215(3), (1990), pp. 403–
410.

[3] S. F. Altschul, T. Madden, A. Schaffer, J. Zhang,
Z. Zhang, W. Miller, and D. Lipman, Gapped Blast

and Psi-BLAST: A new generation of database search

programs, Nucleic Acids Research, 25(17), (1997), pp.
3389–3402.

[4] G. Das, and H. Mannila, Context-Based Similarity

Measures for Categorical Databases, PDKK Confer-
ence, (2000), pp. 201–210.

[5] J. Foote, A Similarity Measure for Automatic Audio

Classification, AAI 1997 Spring Symposium on Intel-
ligent Integration and Use of Text, Image, Video, and
Audio Corpora, (1997).

[6] D. Gunopulos, and G. Das, Time Series Similarity

Measures and Time Series Indexing, ACM SIGMOD
Conference, (2001).

[7] J. Gracy, and P. Argos, Automated protein sequence

database classification. I. Integration of compositional

similarity search, local similarity search, and multiple

sequence alignment, Bioinformatics, 14(2), (1998), pp.
164–173.

[8] S. Needleman, and C. Wunsch, A general method

applicable to the search for similarities in the amino-

acid sequences of two proteins, Journal of Molecular
Biology, 48 (1970), pp. 443–453.

[9] W. R. Pearson, and D. J. Lipman, Improved Tools

for Biological Sequence Comparison, Proc. Natl. Acad.
Sci., 85 (1988), pp. 2444-2448.

[10] G. Salton, and M. J. McGill, Introduction to Mod-

ern Information Retrieval, McGraw Hill, New York,
(1983).

[11] T. F. Smith, and M. S. Waterman, Identification of

Common Molecular Subsequences, Journal of Molecu-
lar Biology, 147, (1981), pp. 195–197.

[12] B. W. Silverman, Density Estimation for Statistics and

Data Analysis, Chapman and Hall, (1986).
[13] http://www.cbi.pku.edu.cn/tools/EMBOSS/water.html

