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ABSTRACT
The method of reservoir based sampling is often used to pick
an unbiased sample from a data stream. A large portion of
the unbiased sample may become less relevant over time be-
cause of evolution. An analytical or mining task (eg. query
estimation) which is specific to only the sample points from
a recent time-horizon may provide a very inaccurate result.
This is because the size of the relevant sample reduces with
the horizon itself. On the other hand, this is precisely the
most important case for data stream algorithms, since recent
history is frequently analyzed. In such cases, we show that
an effective solution is to bias the sample with the use of
temporal bias functions. The maintenance of such a sample
is non-trivial, since it needs to be dynamically maintained,
without knowing the total number of points in advance. We
prove some interesting theoretical properties of a large class
of memory-less bias functions, which allow for an efficient
implementation of the sampling algorithm. We also show
that the inclusion of bias in the sampling process introduces
a maximum requirement on the reservoir size. This is a nice
property since it shows that it may often be possible to
maintain the maximum relevant sample with limited storage
requirements. We not only illustrate the advantages of the
method for the problem of query estimation, but also show
that the approach has applicability to broader data mining
problems such as evolution analysis and classification.

1. INTRODUCTION
In recent years, the problem of synopsis maintenance [3, 7,
8, 11, 12, 13, 14, 16, 17] has been studied in great detail
because of its application to problems such as query estima-
tion [4, 8, 17] in data streams. Many synopsis methods such
as sampling, wavelets, histograms and sketches [2, 9, 10, 11,
15] are designed for use with specific applications such as
approximate query answering. A comprehensive survey of
stream synopsis construction algorithms may be found in [2].
An important class of stream synopsis construction methods
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is that of reservoir sampling [16]. The method of sampling
has great appeal because it generates a sample of the origi-
nal multi-dimensional data representation. Therefore, it can
be used with arbitrary data mining applications with little
changes to the underlying methods and algorithms.

In the case of a fixed data set of known size N , it is triv-
ial to construct a sample of size n, since all points have an
inclusion probability of n/N . However, a data stream is
a continuous process, and it is not known in advance how
many points may elapse before an analyst may need to use a
representative sample. In other words, the base data size N
is not known in advance. Therefore, one needs to maintain
a dynamic sample or reservoir, which reflects the current
history in an unbiased way. The reservoir is maintained
by probabilistic insertions and deletions on arrival of new
stream points. We note that as the length of the stream
increases, an unbiased sample contains a larger and larger
fraction of points from the distant history of the stream. In
reservoir sampling, this is also reflected by the fact that the
probability of successive insertion of new points reduces with
progression of the stream [16]. A completely unbiased sam-
ple is often undesirable from an application point of view,
since the data stream may evolve, and the vast majority of
the points in the sample may represent the stale history of
the stream. For example, if an application is queried for the
statistics for the past hour of stream arrivals, then for a data
stream which has been running over one year, only about
0.01% of an unbiased sample may be relevant. The impo-
sition of range selectivity or other constraints on the query
will reduce the relevant estimated sample further. In many
cases, this may return a null or wildly inaccurate result. In
general, this also means that the quality of the result for the
same query will only degrade with progression of the stream,
as a smaller and smaller portion of the sample remains rel-
evant with time. This is also the most important case for
stream analytics, since the same query over recent behavior
may be repeatedly used with progression of the stream. This
point has been noted in the context of the design of expo-
nential histograms and other methods for tracking decaying
stream statistics [5, 6], though these methods are not appli-
cable to the general problem of drawing a biased reservoir
from the data stream.

One solution is to use a sliding window approach for re-
stricting the horizon of the sample [3]. However, the use
of a pure sliding window to pick a sample of the immedi-



ately preceding points may represent another extreme and
rather unstable solution. This is because one may not wish
to completely lose the entire history of past stream data.
While analytical techniques such as query estimation may
be performed more frequently for recent time horizons, dis-
tant historical behavior may also be queried periodically.
We show that a practical solution is to use a temporal bias
function in order to regulate the choice of the stream sam-
ple. Such a solution helps in cases where it is desirable to
obtain both biased and unbiased results. For example, in
some data mining applications, it may be desirable to bias
the result to represent more recent behavior of the stream
[1]. In other applications such as query estimation, while it
may be desirable to obtain unbiased query results, it is more
critical and challenging to obtain accurate results for queries
over recent horizons. We will see that the biased sampling
method allows us to achieve both goals. We will derive the
following set of results:

• In general, it is non-trivial to extend reservoir mainte-
nance algorithms to the biased case. In fact, it is an
open problem to determine whether reservoir mainte-
nance can be achieved in one-pass with arbitrary bias
functions. However, we theoretically show that in the
case of an important class of memory-less bias func-
tions (exponential bias functions), the reservoir main-
tenance algorithm reduces to a form which is simple
to implement in a one-pass approach.

• The inclusion of a bias function imposes a maximum
requirement on the sample size. Any sample satisfying
the bias requirements will not have size larger than a
function of N . This function of N defines a maximum
requirement on the reservoir size which is significantly
less than N . In the case of the memory-less bias func-
tions, we will show that this maximum sample size is
independent of N and is therefore bounded above by a
constant even for an infinitely long data stream. This
is a nice property, since it means that the maximum
relevant sample may be maintained in main memory
in many practical scenarios.

• We will theoretically analyze the accuracy of the ap-
proach on the problem of query estimation. This will
clarify the advantages of the biased sampling approach.

• In the experimental section, we will not only illustrate
the advantages of the method for the problem of query
estimation, but also show that the approach has ap-
plicability to broader data mining problems such as
classification.

