
On Anonymization of String Data

Charu C. Aggarwal∗ Philip S. Yu†

Abstract

String data is especially important in the privacy preserving

data mining domain because most DNA and biological data

is coded as strings. In this paper, we will discuss a new

method for privacy preserving mining of string data with

the use of simple template based condensation models. The

template based model turns out to be effective in practice,

and preserves important statistical characteristics of the

strings.

Keywords: Privacy, strings, condensation

1 Introduction

The k-anonymity approach [4, 7] has been extensively
explored in recent years because of its intuitive signifi-
cance defining the level of privacy. The motivation be-
hind the k-anonymity approach is that public databases
can often be used by individuals to identify personal in-
formation about users. For example, a person’s age and
zip code can be used to identify them to a very high
degree of accuracy. Therefore, the k-anonymity method
attempts to reduce the granularity of representation of
the data in order to minimize the risk of disclosure.

The condensation-based technique [1] has been pro-
posed as an alternative to k-anonymity methods. The
key difference between condensation and k-anonymity
methods is that the former works with pseudo-data
rather than the original records. In this approach we
construct condensed groups of records with the appro-
priate anonymity level, and generate pseudo-data which
uses the aggregate statistics of each condensed group.

The string domain is particularly important be-
cause of its applicability to a number of crucial problems
for privacy preserving data mining in the biological do-
main. Recent research has shown that the information
about diseases in medical data can be used in order to
make inferences about the identity of DNA fragments
[5]. Many diseases of a genetic nature show up as spe-
cific patterns in the DNA of the individual. In general,
it can be assumed that partial or complete information
about the individual fragments of the strings is avail-
able. Therefore, it is important to anonymize the strings

∗IBM T. J. Watson Research Center, charu@us.ibm.com
†IBM T. J. Watson Research Center, psyu@us.ibm.com

in such a way that it is no longer possible to use these
individual fragments in order to make inferences about
the identities of the original strings.

In this paper, we will discuss the condensation
model for anonymization of string data. We create sum-
mary statistics of groups of strings, and use these sum-
mary statistics to generate pseudo-strings. The sum-
mary statistics contains first and second order informa-
tion about the distribution of the symbols in the strings.
The distribution contains sufficient probabilistic param-
eters in order to generate pseudo-strings which are sim-
ilar to the original strings.

This paper is organized as follows. In the next
section, we will discuss the process of creating the
pseudo-strings for mining purposes. In section 3, we
will present experimental results which illustrate the
effectiveness of using the pseudo-strings in place of true
strings. In section 4, we discuss the conclusions and
summary.

2 The Condensation Model

In this section, we will discuss the condensation model
for string data. Let us assume that we have a database
D containing N strings. We would like to create a new
anonymized database which satisfies the conditions of
k-indistinguishability. The N strings are denoted by
S1 . . . SN . The condensation needs to be performed
in such a way that it is no longer possible to use
information about portions or fragments of the strings
in order to identify the entire string.

In order to perform the privacy preserving transfor-
mation of the strings, we would like to have a database
in which the lengths of the strings are not too differ-
ent from one another. In cases, in which the database
does contain strings of widely varying lengths, it is desir-
able to create a situation in which the lengths of strings
are tightly distributed within certain ranges. In or-
der to formalize this definition, we need to define some
tightness parameters. Specifically, we define the (ǫ, k)-
similarity assumption for a database in terms of user
defined parameter ǫ > 0 and anonymity level k. We
formalize this definition below:

Definition 2.1. A set of strings D = {S1 . . . SN} is

said to satisfy the (ǫ, k)-similarity assumption, if a set

of ranges [l1, u1] . . . [lr, ur] can be found such that the

following properties are satisfied:

• ui ≤ (1 + ǫ) · li

• For each i ∈ {1 . . . r} the range [li, ui] contains at

least k strings from the database D.

• All strings from D belong to at least one of the

ranges [li, ui] for some i ∈ {1 . . . r}.

In the event that the database does not satisfy this as-
sumption, some of the strings may need to be suppressed
in order to preserve k-anonymity. We note that a large
enough value of ǫ can always be found for which the
strings in the database can be made to satisfy the (ǫ, k)-
similarity assumption. However, larger choices of ǫ are
not desirable since this allows the lengths of strings in
the database to vary. We will see that this complicates
the process of generating pseudo-strings from the un-
evenly distributed strings.

