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Abstract Clustering is a widely studied data mining problem in the text domains.
The problem finds numerous applications in customer segmentation,
classification, collaborative filtering, visualization, document organiza-
tion, and indexing. In this chapter, we will provide a detailed survey of
the problem of text clustering. We will study the key challenges of the
clustering problem, as it applies to the text domain. We will discuss the
key methods used for text clustering, and their relative advantages. We
will also discuss a number of recent advances in the area in the context
of social network and linked data.
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1. Introduction

The problem of clustering has been studied widely in the database
and statistics literature in the context of a wide variety of data mining
tasks [50, 54]. The clustering problem is defined to be that of finding
groups of similar objects in the data. The similarity between the ob-
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jects is measured with the use of a similarity function. The problem
of clustering can be very useful in the text domain, where the objects
to be clusters can be of different granularities such as documents, para-
graphs, sentences or terms. Clustering is especially useful for organizing
documents to improve retrieval and support browsing [11, 26].

The study of the clustering problem precedes its applicability to the
text domain. Traditional methods for clustering have generally focussed
on the case of quantitative data [44, 71, 50, 54, 108], in which the at-
tributes of the data are numeric. The problem has also been studied
for the case of categorical data [10, 41, 43], in which the attributes may
take on nominal values. A broad overview of clustering (as it relates
to generic numerical and categorical data) may be found in [50, 54]. A
number of implementations of common text clustering algorithms, as ap-
plied to text data, may be found in several toolkits such as Lemur [114]
and BOW toolkit in [64]. The problem of clustering finds applicability
for a number of tasks:

Document Organization and Browsing: The hierarchical or-
ganization of documents into coherent categories can be very useful
for systematic browsing of the document collection. A classical ex-
ample of this is the Scatter/Gather method [25], which provides a
systematic browsing technique with the use of clustered organiza-
tion of the document collection.

Corpus Summarization: Clustering techniques provide a coher-
ent summary of the collection in the form of cluster-digests [83] or
word-clusters [17, 18], which can be used in order to provide sum-
mary insights into the overall content of the underlying corpus.
Variants of such methods, especially sentence clustering, can also
be used for document summarization, a topic, discussed in detail
in Chapter 3. The problem of clustering is also closely related to
that of dimensionality reduction and topic modeling. Such dimen-
sionality reduction methods are all different ways of summarizing
a corpus of documents, and are covered in Chapter 5.

Document Classification: While clustering is inherently an un-
supervised learning method, it can be leveraged in order to improve
the quality of the results in its supervised variant. In particular,
word-clusters [17, 18] and co-training methods [72] can be used in
order to improve the classification accuracy of supervised applica-
tions with the use of clustering techniques.

We note that many classes of algorithms such as the k-means algo-
rithm, or hierarchical algorithms are general-purpose methods, which
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can be extended to any kind of data, including text data. A text docu-
ment can be represented either in the form of binary data, when we use
the presence or absence of a word in the document in order to create a
binary vector. In such cases, it is possible to directly use a variety of
categorical data clustering algorithms [10, 41, 43] on the binary represen-
tation. A more enhanced representation would include refined weighting
methods based on the frequencies of the individual words in the docu-
ment as well as frequencies of words in an entire collection (e.g., TF-IDF
weighting [82]). Quantitative data clustering algorithms [44, 71, 108] can
be used in conjunction with these frequencies in order to determine the
most relevant groups of objects in the data.

However, such naive techniques do not typically work well for clus-
tering text data. This is because text data has a number of unique
properties which necessitate the design of specialized algorithms for the
task. The distinguishing characteristics of the text representation are as
follows:

The dimensionality of the text representation is very large, but the
underlying data is sparse. In other words, the lexicon from which
the documents are drawn may be of the order of 105, but a given
document may contain only a few hundred words. This problem
is even more serious when the documents to be clustered are very
short (e.g., when clustering sentences or tweets).