This paper is organized as follows. In the next section, we
will discuss the concept of maximum reservoir requirements,
and present a simple maintenance algorithm for memory-
less functions. In section 3, we will extend this method to
the space constrained case. The analysis of the method for
query estimation is presented in section 4. The algorithm is
experimentally tested for the query estimation and classifi-
cation problems in section 5. The conclusions and summary
are presented in section 6.

2. STREAM EVOLUTION AND RESERVOIR
REQUIREMENTS

Before discussing our biased sampling method, we will intro-
duce the simple reservoir maintenance algorithm discussed
in [16]. In this method, we continuously maintain a reser-
voir of size n from the data stream. The first n points in
the data stream are added to the reservoir for initializa-
tion. Subsequently, when the (t + 1)-th point from the data
stream is received, it is added to the reservoir with probabil-
ity n/(t+1). This point replaces a randomly chosen point in
the reservoir. We note that the probability value n/(t + 1)
reduces with stream progression. The reservoir maintenance
algorithm satisfies the following property:

Property 2.1. After t points in the data stream have
been processed, the probability of any point in the stream
belonging to the sample of size n is equal to n/t.

The proof that this sampling approach maintains the unbi-
ased character of the reservoir is straightforward, and uses
induction on t. After the (t + 1)-th point is processed, its
probability of being included in the reservoir is n/(t + 1).
The probability of any of the last t points being included
in the reservoir is defined by the sum of the probabilities
of inclusion together with the event of the (t + 1)-th point
being added (or not) to the reservoir. By using this rela-
tionship in conjunction with the inductive assumption, the
corresponding result can also be proved for the first t points.

One interesting characteristic of this maintenance algorithm
is that it is extremely efficient to implement in practice.
When new points in the stream arrive, we only need to de-
cide whether or not to insert into the current sample array
which represents the reservoir. The sample array can then
be overwritten at a random position. Next, we will define
the biased formulation of the sampling problem.

The bias function associated with the r-th data point at
the time of arrival of the t-th point (r ≤ t) is given by
f(r, t) and is related to the probability p(r, t) of the r-th
point belonging to the reservoir at the time of arrival of
the t-th point. Specifically, p(r, t) is proportional to f(r, t).
The function f(r, t) is monotonically decreasing with t (for
fixed r) and monotonically increasing with r (for fixed t).
Therefore, the use of a bias function ensures that recent
points have higher probability of being represented in the
sample reservoir. Next, we define the concept of a bias-
sensitive sample S(t), which is defined by the bias function
f(r, t).

Definition 2.1. Let f(r, t) be the bias function for the
r-th point at the arrival of the t-th point. A biased sample
S(t) at the time of arrival of the t-th point in the stream is
defined as a sample such that the relative probability p(r, t)
of the r-th point belonging to the sample S(t) (of size n) is
proportional to f(r, t).

We note that for the case of general functions f(r, t), it is
an open problem to determine if maintenance algorithms
can be implemented in one pass. In the case of unbiased



maintenance algorithms, we only need to perform a single
insertion and deletion operation periodically on the reser-
voir. However, in the case of arbitrary functions, the en-
tire set of points within the current sample may need to
re-distributed in order to reflect the changes in the function
f(r, t) over different values of t. For a sample S(t) this re-
quires Ω(|S(t)|) = Ω(n) operations, for every point in the
stream irrespective of whether or not insertions are made.
For modestly large sample sizes n, this can be fairly ineffi-
cient in practice. Furthermore, the re-distribution process is
unlikely to maintain a constant size for the reservoir during
stream progression.

In this paper, we will leverage and exploit some interesting
properties of a class of memory-less bias functions. The
exponential bias function is defined as follows:

f(r, t) = e−λ(t−r) (1)

The parameter λ defines the bias rate and typically lies in
the range [0, 1] with very small values. In general, this pa-
rameter λ is chosen in an application specific way, and is
expressed in terms of the inverse of the number of data
points after which the (relative) probability of inclusion in
the reservoir reduces by factor of 1/e. A choice of λ = 0
represents the unbiased case. The exponential bias function
defines the class of memory-less functions in which the fu-
ture probability of retaining a current point in the reservoir
is independent of its past history or arrival time. While
biased reservoir sampling is non-trivial and may not be effi-
ciently implementable in the general case, we will show that
this class of memory-less functions have some interesting
properties which allow an extremely simple and efficient im-
plementation. First, we will examine the issue of reservoir
requirements both for general bias functions as well as the
exponential function.

In the case of traditional unbiased sampling, one may main-
tain a sample as large as the entire stream itself. This is not
possible in a practical setting, because of the high volume of
the data stream. However, in the case of biased sampling,
the introduction of bias results in some upper bounds on the
maximum necessary sample size. Since p(r, t) is proportional
to f(r, t), the following is true for some constant C:

p(r, t) = C · f(r, t) ∀r = {1 . . . t} (2)

Let Xi be the (binary) indicator variable representing whether
or not the point i is included in the reservoir sample after the
arrival of data point t. Then, the expected sample size S(t)
is defined as the sum of the expected values of the indicator
variables.