While we will propose methods to deal with non-
homogeneous string lengths, this may not be a severe
issue in many applications. This is because the strings
may correspond to the same entity in a given applica-
tion. In such cases, the lengths of the different strings
may be exactly the same. Therefore, the entire database
may trivially satisfies the (ǫ = 0, k = N)-assumption in
these cases. In such cases, the process of condensation
and privacy preservation of the strings is further sim-
plified, since one does not have to worry about creating
the ranges with different sets of strings.

In the case that the database does not satisfy the
(ǫ, k)-similarity assumption, we perform a preprocess-
ing step in order to segment the database into different
groups of strings. The length of these groups is homoge-
neous to a level chosen by the user-defined parameter ǫ.
In addition, we remove those strings whose lengths are
significantly different from the rest of the data. This is
because some strings cannot easily be fit in any segment
without violating the k-anonymity assumption. Once
the database is segmented, we can apply the condensa-
tion procedure separately to each of these segments.

The preprocessing step works using a simple itera-
tive approach in which we start from the string having
the smallest length ls, and try to find all strings which
lie in the range [ls, (1 + ǫ) · ls]. If at least k strings
can be found within this range, we create a new ho-
mogenized segment containing all strings whose lengths
lie in the range [ls, (1 + ǫ) · ls]. We remove this set
of strings from the database and proceed further. On
the other hand, when the range contains fewer than k
strings, then we exclude (i.e. suppress) the smallest
string from the database and proceed further with the
next smallest string. Thus, in each iteration, either a

string is discarded from the database or a set of k strings
is grouped together in one range and removed from the
database. The procedure will terminate in at most N
iterations, though the number of iterations is closer to
N/k in practice. This is because a suppression opera-
tion should occur only in a small number of iterations,
when a judicious choice of parameters is used. We also
note that we do not need to repeatedly access the under-
lying string database for this purpose. We can perform
an initial scan of the database in which the lengths of
each of the strings are determined and stored in a vec-
tor of lengths. For modestly large databases containing
millions of records, it is possible to maintain this vector
of lengths in main memory. The iterative algorithm is
applied to this vector of lengths to determine the seg-
mentation. Once the segmentation of lengths has been
determined, we can process the original database to cre-
ate the segmentation on the actual strings and discard
the outliers. This is done using the intervals determined
by the algorithm. Since the algorithm partitions the
string database based on length, we refer to it as Ho-

mogenizeLength.
At the end of the process, we have a new set of

database segments denoted by D1 . . .Dr in each of which
the lengths are approximately equal. By approximately
equal, we are referring to the fact that the lengths lie
within a factor of (1 + ǫ) of one another. In further
discussions, we will abstract out this preprocessing
portion of the algorithm. In other words, we will assume
without loss of generality that the database D contains
only strings in which the length ratios lie within a factor
of (1 + ǫ). This can be done without loss of generality
because we can assume that the subsequent steps are
applied to each homogenized segment in the data. A
homogenized segment of the database is converted into
a set of templates.

Let us assume that the strings are drawn from the
alphabet Σ = {σ1 . . . σl} of size l. The process of string
condensation requires the generation of pseudo-strings
from groups of similar strings. In order to achieve this
goal, we first need to create groups of k similar strings
from which the condensed templates are formed. The
statistics from each group of k similar strings is used
to generate pseudo-strings. As discussed earlier, we will
assume that the process of statistical condensation is
applied to each homogeneous segment.

As discussed earlier, the preprocessing phase en-
sures that the lengths of all the different strings lie
within a factor of at most ǫ. Let us assume that the N
strings in the database are denoted by S1 . . . SN , with
corresponding lengths L1 . . . Lk. Then, the length of the
template representation of this set of strings is equal to
L = [

∑k

j=1 Lj/N].

Our first step is to convert each string into a prob-
abilistic template representation of length L. This is
done in order to facilitate further probabilistic analysis
of different positions on the strings. Unlike the original
string, each position in the template may correspond to
one or more symbols. Let us assume that the template
representation of string Sj is denoted by Tj . In order to
define the symbols corresponding to the ith position of
string Tj , we determine a corresponding start and end
position within string Sj . The start position within the
string Sj for the ith position of string Tj is defined by
(i−1)·Lj/L. We note that this value may correspond to
a floating point number. Let us assume that the float-
ing point value of the beginning position is defined by p.
Similarly, the ending position within the string Sj for
Tj is defined by i · Lj/L. Let us assume that this value
is equal to q. As in the previous case, the value of q may
also be a floating point value. In many cases, when ǫ is
small, the condition q ≈ p+1 holds. Then, we compute
the frequency of the presence of the different symbols
from positions p to q (start and end points inclusive) in
string Sj . Let us denote the frequency of the symbol
σi by n(σi). Since p and q are floating point numbers,
we need to include the contribution of the floating point
portions between p and q.