While the lexicon of a given corpus of documents may be large, the
words are typically correlated with one another. This means that
the number of concepts (or principal components) in the data is
much smaller than the feature space. This necessitates the careful
design of algorithms which can account for word correlations in
the clustering process.

The number of words (or non-zero entries) in the different docu-
ments may vary widely. Therefore, it is important to normalize
the document representations appropriately during the clustering
task.

The sparse and high dimensional representation of the different doc-
uments necessitate the design of text-specific algorithms for document
representation and processing, a topic heavily studied in the information
retrieval literature where many techniques have been proposed to opti-
mize document representation for improving the accuracy of matching
a document with a query [82, 13]. Most of these techniques can also be
used to improve document representation for clustering.
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In order to enable an effective clustering process, the word frequencies
need to be normalized in terms of their relative frequency of presence
in the document and over the entire collection. In general, a common
representation used for text processing is the vector-space based TF-IDF
representation [81]. In the TF-IDF representation, the term frequency
for each word is normalized by the inverse document frequency, or IDF.
The inverse document frequency normalization reduces the weight of
terms which occur more frequently in the collection. This reduces the
importance of common terms in the collection, ensuring that the match-
ing of documents be more influenced by that of more discriminative
words which have relatively low frequencies in the collection. In addi-
tion, a sub-linear transformation function is often applied to the term-
frequencies in order to avoid the undesirable dominating effect of any
single term that might be very frequent in a document. The work on
document-normalization is itself a vast area of research, and a variety of
other techniques which discuss different normalization methods may be
found in [86, 82].

Text clustering algorithms are divided into a wide variety of differ-
ent types such as agglomerative clustering algorithms, partitioning algo-
rithms, and standard parametric modeling based methods such as the
EM-algorithm. Furthermore, text representations may also be treated
as strings (rather than bags of words). These different representations
necessitate the design of different classes of clustering algorithms. Differ-
ent clustering algorithms have different tradeoffs in terms of effectiveness
and efficiency. An experimental comparison of different clustering algo-
rithms may be found in [90, 111]. In this chapter we will discuss a wide
variety of algorithms which are commonly used for text clustering. We
will also discuss text clustering algorithms for related scenarios such as
dynamic data, network-based text data and semi-supervised scenarios.

This chapter is organized as follows. In section 2, we will present fea-
ture selection and transformation methods for text clustering. Section 3
describes a number of common algorithms which are used for distance-
based clustering of text documents. Section 4 contains the description
of methods for clustering with the use of word patterns and phrases.
Methods for clustering text streams are described in section 5. Section
6 describes methods for probabilistic clustering of text data. Section
7 contains a description of methods for clustering text which naturally
occurs in the context of social or web-based networks. Section 8 dis-
cusses methods for semi-supervised clustering. Section 9 presents the
conclusions and summary.
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2. Feature Selection and Transformation
Methods for Text Clustering

The quality of any data mining method such as classification and clus-
tering is highly dependent on the noisiness of the features that are used
for the clustering process. For example, commonly used words such
as “the”, may not be very useful in improving the clustering quality.
Therefore, it is critical to select the features effectively, so that the noisy
words in the corpus are removed before the clustering. In addition to
feature selection, a number of feature transformation methods such as
Latent Semantic Indexing (LSI), Probabilistic Latent Semantic Analysis
(PLSA), and Non-negative Matrix Factorization (NMF) are available to
improve the quality of the document representation and make it more
amenable to clustering. In these techniques (often called dimension re-
duction), the correlations among the words in the lexicon are leveraged
in order to create features, which correspond to the concepts or princi-
pal components in the data. In this section, we will discuss both classes
of methods. A more in-depth discussion of dimension reduction can be
found in Chapter 5.

2.1 Feature Selection Methods

Feature selection is more common and easy to apply in the problem of
text categorization [99] in which supervision is available for the feature
selection process. However, a number of simple unsupervised methods
can also be used for feature selection in text clustering. Some examples
of such methods are discussed below.