E[|S(t)|] =
t∑

i=1

E[Xi] =
t∑

i=1

p(i, t) (3)

= C ·

t∑

i=1

f(i, t) (4)

Since we are examining only those sampling policies which
maintain the constant size n of the sample, the value of |S(t)|
will always be deterministically equal to n. Therefore, we
have:

n = C ·
t∑

i=1

f(i, t) (5)

We can derive an expression for C from the above relation-
ship. By using this expression for C, we can derive the
expression for p(r, t).

p(r, t) = n · f(r, t)/(

t∑

i=1

f(i, t)) (6)

Since p(r, t) is a probability, we have:

p(r, t) ≤ 1 ∀r ∈ {1 . . . t} (7)

By substituting the value of p(r, t), we get:

n · f(r, t)/(
t∑

i=1

f(i, t)) ≤ 1 ∀r ∈ {1 . . . t} (8)

n ≤ (
t∑

i=1

f(i, t))/f(r, t) (9)

Since the function f(r, t) is monotonically increasing with r,
the tightest possible bound is obtained by choosing r = t.
Therefore, we have:

n ≤
t∑

i=1

f(i, t)/f(t, t) (10)

The above relationship represents the maximum reservoir
requirement at the time of arrival of the t-th point. Note
that each of the t terms in the right hand side of above
expression is at most 1, and therefore the maximum reservoir
requirement in a biased sample is often significantly less than
the number of points in the stream. We summarize the
requirement as follows:

Theorem 2.1. The maximum reservoir requirement R(t)
for a random sample from a stream of length t which satisfies
the bias function f(r, t) is given by:

R(t) ≤

t∑

i=1

f(i, t)/f(t, t) (11)

For the particular case of the exponential function with pa-
rameter λ, we can derive the following result:

Lemma 2.1. The maximum reservoir requirement R(t) for
a random sample from a stream of length t which satisfies
the exponential bias function f(r, t) = e−λ(t−r) is given by:

R(t) ≤ (1 − e−λt)/(1 − e−λ) (12)

Proof. We instantiate the result of Theorem 2.1 to the
case of an exponential bias function. Therefore, we have:

R(t) ≤
t∑

i=1

e−λ(i−1) (13)

= (1 − e−λt)/(1 − e−λ) (14)

We note that the above constraint on the reservoir require-
ment is bounded above the constant 1/(1−e−λ) irrespective



of the length of the stream t. Furthermore, for a long stream,
this bound is tight since we have:

limt⇒∞R(t) ≤ limt⇒∞(1 − e−λt)/(1 − e−λ) (15)

= 1/(1 − e−λ) (16)

We summarize this result as follows:

Corollary 2.1. The maximum reservoir requirement R(t)
for a random sample from a stream of length t which satisfies
the exponential bias function f(r, t) = e−λ(t−r) is bounded
above by the constant 1/(1 − e−λ).

We note that the parameter λ is expressed in terms of the in-
verse of the number of data points after which the probabil-
ity reduces by factor of 1/e. In most stable applications, we
assume that the function reduces slowly over several thou-
sands of points. Since this is also the most interesting case
with the highest reservoir requirements, we assume that λ
is much smaller than 1. Therefore, we can approximate
e−λ ≈ 1 − λ. Therefore, we have the following approxima-
tion:

Approximation 2.1. The maximum reservoir requirement
R(t) for a random sample from a stream of length t which

satisfies the exponential bias function f(r, t) = e−λ(t−r) is
approximately bounded above by the constant 1/λ.

When the value of 1/λ is much smaller than the space con-
straints of the sampling algorithm, it is possible to hold the
entire relevant sample within the required space constraints.
This is a nice property, since we are then assured of the most
robust sample satisfying that bias function. We propose the
following algorithm to achieve this goal.

Algorithm 2.1. We start off with an empty reservoir
with capacity n = [1/λ], and use the following replacement
policy to gradually fill up the reservoir. Let us assume that
at the time of (just before) the arrival of the t-th point, the
fraction of the reservoir filled is F (t) ∈ [0, 1]. When the
(t + 1)-th point arrives. we deterministically add it to the
reservoir. However, we do not necessarily delete one of the
old points in the reservoir. We flip a coin with success prob-
ability F (t). In the event of a success, we randomly pick one
of the old points in the reservoir, and replace its position in
the sample array by the incoming (t + 1)-th point. In the
event of a failure, we do not delete any of old points and
simply add the (t+1)-th point to the reservoir. In the latter
case, the number of points in the reservoir (current sample
size) increases by 1.

One observation about this policy is that it is extremely
simple to implement in practice, and is no more difficult to
implement than the unbiased policy. Another interesting
observation is that the insertion and deletion policies are
parameter free, and are exactly the same across all choices
of the bias parameter λ. The only difference is in the choice
of the reservoir size. Therefore, assuming that the policy
of Algorithm 2.1 does indeed achieve exponential bias with
parameter λ (we prove this slightly later), we observe the
following:

Observation 2.1. The replacement policy of Algorithm
2.1, when implemented across different reservoir sizes, re-
sults in an exponential bias of sampling, and the parameter
of this bias is decided by the reservoir size.

In practice, the reservoir size should be chosen on the basis
of the application specific parameter λ, and not the other
way around. We note that because of the dependence of
ejections on the value of F (t), the reservoir fills up rapidly at
first. As the value of F (t) approaches 1, further additions to
the reservoir slow down. When the reservoir is completely
full, we have a deterministic insertion policy along with a
deletion policy which is equivalent to that of equi-probability
sampling. It remains to show that the above replacement
policy results in a dynamic sample of size n which always
satisfies the exponential bias behavior with parameter λ =
1/n.

Theorem 2.2. When Algorithm 2.1 is applied, the prob-
ability of the r-th point in the stream at time t being included
in a reservoir of maximum size n is approximately equal to
f(r, t) = e−(t−r)/n = e−λ(t−r).

Proof. We note that in Algorithm 2.1, we first flip a coin
with success probability F (t) and in the event of a success,
we eject any of the n · F (t) points in reservoir with equal
probability of 1/(n · F (t)). Therefore, the probability of
a point in the reservoir being ejected in a given iteration is
F (t)·(1/(n·F (t))) = 1/n. Since insertions are deterministic,
the r-th point in the reservoir remains at time t, if it does
not get ejected in t − r iterations. The probability of this
is (1 − 1/n)t−r = ((1 − 1/n)n)(t−r)/n. For large values of
n, the inner (1− 1/n)n term is approximately equal to 1/e.
On substitution, the result follows.