Let us assume that the (normalized) frequencies
of the l alphabets σ1 . . . σl for position i in string
Tj are denoted by fi1(Tj) . . . fil(Tj). Because of the

normalization process, we have
∑l

m=1 fim(Tj) = 1 for
each position i, and string j. We note that most of
the values of fim(Tj) are zero. As discussed later,
we can use this fact to improve the efficiency of the
summary statistic representation. We also note that
the only goal achieved by the process is to convert
the string to a length of L. In order to represent
this summary process of conversion of the strings into
a new representation with length L, we denote the
procedure by ConvertLength(Si, L). The use of this
notation is helpful in further discussion. We refer to the
converted strings as extended template strings since they
represent the probabilistic templates over an extended
string length.

The normalized frequencies are computed for each
of the N strings {S1 . . . SN}, which are then converted
into the N extended template strings denoted by G =
{T1 . . . TN}. We note that unlike the set of strings
S1 . . . SN , the set of strings in D have the same length
which is defined by L. The homogeneous length of the
strings helps us define a set of first-order and second-
order statistics for the a group G of strings drawn from
database D.

We define the summary statistics for the group
G = {T1 . . . Tk} as follows:

• For each group G, we define the second order
statistics Sc(G) which are defined for each position
r ∈ {1 . . . L − 1} and pair of symbols p, q ∈
{σ1 . . . σl} by Scrpq. This value is defined as
follows:

Scrpq(G) =

k∑

j=1

fpr(Tj) · fq(r+1)(Tj)(2.1)

Note that we are computing the correlation of
symbol presence between the rth and (r + 1)th
position. We also note that there are at most
(L−1) · l2 such values, but most of these values are
zero since most of the symbols have zero frequency
at a given position. Therefore, we can choose a
sparse representation in which we maintain only the
non-zero values. In practice, since each position
will typically contain only about 2 symbols with
non-zero frequency in Ti, we only need to maintain
a total of about 4·L such values. The corresponding
savings can be significant when the value of l is
relatively large. For example, in domains such as
protein analysis, the value of l corresponds to the
number of amino-acids which is 20. We note that
the second order statistics measure the correlation
between different symbols at adjacent values. This
is useful for effective re-generation of successive
positions of pseudo-strings from group statistics.

• For each group G, we define the first order statistics
F∫(G) which is defined for each position r ∈
{1 . . . L} and symbol σp ∈ {σ1 . . . σl} by Fsrp(G).
This value is defined as follows:

Fsrp(G) =

k∑

j=1

fpr(Tj)(2.2)

There are at most L · l such non-zero values. As
in the previous case,we can maintain a sparse
representation for efficiency.

• For each group G, we maintain the corresponding
string length L.

• For each group, we maintain the number of strings
n(G) = k.

We note that the summary statistics turn out to be
useful in generating the pseudo-data for the different
groups. It remains to explain how the different groups
are constructed. In order to construct the groups, we
need to partition the strings into groups of k records.
In this section, we will discuss the partitioning ap-
proach for constructing the groups from the homoge-
nized database D.

In this section we will discuss the partitioning
approach for condensation and subsequent generation
of the pseudo-strings. Since the anonymity level is
assumed to be k, each partition should contain at least
k strings. We also assume that the set of strings
have already been homogenized and templates have
been constructed from each segment. Therefore, the
algorithm described in this section really applies to each

segment of the homogenized database. Therefore, we
can assume that all strings lengths are within a factor of
(1+ǫ) from one another. In the event that the database
contains strings with widely varying lengths, we need
to perform the homogenization step, and then apply
the partitioning process on each homogenized segment.
Thus, there are two levels of partitioning:

• In the first level of partitioning, we perform the pre-
viously discussed homogenization process to create
segments containing strings with lengths within a
factor of (1 + ǫ) of one another. The algorithm of
this section is applied to each segment of this par-
titioning.

• In the next level of partitioning, we create groups of
k strings from each database segment. The statis-
tics of each segment are then computed. These
statistics are used to generate the pseudo-strings.
We will discuss this partitioning step in this section.

In order to partition the data into sets of k strings,
we use an iterative algorithm in which the groups of
records are constructed around different sets of seeds. In
each iteration, we make a pass through the database in
random order. In the first iteration, the ConvertLength

procedure is applied to each string in the database in
order to express it as a template of length L.