2.1.1 Document Frequency-based Selection. The simplest
possible method for feature selection in document clustering is that of
the use of document frequency to filter out irrelevant features. While
the use of inverse document frequencies reduces the importance of such
words, this may not alone be sufficient to reduce the noise effects of
very frequent words. In other words, words which are too frequent in
the corpus can be removed because they are typically common words
such as “a”, “an”, “the”, or “of” which are not discriminative from a
clustering perspective. Such words are also referred to as stop words.
A variety of methods are commonly available in the literature [76] for
stop-word removal. Typically commonly available stop word lists of
about 300 to 400 words are used for the retrieval process. In addition,
words which occur extremely infrequently can also be removed from
the collection. This is because such words do not add anything to the
similarity computations which are used in most clustering methods. In
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some cases, such words may be misspellings or typographical errors in
documents. Noisy text collections which are derived from the web, blogs
or social networks are more likely to contain such terms. We note that
some lines of research define document frequency based selection purely
on the basis of very infrequent terms, because these terms contribute the
least to the similarity calculations. However, it should be emphasized
that very frequent words should also be removed, especially if they are
not discriminative between clusters. Note that the TF-IDF weighting
method can also naturally filter out very common words in a “soft” way.
Clearly, the standard set of stop words provide a valid set of words to
prune. Nevertheless, we would like a way of quantifying the importance
of a term directly to the clustering process, which is essential for more
aggressive pruning. We will discuss a number of such methods below.

2.1.2 Term Strength. A much more aggressive technique for
stop-word removal is proposed in [94]. The core idea of this approach
is to extend techniques which are used in supervised learning to the
unsupervised case. The term strength is essentially used to measure
how informative a word is for identifying two related documents. For
example, for two related documents x and y, the term strength s(t) of
term t is defined in terms of the following probability:

s(t) = P (t ∈ y|t ∈ x) (4.1)

Clearly, the main issue is how one might define the document x and y
as related. One possibility is to use manual (or user) feedback to define
when a pair of documents are related. This is essentially equivalent
to utilizing supervision in the feature selection process, and may be
practical in situations in which predefined categories of documents are
available. On the other hand, it is not practical to manually create
related pairs in large collections in a comprehensive way. It is therefore
desirable to use an automated and purely unsupervised way to define
the concept of when a pair of documents is related. It has been shown
in [94] that it is possible to use automated similarity functions such as
the cosine function [81] to define the relatedness of document pairs. A
pair of documents are defined to be related if their cosine similarity is
above a user-defined threshold. In such cases, the term strength s(t)
can be defined by randomly sampling a number of pairs of such related
documents as follows:

s(t) =
Number of pairs in which t occurs in both

Number of pairs in which t occurs in the first of the pair
(4.2)

Here, the first document of the pair may simply be picked randomly.
In order to prune features, the term strength may be compared to the
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expected strength of a term which is randomly distributed in the training
documents with the same frequency. If the term strength of t is not at
least two standard deviations greater than that of the random word,
then it is removed from the collection.

One advantage of this approach is that it requires no initial supervi-
sion or training data for the feature selection, which is a key requirement
in the unsupervised scenario. Of course, the approach can also be used
for feature selection in either supervised clustering [4] or categoriza-
tion [100], when such training data is indeed available. One observation
about this approach to feature selection is that it is particularly suited to
similarity-based clustering because the discriminative nature of the un-
derlying features is defined on the basis of similarities in the documents
themselves.