3. SAMPLING WITH STRONG SPACE CON-
STRAINTS

The algorithm in the previous section discussed the case
when the available space exceeds the maximum reservoir
requirements 1/λ. What happens when the space is con-
strained, and the available reservoir size is less than this
value? This can happen in very fast data streams in which
even a small fraction of the stream can greatly exceed main
memory limitations, or in the case when there are thousands
of independent streams, and the amount of space allocated
for each is relatively small. Such cases are also the most
important scenarios in real applications. We will show that
with some subtle changes to Algorithm 2.1, it is possible to
handle the case when the space availability is significantly
less than the reservoir requirement. We note that in the
case of Algorithm 2.1, the insertion policy is deterministic,
and therefore the corresponding insertion probability pin is
effectively 1. By reducing this insertion probability pin, it
is possible to store a sample with the same bias function
within a smaller reservoir. As we will discuss later, we will
pick the value of pin depending upon application specific
parameters λ and n. We propose the following modified
version of Algorithm 2.1:

Algorithm 3.1. We start off with an empty reservoir
with capacity n = pin/λ, and use the following replacement



policy to gradually fill up the reservoir. Let us assume that
at the time of (just before) the arrival of the t-th point, the
fraction of the reservoir filled is F (t) ∈ [0, 1]. When the
(t+1)-th point arrives. we add it to the reservoir with inser-
tion probability pin. However, we do not necessarily delete
one of the old points in the reservoir. We flip a coin with
success probability F (t). In the event of a success, we ran-
domly pick one of the points in the reservoir, and replace its
position in the sample array by the incoming (t+1)-th point.
In the event of a failure, we do not delete any of old points
and simply add the (t + 1)-th point to the reservoir. In the
latter case, the number of points in the reservoir (current
sample size) increases by 1.

We note that this modified algorithm has a lower insertion
probability, and a corresponding reduced reservoir require-
ment. In this case, the value of λ and n are decided by
application specific constraints, and the value of pin is set
to n · λ. We show that the sample from the modified algo-
rithm shows the same bias distribution, but with a reduced
reservoir size.

Theorem 3.1. When Algorithm 3.1 is applied, the prob-
ability of the r-th point in the stream at time t being included
in a reservoir of maximum size n is approximately equal to
pin · f(r, t) = pin · e−(t−r)·pin/n = pin · e−λ(t−r).

Proof. A point is inserted into the reservoir with prob-
ability pin at the r-th iteration. Then in each of the next
(t−r) iterations, this point may be ejected or retained. The
point is retained if either no insertion is made (probability
(1 − pin)), or if an insertion is made, but an ejection does
not take place (probability pin · (1 − 1/n)). The sum of
the probabilities of these two disjoint events is 1 − pin/n.
Therefore, the probability that the r-th point is (first in-
serted and then) retained after the t-th iteration is equal to

pin · (1 − pin/n)(t−r) = pin · ((1 − pin/n)n/pin)pin·(t−r)/n.

For large values of n/pin, the inner (1 − pin/n)n/pin term
is approximately equal to 1/e. On substitution, the result
follows.

One subtle difference between the results of Theorems 2.2
and 3.1 is that while the sampling probabilities maintain
their proportional behavior to f(r, t) in accordance with Def-
inition 2.1, we have an added proportionality factor pin to
represent the fact that not all points that could be included
in the reservoir do end up being included because of space
constraints.

Since the concept of reservoir based sampling is premised on
its dynamic use during the collection process, we would like
to always have a reservoir which is as much filled to capac-
ity as possible. We note that the start up phase of filling
the reservoir to capacity can take a while, especially for low
choices of the insertion probability pr. Any data mining or
database operation during this initial phase would need to
use the (smaller) unfilled reservoir. While the unfilled reser-
voir does satisfy the bias requirements of Definition 2.1, it
provides a smaller sample size than necessary. Therefore,
we will examine the theoretical nature of this initial behav-
ior, and propose a simple solution to speed up the process

of filling up the reservoir. The following result quantifies
the number of points to be processed in order to fill up the
reservoir.

Theorem 3.2. The expected number of points in the stream
to be processed before filling up the reservoir completely is
O(n · log(n)/pin).

Proof. Let q be the current number of points in the
reservoir. The probability of adding a point to the reservoir
is pin·(n−q)/n. Then, the expected number of stream points
to be processed to add the next point to the reservoir is
n/(pin·(n−q)). Then, the total expected number of points to
be processed is

∑n−1
q=0 n/(pin ·(n−q)) = (n/pin)·

∑n
q=1(1/q).

This is approximately equal to O(n · log(n)/pin).

On examining the proof of the above theorem in detail, it is
easy to see that most of the processing is incurred in filling
up the last few points of the reservoir. In fact, a minor
modification of the above proof shows that in order to fill
up the reservoir to a fraction f , the number of points to be
processed are linear in reservoir size.

Corollary 3.1. The expected number of points in the
stream to be processed before filling up the reservoir to a
target fraction f is at most O(n · log(1/f)/pin).

This is a nice property, since it shows that a processing phase
which is linear in reservoir size can fill the reservoir size to a
pre-defined fraction. Nevertheless, the number of points to
be processed are still inversely related to pin. The value of
1/pin can be rather large in space constrained applications,
and this will result in a sub-optimally full reservoir for a
long initial period. How do we solve this problem?

The reservoir size is proportional to the insertion probability
pin for fixed λ. When the reservoir is relatively empty, we do
not need to use a reservoir within the memory constraints.
Rather, we can use a larger value of pin, and “pretend” that
we have a fictitious reservoir of size pin/λ available. Note
that the value of F (t) is computed with respect to the size
of this fictitious reservoir. As soon as this fictitious reservoir
is full to the extent of the (true) space limitations, we eject
a certain percentage of the points, reduce the value of pin

to p′

in and proceed. The key issue is that we are mixing
the points from two different replacement policies. Would
the mixed set continue to satisfy the conditions of Definition
2.1?