Next, we begin an iterative process of construct-
ing groups by building them around randomly chosen
strings. We start off by picking a random string and
assign the (k − 1)-closest strings to it. We will discuss
the distance calculation process in more detail slightly
later. We repeat the process of picking random strings
and assigning the (k − 1) closest strings in the data to
the currently selected string until all strings have been
exhausted. As soon as each set of (k − 1) strings have
been assigned, they are marked as assigned. We note
that at the end of the process, fewer than k unmarked
strings may remain because of successive assignments.
Each string in this set is assigned to the closest existing
centroid among all groups formed so far. At the end
of the process, most centroids will have k strings as-
signed to them, but a few may have more than k strings
assigned.

After the first assignment pass, we repeat the pro-
cess with a modification. Specifically, we use the seg-

mentation of the templates from the previous iteration
in order to improve the quality of the groups. This is
done by using the centroid of each template set in or-
der to decide the assignment of strings. The centroid of
each group is defined as the average of all the strings in
the group. This is an easy computation because of the
homogenized length of each set of templates. As in the
previous case, we use an iterative process to segment
the data. The difference is that we use centroids rather
than randomly picked strings from the database in or-
der to create groups. For each of the centroids, we find
the closest k strings and create a new group from these
strings. After forming this group, we mark this set of k
strings from the database and continue the process until
all strings have been exhausted. Finally, we re-compute
the summary statistics of each of the groups formed,
and use them to generate the pseudo-data. We repeat
this iterative process over the string database multiple
times in order to improve the quality of the assignment.
We use a termination criterion which computes the ob-
jective function of each assignment pass. The algorithm
terminates when the difference in objective function be-
tween two successive assignments improves by less than
1%.

2.1 Distance Function Computation It remains
to explain how the distances are computed between
pairs of template strings. This is required for as-
signment computations. Let us consider two template
strings Tp and Tq. Then, the distance dist(Tp, Tq) be-
tween two strings Tp and Tq of equal lengths |Tp| = |Tq|
is defined as follows:

dist(Tp, Tq) =

|Tp|∑

i=1

l∑

r=1

|fir(Tp) − fir(Tq)|(2.3)

2.2 Optimizations In some cases, it may be difficult
to create a coherent group of strings. This is especially
true towards the end of each iterative pass over the
string database, when only a small number of strings
remain. In such cases, it may be desirable to assign
these strings to different groups and create correspond-
ing groups with size larger than k. Therefore, at the
end of the process, each group is examined to check if
the strings in it can be re-assigned to other groups in or-
der to reduce the objective function value. If this is the
case, then the assignment is performed and the number
of groups further reduces. at the end of the process,
we pick the last set of groups that was created, and per-
form the re-assignment test on this last set. The process
of generating the pseudo-data is discussed in the next
section.

Data Set Name Keywords

YST1 Yeast

YST2 Yeast

MS Mouse

HS Homo Sapiens

Table 1: Keywords used in SWISS-PROT database

2.3 Generation of pseudo-strings The condensed
data from each group G can be be used to generate the
pseudo-strings. Each pseudo string is generated with
the same string length which is denoted by l(G)/n(G).
For each group G, we generate n(G) strings. We
use the auto-correlation behavior of the second order
statistics in order to generate the strings. We generate
the leftmost position using the first order statistics.
Subsequent positions are generated using second order
correlations. We discuss the steps systematically below.

• The first position is generated using the statistics
Fs1p for the different symbols. Specifically the
pth symbol is generated for the first position with
probability Fs1p(G)/n(G).

• Once the ith position has been generated, we use
the second order correlations in order to generate
the (i + 1)th position. The conditional probability
of (i + 1)th position taking on a particular symbol
value can be calculated using the first and second
order statistics. Let us assume that the symbol at
the ith position is σp. Then, the conditional proba-
bility of the (i+1)th position taking on the symbol
σq is defined by the expression Scipq(G)/Fsip(G).
We use this conditional probability in order to gen-
erate the symbol at the (i + 1)th position from the
symbol at the ith position. This is done by flip-
ping a biased die for that position, using the con-
ditional probabilities to decide the weights on dif-
ferent sides. This step is iteratively repeated over
the entire length of the pseudo-string.

We note that the above process preserves the correla-
tions between adjacent data points, but not the corre-
lations between non-adjacent points. In the next sec-
tion, we will show that the pseudo-data generated by
the process retains similar aggregate characteristics to
the original data.