2.1.3 Entropy-based Ranking. The entropy-based ranking
approach was proposed in [27]. In this case, the quality of the term is
measured by the entropy reduction when it is removed. Here the entropy
E(t) of the term t in a collection of n documents is defined as follows:

E(t) = −
n∑

i=1

n∑
j=1

(Sij · log(Sij) + (1− Sij) · log(1− Sij)) (4.3)

Here Sij ∈ (0, 1) is the similarity between the ith and jth document in
the collection, after the term t is removed, and is defined as follows:

Sij = 2−
dist(i,j)

dist (4.4)

Here dist(i, j) is the distance between the terms i and j after the term
t is removed, and dist is the average distance between the documents
after the term t is removed. We note that the computation of E(t) for
each term t requires O(n2) operations. This is impractical for a very
large corpus containing many terms. It has been shown in [27] how
this method may be made much more efficient with the use of sampling
methods.

2.1.4 Term Contribution. The concept of term contribution
[62] is based on the fact that the results of text clustering are highly
dependent on document similarity. Therefore, the contribution of a term
can be viewed as its contribution to document similarity. For example,
in the case of dot-product based similarity, the similarity between two
documents is defined as the dot product of their normalized frequencies.
Therefore, the contribution of a term of the similarity of two documents
is the product of their normalized frequencies in the two documents. This
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needs to be summed over all pairs of documents in order to determine the
term contribution. As in the previous case, this method requires O(n2)
time for each term, and therefore sampling methods may be required
to speed up the contribution. A major criticism of this method is that
it tends to favor highly frequent words without regard to the specific
discriminative power within a clustering process.

In most of these methods, the optimization of term selection is based
on some pre-assumed similarity function (e.g., cosine). While this strat-
egy makes these methods unsupervised, there is a concern that the term
selection might be biased due to the potential bias of the assumed sim-
ilarity function. That is, if a different similarity function is assumed,
we may end up having different results for term selection. Thus the
choice of an appropriate similarity function may be important for these
methods.

2.2 LSI-based Methods

In feature selection, we attempt to explicitly select out features from
the original data set. Feature transformation is a different method in
which the new features are defined as a functional representation of the
features in the original data set. The most common class of methods is
that of dimensionality reduction [53] in which the documents are trans-
formed to a new feature space of smaller dimensionality in which the
features are typically a linear combination of the features in the original
data. Methods such as Latent Semantic Indexing (LSI) [28] are based
on this common principle. The overall effect is to remove a lot of di-
mensions in the data which are noisy for similarity based applications
such as clustering. The removal of such dimensions also helps magnify
the semantic effects in the underlying data.

Since LSI is closely related to problem of Principal Component Anal-
ysis (PCA) or Singular Value Decomposition (SVD), we will first discuss
this method, and its relationship to LSI. For a d-dimensional data set,
PCA constructs the symmetric d × d covariance matrix C of the data,
in which the (i, j)th entry is the covariance between dimensions i and j.
This matrix is positive semi-definite, and can be diagonalized as follows:

C = P ·D · P T (4.5)

Here P is a matrix whose columns contain the orthonormal eigenvectors
of C and D is a diagonal matrix containing the corresponding eigenval-
ues. We note that the eigenvectors represent a new orthonormal basis
system along which the data can be represented. In this context, the
eigenvalues correspond to the variance when the data is projected along
this basis system. This basis system is also one in which the second
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order covariances of the data are removed, and most of variance in the
data is captured by preserving the eigenvectors with the largest eigen-
values. Therefore, in order to reduce the dimensionality of the data,
a common approach is to represent the data in this new basis system,
which is further truncated by ignoring those eigenvectors for which the
corresponding eigenvalues are small. This is because the variances along
those dimensions are small, and the relative behavior of the data points
is not significantly affected by removing them from consideration. In
fact, it can be shown that the Euclidian distances between data points
are not significantly affected by this transformation and corresponding
truncation. The method of PCA is commonly used for similarity search
in database retrieval applications.