Note that Theorem 3.1 has sample bias probabilities propor-
tional to pin · f(r, t), and the varying value of pin needs to
be accounted for while mixing the points from two different
policies. In order to account for the varying value of pin, we
eject a fraction 1 − p′

in/pin of the points from the reservoir
at the time of reducing the insertion probability from pin

to p′

in. This ensures that proportionality to p′

in · f(r, t) is
maintained by all points in the reservoir even after mixing.
This establishes the following result:

Theorem 3.3. If we apply Algorithm 3.1 for any number
of iterations with parameters pin and λ, eject a fraction 1−



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
R

A
C

T
IO

N
A

L 
R

E
S

E
R

V
O

IR
 U

T
IL

IZ
A

T
IO

N

PROGRESSION OF STREAM (POINTS)

VARIABLE RESERVOIR SAMPLING
FIXED RESERVOIR SAMPLING

Figure 1: Effects of using variable reservoir sampling

(p′

in/pin) of the points, and then apply Algorithm 3.1 for any
number of iterations with parameters p′

t and λ, the resulting
set of points satisfies the conditions of Definition 2.1 with
f(r, t) = e−λ(t−r).

This suggests a natural algorithm for quickly building the
reservoir and maintaining it at near full capacity. Let us
assume that the total space availability is nmax. We start
off with pin = 1, and add points to the reservoir using Al-
gorithm 3.1, until the space limitation nmax of the (true)
reservoir size is reached. We multiply the value of pin by a
given fraction (say 1−q), and eject a fraction q of the points.
We note that the exact choice of reduction factor does not
affect the correctness of the method because of Theorem 3.3.
Then we continue the process of adding points to the reser-
voir according to Algorithm 3.1. We repeat with the process
of successively adding points to the reservoir and reducing
pin until the value of the insertion probability is equal to
the target probability of nmax · λ. In the last iteration, the
value of pin may be reduced by less than the usual rate since
we do not wish to reduce pin to below nmax · λ. A particu-
larly useful choice of parameters is to pick q = 1/nmax, and
eject exactly one point in each such phase. This ensures
that the reservoir is almost full most of the time, and even
in the worst case at most one point is missing. By using this
approach, the reservoir can be filled at the rate of pin = 1
for the first time, and subsequently maintained at almost
full capacity thereafter. We will refer to this technique as
variable reservoir sampling to illustrate the variable size of
the fictitious reservoir over time. We will refer to our earlier
strategy of using only the true reservoir as fixed reservoir
sampling. We note that there is no theoretical difference
between the two methods in terms of the probabilistic dis-
tribution of the sampled reservoir. The real difference is in
terms of the startup times to fill the reservoir.

In order to illustrate the advantage of the variable reservoir
sampling scheme, we tested it on the network intrusion data
stream which is described later in the experimental section.
We used a true reservoir size nmax = 1000 and λ = 10−5. At
each filling of the reservoir, pin was reduced by 1/nmax so
that exactly one slot in the reservoir was empty. The results
are illustrated in Figure 1. The X-axis shows the progression

of the stream in terms of the number of points and the Y -
axis shows the percentage of fullness of the (true) reservoir
size. An immediate observation is that the variable reservoir
sampling scheme is able to fill the 1000-point reservoir to ca-
pacity after processing only 1001 data points. Subsequently,
the reservoir is maintained at full capacity. On the other
hand, the fixed reservoir sampling scheme contains only 14
points after processing 1000 points in the data stream. After
processing 10,000 points (right end of chart), the reservoir
in the fixed sampling scheme contains only 66 points. We
have not shown the chart beyond 10,000 points in order to
retain the clarity of both curves1 in Figure 1. We briefly
mention the behavior of the fixed scheme outside this range.
After 100,000 points have been processed, the reservoir still
contains only 634 data points. In fact, even after processing
the entire stream of 494020 points, the reservoir is still not
full and contains 986 data points. We note that the variable
scheme provides larger samples in the initial phase of pro-
cessing. Clearly, for samples with the same distribution, a
larger reservoir utilization provides more robust results.

4. APPLICATION TO QUERY SELECTIV-
ITY ESTIMATION

In this section, we discuss how this technique may be used
for query estimation. Let us consider a query which com-
putes a linear function of the points X1 . . . Xt in the stream.
Let us assume that the function that we wish to compute is
given by the following expression:

G(t) =

t∑

i=1

ci · h(Xi) (17)

The above relationship represents a simple linearly separable
function of the underlying data values. We note that the
count , and sum queries are specific instantiations of the
above expression. For the case of the count function, we
have h(Xi) = 1, ci = 1 and for the case of the sum function,
we have h(Xi) = Xi, ci = 1. We note that by using different
choices of h(Xi), it is possible to perform different kinds of
queries. For example, one may choose h(Xi) to be 1 or
0, depending upon whether or not it lies in a range (range
query). In many scenarios, it may be desirable to perform
the query only over the recent history of the data stream.
In such cases, one may choose h(Xi) to be 1 or 0 depending
upon whether or not it lies in a user-defined horizon. Let
us define the indicator function Ir,t to be 1 or 0, depending
upon whether or not the r-th point is included in the sample
reservoir at the t-th iteration. Now, let us define the random
variable H(t) as follows:

H(t) =
t∑

r=1

(Ir,t · cr · h(Xr))/p(r, t) (18)

We make the following observation about the relationship
between G(t) and the expected value of the random variable
H(t).

Observation 4.1. E[H(t)] = G(t)

1By extending the chart to the full stream of almost half a
million points, the curve for the variable scheme practically
overlaps with the Y-axis, whereas the reservoir in the fixed
scheme still contains only 986 points.