3 Experimental Results

In this section, we will discuss the experimental results
of the condensation approach to privacy based mining
of the strings. The data was obtained from the SWISS-
PROT database which contained DNA sequences. Each

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

AMINO ACID ALPHABET INDEX (1−26)

R
E

LA
T

IV
E

 F
R

E
Q

U
E

N
C

Y

ORIGINAL DATA

PSEUDO−DATA

Figure 1: Comparison of original and pseudo-data in
amino-acid composition (YST1)

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

AMINO ACID ALPHABET INDEX (1−26)

R
E

LA
T

IV
E

 F
R

E
Q

U
E

N
C

Y

ORIGINAL DATA

PSEUDO−DATA

Figure 2: Comparison of original and pseudo-data in
amino-acid composition (YST2)

of these sequences was expressed in terms of the 20 dif-
ferent amino acids. Correspondingly the alphabet size
|Σ| was 20. As illustrated, we used protein strings from
different species in order to generate the strings. In
Table 1, we have illustrated the names of the differ-
ent databases and the corresponding keywords which
were used to query the database for this purpose. The
SWISS-PROT database provides a query interface for
keywords, and this query interface was used in conjunc-
tion with the corresponding keyword in order to derive
the data. In each case 1000 strings from the database
were used to create the data set. We note that smaller
data sets are more difficult for privacy preservation pur-
poses, since a given data locality may contain only a
small number of similar strings. This makes it more
difficult to generate pseudo-data from a similar group
of strings in a robust way.

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

AMINO ACID ALPHABET INDEX (1−26)

R
E

LA
T

IV
E

 F
R

E
Q

U
E

N
C

Y

ORIGINAL DATA
PSEUDO−DATA

Figure 3: Comparison of original and pseudo-data in
amino-acid composition (HS)

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

AMINO ACID ALPHABET INDEX (1−26)

R
E

LA
T

IV
E

 F
R

E
Q

U
E

N
C

Y

ORIGINAL DATA
PSEUDO−DATA

Figure 4: Comparison of original and pseudo-data in
amino-acid composition (MS)

We note that the purpose of the condensation
approach is to create pseudo-data which is similar in
distribution to the original data. This ensures that
aggregation based data mining algorithms can be used
on the data without affecting the overall results. We
tested how the distribution of the different amino-acids
varied from the original data set to the synthetic data
set. For this purpose, we generated the histogram of the
distribution of the different amino-acids for the different
data sets. We computed the level of variation among
the different histograms for the different data sets over
different group sizes. In Figures 1, 2, 3, and 4, we have
illustrated the aminoacid composition of the original
data and pseudo-data using the condensation based
approach. In each case, the generated string length
was set to the average string length over the entire
database. The group size used in each case was 20.

The histogram illustrates the compositional behavior for
each if the 20 different amino-acids. The label on the
X-axis indicates the index of the amino-acid alphabet,
which can vary from 1 to 26 depending upon the index
of the alphabet. Note that since some of the alphabets
(such as B or Z) do not correspond to amino-acids, the
frequency of the corresponding alphabet index is always
zero in both the original data and generated pseudo-
data. For the other amino-acids, the frequencies of each
amino-acid in both the original and generated pseudo-
data are approximately the same. This is true of all
the four data sets illustrated in Figures 1, 2, 3, and
4 respectively. Other aggregate tests on classification
and distance function computation are available in an
extended version of this paper [2].

4 Conclusions and Summary

In this paper, we proposed a methods for condensation
based privacy preserving data mining of strings. We
discussed a method to segment the string data into
groups. The segmented string data is then used in
order to generate pseudo-data from the different strings.
This generation is done by constructing a probabilistic
model from each group. The probabilistic model stores
both first and second order information about the
string templates in each group, and uses these summary
statistics to generate strings which fit this model. We
tested the resulting pseudo strings for a aggregate
composition, and showed that the approach retained
similarity in composition while preserving privacy.

References

[1] C. C. Aggarwal, and P. S. Yu. A Condensation Based

Approach to Privacy Preserving Data Mining. EDBT
Conference, 2004.

[2] C. C. Aggarwal, and P. S. Yu. On Anonymization of

Strings. IBM Research Report, 2007.
[3] C. C. Aggarwal. On k-anonymity and the curse of

dimensionality. VLDB Conference, 2004.
[4] R. Bayardo, and R. Agrawal. Data Privacy through

optimal k-anonymization. ICDE Conference, 2005.
[5] B. Malin, and L. Sweeney. Re-identification of DNA

through an automated linkage process. American Med-
ical Informatics Association, 423–427, 2001.

[6] A. Meyerson, and R. Williams. On the complexity of

optimal k-anonymity. ACM PODS Conference, 2004.
[7] P. Samarati. Protecting Respondents’ Identities in Mi-

crodata Release. IEEE Trans. Knowl. Data Eng. 13(6):
1010-1027, 2001.