LSI is quite similar to PCA, except that we use an approximation of
the covariance matrix C which is quite appropriate for the sparse and
high-dimensional nature of text data. Specifically, let A be the n × d
term-document matrix in which the (i, j)th entry is the normalized fre-
quency for term j in document i. Then, AT ·A is a d× d matrix which
is close (scaled) approximation of the covariance matrix, in which the
means have not been subtracted out. In other words, the value of AT ·A
would be the same as a scaled version (by factor n) of the covariance
matrix, if the data is mean-centered. While text-representations are not
mean-centered, the sparsity of text ensures that the use of AT · A is
quite a good approximation of the (scaled) covariances. As in the case
of numerical data, we use the eigenvectors of AT ·A with the largest vari-
ance in order to represent the text. In typical collections, only about
300 to 400 eigenvectors are required for the representation. One excel-
lent characteristic of LSI [28] is that the truncation of the dimensions
removes the noise effects of synonymy and polysemy, and the similarity
computations are more closely affected by the semantic concepts in the
data. This is particularly useful for a semantic application such as text
clustering. However, if finer granularity clustering is needed, such low-
dimensional space representation of text may not be sufficiently discrim-
inative; in information retrieval, this problem is often solved by mixing
the low-dimensional representation with the original high-dimensional
word-based representation (see, e.g., [105]).

A similar technique to LSI, but based on probabilistic modeling is
Probabilistic Latent Semantic Analysis (PLSA) [49]. The similarity and
equivalence of PLSA and LSI are discussed in [49].

2.2.1 Concept Decomposition using Clustering. One
interesting observation is that while feature transformation is often used
as a pre-processing technique for clustering, the clustering itself can be
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used for a novel dimensionality reduction technique known as concept
decomposition [2, 29]. This of course leads to the issue of circularity in
the use of this technique for clustering, especially if clustering is required
in order to perform the dimensionality reduction. Nevertheless, it is still
possible to use this technique effectively for pre-processing with the use
of two separate phases of clustering.

The technique of concept decomposition uses any standard clustering
technique [2, 29] on the original representation of the documents. The
frequent terms in the centroids of these clusters are used as basis vectors
which are almost orthogonal to one another. The documents can then be
represented in a much more concise way in terms of these basis vectors.
We note that this condensed conceptual representation allows for en-
hanced clustering as well as classification. Therefore, a second phase of
clustering can be applied on this reduced representation in order to clus-
ter the documents much more effectively. Such a method has also been
tested in [87] by using word-clusters in order to represent documents.
We will describe this method in more detail later in this chapter.

2.3 Non-negative Matrix Factorization

The non-negative matrix factorization (NMF) technique is a latent-
space method, and is particularly suitable to clustering [97]. As in the
case of LSI, the NMF scheme represents the documents in a new axis-
system which is based on an analysis of the term-document matrix.
However, the NMF method has a number of critical differences from the
LSI scheme from a conceptual point of view. In particular, the NMF
scheme is a feature transformation method which is particularly suited
to clustering. The main conceptual characteristics of the NMF scheme,
which are very different from LSI are as follows:

In LSI, the new basis system consists of a set of orthonormal vec-
tors. This is not the case for NMF.

In NMF, the vectors in the basis system directly correspond to
cluster topics. Therefore, the cluster membership for a document
may be determined by examining the largest component of the
document along any of the vectors. The coordinate of any docu-
ment along a vector is always non-negative. The expression of each
document as an additive combination of the underlying semantics
makes a lot of sense from an intuitive perspective. Therefore, the
NMF transformation is particularly suited to clustering, and it also
provides an intuitive understanding of the basis system in terms
of the clusters.
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Let A be the n × d term document matrix. Let us assume that we
wish to create k clusters from the underlying document corpus. Then,
the non-negative matrix factorization method attempts to determine the
matrices U and V which minimize the following objective function:

J = (1/2) · ||A− U · V T || (4.6)

Here || · || represents the sum of the squares of all the elements in the
matrix, U is an n×k non-negative matrix, and V is a m×k non-negative
matrix. We note that the columns of V provide the k basis vectors which
correspond to the k different clusters.