This observation is easy to prove by taking the expected
value of both sides in Equation 18, and observing that E[Ir,t] =
p(r, t). The relationship of Equation 18 provides a natural
way to estimate G(t) by instantiating the indicator function
in Equation 18.

Let us assume that the points in sample of size n were ob-
tained at iterations i1 . . . in at the t-th iteration. Then, the
probability that the point ik is included in the sample is
given by p(ik, t). Then, by using the expression in Equa-
tion 18, it follows that the realized value of H(t) for this
particular sample is equal to

∑n
q=1 ciq ·h(Xiq )/p(iq, t). This

realized value of H(t) can be estimated as the expected value
of H(t), and is therefore also an estimation for G(t). The
error of the estimation can be estimated as V ar(H(t)) which
denotes the variance of the random variable H(t).

Lemma 4.1. V ar[H(t)] =
∑t

r=1 K(r, t)

where K(r, t) = c2
r · h(Xr)

2 · (1/p(r, t) − 1)

Proof. From Equation 18, we get:

V ar[H(t)] = V ar[

t∑

r=1

(Ir,t · cr · h(Xr))/p(r, t)] (19)

By using independence of different values of Ir,t, we can
decompose the variance of sum on the right hand side into
the sum of variances. At the same time, we can bring the
constants out of the expression. Therefore, we have:

V ar[H(t)] =

t∑

r=1

(c2
r · h(Xr)

2)/p(r, t)2 · V ar[Ir,t] (20)

Now, we note that the indicator function I(r, t) is a bernoulli
random variable with probability p(r, t). The variance of
this bernoulli random variable is given by V ar[Ir,t] = p(r, t)·
(1−p(r, t)). By substituting for V ar[I(r, t)] in Equation 20,
we obtain the desired result.

The key observation here is that the value of K(r, t) is dom-
inated by the behavior of 1/p(r, t) which is relatively small
for larger values of r. However, for recent horizon queries,
the value of cr is 0 for smaller values of r. This reduces the
overall error for recent horizon queries.

We note that the above-mentioned example of query esti-
mation is not the only application of the biased sampling
approach. The technique can be used for any data mining
approach which uses sampling in conjunction with the grad-
ual reduction in the importance of data points for mining
purposes. For example, some recent methods for cluster-
ing [1] use such a bias factor in order to decide the relative
importance of data points. The biased sample can be used
as the base data set to simulate such a scenario. The ad-
vantage of using a sampling approach (over direct mining
techniques on the data stream) is that we can use any black-
box mining algorithm over the smaller sample. In general,
many data mining algorithms require multiple passes in con-
junction with parameter tuning in order to obtain the best
results. In other cases, an end-user may wish to apply the
data mining algorithm in an exploratory way over different
choices of parameters. This is possible with a sample, but
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Figure 2: Sum Query Estimation Accuracy with
User-defined horizon (Network Intrusion Data Set)
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Figure 3: Sum Query Estimation Accuracy with
User-defined horizon (Synthetic Data Set)

not with the original stream. The use of sampling frees us
from the strait-jacket of a one-pass method. In the next
section, we will experimentally illustrate the advantages of
the biased sampling method on some real applications.

5. EXPERIMENTAL RESULTS
In this section, we will discuss a number of experimental
results illustrating the effectiveness of the method for both
query estimation and a number of data mining problems
such as classification and evolution analysis. We will also
examine the effects of evolution on the quality of the repre-
sentative reservoir in both the unbiased and biased sampling
strategy. We will show that the biased sampling strategy is
an effective approach in a variety of scenarios.

5.1 Data Sets
We used both real and synthetic data sets. The real data
set was the KDD CUP 1999 data set from the UCI ma-
chine learning repository. The data set was converted into
a stream using the same methodology discussed in [1]. We
normalized the data stream, so that the variance along each
dimension was one unit.



1 2 3 4 5 6 7 8 9 10

x 10
4

0.04

0.045

0.05

0.055

0.06

0.065

USER SPECIFIED HORIZON

A
B

S
O

LU
T

E
 E

R
R

O
R

BIASED RESERVOIR
UNBIASED RESERVOIR

Figure 4: Count Query Estimation Accuracy with
User-defined horizon (Network Intrusion Data Set)

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

USER SPECIFIED HORIZON

A
B

S
O

LU
T

E
 E

R
R

O
R

BIASED RESERVOIR
UNBIASED RESERVOIR

Figure 5: Range Selectivity Estimation Accuracy
with User-defined horizon (Synthetic Data Set)
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Figure 7: Classification Accuracy with Progression
of Stream (Network Intrusion Data Set)

1 2 3 4

x 10
5

0.75

0.8

0.85

0.9

0.95

1

PROGRESSION OF STREAM (points)

C
LA

S
S

IF
IC

A
T

IO
N

 A
C

C
U

R
A

C
Y

UNBIASED RESERVOIR
BIASED RESERVOIR

Figure 8: Classification Accuracy with Progression
of Stream (Synthetic Data Set)



A 10-dimensional synthetic data set was generated using an
evolving cluster scenario. In this case, we used k = 4 clus-
ters which evolved continuously over time. We will use this
interpretability for the case of the clustering application dis-
cussed later. The centers of each cluster were randomly cho-
sen in the unit cube and the average radius of each cluster
was set at 0.2. Thus, the individual points could lie out-
side the unit cube, and there was often a considerable level
of overlap among the different clusters. The clusters were
drawn from the gaussian distribution. After generation of
each set of 100 data points, the center of each cluster moved
by a random amount along each dimension by a number
drawn in the range [−0.05, 0.05]. A continuous stream of
4 ∗ 105 data points was generated using this approach.

5.2 Query Estimation
In this section, we will discuss the application of this tech-
nique to the count, sum and range selectivity queries. In
order to compare the effectiveness of biased and unbiased
sampling, we used both an unbiased sample as well as a
biased sample of exactly the same size. Since the paper
is focussed on horizon-constrained queries, the timestamp
needs to be maintained2 for both the biased and unbiased
reservoir. Therefore, the timestamp is not an additional
overhead in the biased case. We note that horizon-driven
queries are a practical choice in data streams because of the
fact that users are often more interested in the recent his-
torical behavior of the stream. Therefore, a user may only
be interested in finding the corresponding statistics over a
most recent horizon of length h. The queries were designed
as follows:

• For the case of the count query, we wanted to find
the distribution of the data points among the different
classes for the data set in the past horizon of varying
length h. For ease in analysis and interpretability of
results, we represent h in the graphs in terms of the
number of data points. The class-estimation query was
applied only to the real network intrusion data set. We
calculated the error in estimation of the query as the
average absolute error in estimation of the fractional
class distribution over the different classes. Thus, if fi

be the true fraction of class i, and f ′

i be the fractional
value, then the average error er over the l classes is
defined as follows:

er =

l∑

i=1

|fi − fi|/l (21)

For the synthetic data set, we used a form of the count
query which corresponds to range selectivity estima-
tion. In this case, we estimated the fraction of all data
points in a pre-determined horizon, for which a pre-
defined set of dimensions lay in a user defined range.

• For the case of the sum queries, we wanted to estimate
the average of all the data points in the past horizon

2Since evolving data streams have an inherently tempo-
ral component, the time-stamp would generally need to be
maintained for most practical applications. In the event of
an application in which the time-stamp does not need to be
maintained in the unbiased case, the overhead is 1/(d + 1)
for data of dimensionality d.

h. This query was applied to both the real and syn-
thetic data sets. As in the case of the count query, we
calculate the average absolute error in estimation over
the different dimensions.

In each case, we used a reservoir with 1000 data points,
and λ = 10−5. We compared the quality of the results
of the biased sampling approach with those of the unbiased
approach in [16]. In each case, we used a reservoir of exactly
the same size in order to maintain the parity of the two
schemes. The results for the sum query for the network
intrusion and synthetic data sets are illustrated in Figures
2 and 3 respectively. In each case, we tested the scheme for
variation in accuracy over different user horizons. On the
X-axis, we have illustrated the user-defined horizon, and on
the Y-axis, we have illustrated the average absolute error
over the different dimensions. An immediate observation
from Figures 2 and 3 is the effect of user-defined horizon on
the accuracy of the two schemes.

• For small user-defined horizons, the error of the unbi-
ased scheme is very high. This is also the most critical
case for data stream scenarios, since only a small por-
tion of the stream is usually relevant. With the use of
smaller horizons, an unbiased reservoir often does not
provide a large enough portion of the relevant sam-
ple for robust estimation. For larger horizons, the two
schemes are almost competitive, and their relative per-
formance is often because of the random variations in
the data. Furthermore, since larger horizons allow for
inherently more robust estimations (of both schemes)
anyway, the small variations for this case are not as
critical. Thus, these results show that the biased sam-
pling approach provides a critical advantage for hori-
zons of smaller size.

• The error rate is more stable in the case of the bi-
ased scheme with increasing user horizon. As is ev-
ident from Figures 2 and 3, the error rate does not
vary much with the user-defined horizon for the two
schemes, when the biased sampling method is used.
In fact, in the case of Figure 3, the biased sampling
method maintains an almost stable error rate with user
horizon.

The results for the count and range selectivity queries are
illustrated in Figures 4 and 5 respectively. The class estima-
tion count query for the network intrusion data set (Figure 4)
shows considerable random variations because of the skewed
nature of the class distributions over the data stream. Fur-
thermore, the error rates are not averaged over multiple di-
mensions as in the case of sum queries. However, even in
this case, the biased sampling approach consistently outper-
forms the unbiased reservoir sampling method of [16]. The
behavior for the case of range selectivity queries (Figure 5)
is even more interesting since the error rate of the biased
sampling method remains robust with variation in the hori-
zon length. On the other hand, the variation in the error
rate of the unbiased method is very sudden with increasing
horizon. For the case of larger horizons, the two schemes
are roughly competitive. We note that a very slight advan-
tage for larger horizons is to be expected for the unbiased



method, though the differences are relatively small. Further-
more, since larger horizons contain a greater portion of the
sample and the absolute accuracy rates are relatively robust,
this case is not as critical. Therefore, acceptable accuracy
is achieved by both methods for those cases. Therefore, the
overwhelming advantages of the biased method for the small
horizon query provides a clear advantage to the biased sam-
pling method.

In order to elucidate this point further, we ran the sum
query on the synthetic data set and used a fixed horizon
h = 104, but performed the same query at different points
in the progression of the stream. This shows the variation in
results with stream progression, and is analogous to many
real situations in which the queries may not change very
much over time, but new points in the stream will always
continue to arrive. The results are illustrated in Figure 6.
An important observation is that with progression of the
stream the error rates of the unbiased sampling method de-
teriorate rapidly. On the other hand, the (memory-less)
behavior of the biased sampling method ensures that the
stream continues to remain relevant over time. Therefore,
the results do not deteriorate as much. In the unbiased case,
a larger and larger fraction of the reservoir corresponds to
the distant history of the stream over time. This distant
history is not used in the estimation process, and therefore
the size of the relevant sample reduces rapidly. As a result,
the accuracy rate deteriorates with stream progression. We
also note that in most practical applications, the parameters
(such as horizon) for user-queries are likely to remain con-
stant, whereas the stream is likely to remain as a continuous
process. This would result in continuous deterioration of re-
sult quality for the unbiased sampling method. Our biased
sampling method is designed to reduce this problem.