What is the significance of the above optimization problem? Note
that by minimizing J , we are attempting to factorize A approximately
as:

A ≈ U · V T (4.7)

For each row a of A (document vector), we can rewrite the above equa-
tion as:

a ≈ u · V T (4.8)

Here u is the corresponding row of U . Therefore, the document vector
a can be rewritten as an approximate linear (non-negative) combination
of the basis vector which corresponds to the k columns of V T . If the
value of k is relatively small compared to the corpus, this can only be
done if the column vectors of V T discover the latent structure in the
data. Furthermore, the non-negativity of the matrices U and V ensures
that the documents are expressed as a non-negative combination of the
key concepts (or clustered) regions in the term-based feature space.

Next, we will discuss how the optimization problem for J above is
actually solved. The squared norm of any matrix Q can be expressed as
the trace of the matrix Q ·QT . Therefore, we can express the objective
function above as follows:

J = (1/2) · tr((A− U · V T ) · (A− U · V T )T )

= (1/2) · tr(A ·AT )− tr(A · U · V T ) + (1/2) · tr(U · V T · V · UT )

Thus, we have an optimization problem with respect to the matrices U =
[uij ] and V = [vij ], the entries uij and vij of which are the variables with
respect to which we need to optimize this problem. In addition, since
the matrices are non-negative, we have the constraints that uij ≥ 0 and
vij ≥ 0. This is a typical constrained non-linear optimization problem,
and can be solved using the Lagrange method. Let α = [αij ] and β =
[βij ] be matrices with the same dimensions as U and V respectively.
The elements of the matrices α and β are the corresponding Lagrange
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multipliers for the non-negativity conditions on the different elements of
U and V respectively. We note that tr(α·UT ) is simply equal to

∑
i,j αij ·

uij and tr(β · V T ) is simply equal to
∑

i,j βij · vij . These correspond to
the lagrange expressions for the non-negativity constraints. Then, we
can express the Lagrangian optimization problem as follows:

L = J + tr(α · UT ) + tr(β · V T ) (4.9)

Then, we can express the partial derivative of L with respect to U and
V as follows, and set them to 0:

δL

δU
= −A · V + U · V T · V + α = 0

δL

δV
= −AT · U + V · UT · U + β = 0

We can then multiply the (i, j)th entry of the above (two matrices of)
conditions with uij and vij respectively. Using the Kuhn-Tucker condi-
tions αij · uij = 0 and βij · vij = 0, we get the following:

(A · V )ij · uij − (U · V T · V )ij · uij = 0

(AT · U)ij · vij − (V · UT · U)ij · vij = 0

We note that these conditions are independent of α and β. This leads
to the following iterative updating rules for uij and vij :

uij =
(A · V )ij · uij
(U · V T · V )ij

vij =
(AT · U)ij · vij
(V · UT · U)ij

It has been shown in [58] that the objective function continuously im-
proves under these update rules, and converges to an optimal solution.

One interesting observation about the matrix factorization technique
is that it can also be used to determine word-clusters instead of doc-
ument clusters. Just as the columns of V provide a basis which can
be used to discover document clusters, we can use the columns of U
to discover a basis which correspond to word clusters. As we will see
later, document clusters and word clusters are closely related, and it is
often useful to discover both simultaneously, as in frameworks such as
co-clustering [30, 31, 75]. Matrix-factorization provides a natural way of
achieving this goal. It has also been shown both theoretically and exper-
imentally [33, 93] that the matrix-factorization technique is equivalent
to another graph-structure based document clustering technique known
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as spectral clustering. An analogous technique called concept factoriza-
tion was proposed in [98], which can also be applied to data points with
negative values in them.