5.3 Data Mining and Evolution Analysis Ap-
plications

The applicability of the biased sampling method can be eas-
ily extended to wider classes of data mining problems such
as classification and evolution analysis. We will show that
the use of a biased reservoir preserves similar advantages
as in the case of the query estimation method. In particu-
lar, the use of an unbiased reservoir causes deterioration of
data mining results with the progression of the data stream,
whereas the biased reservoir continues to maintain accurate
results. We will also provide an intuitive understanding of
the pattern of behavior of the results using some scatter
plots of the evolution of the reservoirs with progression of
the data stream.

In order to illustrate the effects of biased sampling method
on data mining problems, we used the particular case of
a nearest neighbor classifier. A nearest neighbor classifier
is a typical application which requires sampling, because
it is not possible to compare the test instance with every
possible point in the history of the data stream. Therefore,
a sample reservoir is used for comparison purposes. We used
a reservoir of size 1000 and used λ = 10−4. We tested the
method for both the network intrusion and the synthetic
data set. For the case of the synthetic data set, we used
the cluster id as the class label. For each incoming data
point, we first used the reservoir in order to classify it before
reading its true label and updating the accuracy statistics.

Then, we use the sampling policy to decide whether or not
it should be added to the reservoir.

The classification results for the network intrusion data set
are illustrated in Figure 7. We have illustrated the varia-
tion in classification accuracy with progression of the data
stream. One observation from Figure 7 is that the use of
either kind of reservoir provides almost similar classification
accuracy at the beginning of the stream. However, with
progression of the stream, the unbiased reservoir contains a
larger and larger fraction of stale data points, and therefore
the relative difference between the two methods increases.
Because of random variations, this increase is not strictly
monotonic. However, the overall trend shows a gradual in-
crease in relative differences between the two methods.

This trend is even more obvious in the case of the classi-
fication results on the synthetic data set in Figure 8. The
classes in the data sets correspond to evolving clusters which
gradually drift apart from one another. As they drift apart,
the data set becomes easier and easier to classify. This is
reflected in increasing classification accuracy of the biased
reservoir. However, the interesting observation is that the
classification accuracy with the use of the unbiased reser-
voir actually reduces or remains stable with progression of
the data stream. This is because the history of evolution of
the different clusters contains a significant amount of over-
lap which is represented in the reservoir. With progression
of the stream, recent points are given a smaller and smaller
fraction of the representation. In many cases, stale points
from the reservoir (belonging to the incorrect class) happen
to be in closest proximity of the test instance. This results
in a reduction of classification accuracy.

In order to illustrate this point, we constructed scatter plots
of the evolution of the reservoir at different points in stream
progression in Figure 9. The scatter plot was constructed
on a projection of the first two dimensions. The points in
the different clusters have been marked by different kinds
of symbols such as a circle, cross, plus, and triangle. The
charts in Figures 9(a), (b), and (c) illustrate the behavior of
the evolution of the points in the reservoir at different points
during stream progression. The charts in Figures 9(d), (e),
and (f) illustrate the behavior of the unbiased reservoir at
exactly the same points. By comparing the corresponding
points in stream progression in pairwise fashion it is possible
to understand the effect of evolution of the stream on the two
kinds of reservoirs. It is clear from the progression in Fig-
ures 9(a), (b), and (c) that the clusters in the biased reser-
voir drift further and further apart with stream progression.
This is reflective of the true behavior of the underlying data
stream. On the other hand, the progression in Figures 9(d),
(e), and (f) show greater diffusion and mixing of the points
from different clusters with progression of the data stream.
This is because the unbiased reservoir contains many points
from the history of the stream which are no longer relevant
to the current patterns in the data stream. Our earlier ob-
servations on classification accuracy variations with stream
progression arise because of these reasons. The diffuse be-
havior of the distribution of points across different classes in
the unbiased reservoir results in a lower classification accu-
racy. On the other hand, the biased reservoir maintains the
sharp distinctions among different classes, and it therefore
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Figure 9: Evolution of Reservoir Representation of Evolving Clusters (Synthetic Data Set)

continues to be effective with progression of the stream.

Similar advantages of the biased reservoir are likely to apply
to a host of other aggregation based data mining algorithms
such as clustering or frequent pattern mining. We expect
that the biased reservoir sampling method is likely to be
an effective tool to leverage the power of many compute-
intensive data mining algorithms which can only be used in
conjunction with smaller samples of the stream. In future
work, we will examine the full power of this method on a
variety of data mining problems.

6. CONCLUSIONS AND SUMMARY
In this paper, we proposed a new method for biased reservoir
based sampling of data streams. This technique is especially
relevant for continual streams which gradually evolve over
time, as a result of which the old data becomes stale and is
no longer relevant for a variety of data mining applications.
While biased reservoir sampling is a very difficult problem
(with the one pass constraint), we show that it is possible to
design very efficient replacement algorithms for the impor-
tant class of memory-less bias functions. In addition, the
incorporation of bias results in upper bounds on reservoir
sizes in many cases. In the special case of memory-less bias
functions, we show that the maximum space requirement is
constant even for an infinitely long data stream. This is a
nice property, since it allows for easy implementation in a
variety of space-constrained scenarios.

For the case in which the space-constraints are unusually
tight, we designed replacement algorithms with very low
startup times. This results in larger reservoir space uti-
lization (and therefore greater robustness) during the initial
phase. We discussed how to apply this technique to the

problem of query estimation. We tested this method on
both the query estimation problem and a variety of data
mining techniques such as classification and evolution anal-
ysis. In each case, the biased reservoir method was more
robust. Unlike the unbiased method, the behavior of the
biased sample did not degrade with progression of the data
stream across the different data mining and query estima-
tion problems. This is also the most interesting case for a
variety of practical scenarios.
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