3. Distance-based Clustering Algorithms

Distance-based clustering algorithms are designed by using a simi-
larity function to measure the closeness between the text objects. The
most well known similarity function which is used commonly in the text
domain is the cosine similarity function. Let U = (f(u1) . . . f(uk)) and
V = (f(v1) . . . f(vk)) be the damped and normalized frequency term
vector in two different documents U and V . The values u1 . . . uk and
v1 . . . vk represent the (normalized) term frequencies, and the function
f(·) represents the damping function. Typical damping functions for
f(·) could represent either the square-root or the logarithm [25]. Then,
the cosine similarity between the two documents is defined as follows:

cosine(U, V ) =

∑k
i=1 f(ui) · f(vi)√∑k

i=1 f(ui)
2 ·

√∑k
i=1 f(vi)

2

(4.10)

Computation of text similarity is a fundamental problem in informa-
tion retrieval. Although most of the work in information retrieval has
focused on how to assess the similarity of a keyword query and a text doc-
ument, rather than the similarity between two documents, many weight-
ing heuristics and similarity functions can also be applied to optimize the
similarity function for clustering. Effective information retrieval mod-
els generally capture three heuristics, i.e., TF weighting, IDF weighting,
and document length normalization [36]. One effective way to assign
weights to terms when representing a document as a weighted term vec-
tor is the BM25 term weighting method [78], where the normalized TF
not only addresses length normalization, but also has an upper bound
which improves the robustness as it avoids overly rewarding the match-
ing of any particular term. A document can also be represented with
a probability distribution over words (i.e., unigram language models),
and the similarity can then be measured based an information theoretic
measure such as cross entropy or Kullback-Leibler divergencce [105]. For
clustering, symmetric variants of such a similarity function may be more
appropriate.

One challenge in clustering short segments of text (e.g., tweets or
sentences) is that exact keyword matching may not work well. One gen-
eral strategy for solving this problem is to expand text representation
by exploiting related text documents, which is related to smoothing of
a document language model in information retrieval [105]. A specific
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technique, which leverages a search engine to expand text representa-
tion, was proposed in [79]. A comparison of several simple measures for
computing similarity of short text segments can be found in [66].

These similarity functions can be used in conjunction with a wide vari-
ety of traditional clustering algorithms [50, 54]. In the next subsections,
we will discuss some of these techniques.

3.1 Agglomerative and Hierarchical Clustering
Algorithms

Hierarchical clustering algorithms have been studied extensively in
the clustering literature [50, 54] for records of different kinds including
multidimensional numerical data, categorical data and text data. An
overview of the traditional agglomerative and hierarchical clustering al-
gorithms in the context of text data is provided in [69, 70, 92, 96]. An
experimental comparison of different hierarchical clustering algorithms
may be found in [110]. The method of agglomerative hierarchical clus-
tering is particularly useful to support a variety of searching methods
because it naturally creates a tree-like hierarchy which can be leveraged
for the search process. In particular, the effectiveness of this method in
improving the search efficiency over a sequential scan has been shown in
[51, 77].

The general concept of agglomerative clustering is to successively
merge documents into clusters based on their similarity with one an-
other. Almost all the hierarchical clustering algorithms successively
merge groups based on the best pairwise similarity between these groups
of documents. The main differences between these classes of methods
are in terms of how this pairwise similarity is computed between the
different groups of documents. For example, the similarity between a
pair of groups may be computed as the best-case similarity, average-
case similarity, or worst-case similarity between documents which are
drawn from these pairs of groups. Conceptually, the process of agglom-
erating documents into successively higher levels of clusters creates a
cluster hierarchy (or dendogram) for which the leaf nodes correspond to
individual documents, and the internal nodes correspond to the merged
groups of clusters. When two groups are merged, a new node is created
in this tree corresponding to this larger merged group. The two children
of this node correspond to the two groups of documents which have been
merged to it.

The different methods for merging groups of documents for the dif-
ferent agglomerative methods are as follows:
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Single Linkage Clustering: In single linkage clustering, the sim-
ilarity between two groups of documents is the greatest similarity
between any pair of documents from these two groups. In single
link clustering we merge the two groups which are such that their
closest pair of documents have the highest similarity compared to
any other pair of groups. The main advantage of single linkage
clustering is that it is extremely efficient to implement in practice.
This is because we can first compute all similarity pairs and sort
them in order of reducing similarity. These pairs are processed in
this pre-defined order and the merge is performed successively if
the pairs belong to different groups. It can be easily shown that
this approach is equivalent to the single-linkage method. This is
essentially equivalent to a spanning tree algorithm on the complete
graph of pairwise-distances by processing the edges of the graph
in a certain order. It has been shown in [92] how Prim’s minimum
spanning tree algorithm can be adapted to single-linkage cluster-
ing. Another method in [24] designs the single-linkage method
in conjunction with the inverted index method in order to avoid
computing zero similarities.

The main drawback of this approach is that it can lead to the
phenomenon of chaining in which a chain of similar documents
lead to disparate documents being grouped into the same clusters.
In other words, if A is similar to B and B is similar to C, it does not
always imply that A is similar to C, because of lack of transitivity
in similarity computations. Single linkage clustering encourages
the grouping of documents through such transitivity chains. This
can often lead to poor clusters, especially at the higher levels of the
agglomeration. Effective methods for implementing single-linkage
clustering for the case of document data may be found in [24, 92].

Group-Average Linkage Clustering: In group-average linkage
clustering, the similarity between two clusters is the average simi-
larity between the pairs of documents in the two clusters. Clearly,
the average linkage clustering process is somewhat slower than
single-linkage clustering, because we need to determine the aver-
age similarity between a large number of pairs in order to deter-
mine group-wise similarity. On the other hand, it is much more
robust in terms of clustering quality, because it does not exhibit
the chaining behavior of single linkage clustering. It is possible
to speed up the average linkage clustering algorithm by approxi-
mating the average linkage similarity between two clusters C1 and
C2 by computing the similarity between the mean document of C1
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and the mean document of C2. While this approach does not work
equally well for all data domains, it works particularly well for the
case of text data. In this case, the running time can be reduced
to O(n2), where n is the total number of nodes. The method can
be implemented quite efficiently in the case of document data, be-
cause the centroid of a cluster is simply the concatenation of the
documents in that cluster.

Complete Linkage Clustering: In this technique, the similarity
between two clusters is the worst-case similarity between any pair
of documents in the two clusters. Complete-linkage clustering can
also avoid chaining because it avoids the placement of any pair of
very disparate points in the same cluster. However, like group-
average clustering, it is computationally more expensive than the
single-linkage method. The complete linkage clustering method
requires O(n2) space and O(n3) time. The space requirement can
however be significantly lower in the case of the text data domain,
because a large number of pairwise similarities are zero.

Hierarchical clustering algorithms have also been designed in the context
of text data streams. A distributional modeling method for hierarchical
clustering of streaming documents has been proposed in [80]. The main
idea is to model the frequency of word-presence in documents with the
use of a multi-poisson distribution. The parameters of this model are
learned in order to assign documents to clusters. The method extends
the COBWEB and CLASSIT algorithms [37, 40] to the case of text data.
The work in [80] studies the different kinds of distributional assumptions
of words in documents. We note that these distributional assumptions
are required to adapt these algorithms to the case of text data. The
approach essentially changes the distributional assumption so that the
method can work effectively for text data.

3.2 Distance-based Partitioning Algorithms

Partitioning algorithms are widely used in the database literature in
order to efficiently create clusters of objects. The two most widely used
distance-based partitioning algorithms [50, 54] are as follows:

k-medoid clustering algorithms: In k-medoid clustering algo-
rithms, we use a set of points from the original data as the anchors
(or medoids) around which the clusters are built. The key aim
of the algorithm is to determine an optimal set of representative
documents from the original corpus around which the clusters are
built. Each document is assigned to its closest representative from
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the collection. This creates a running set of clusters from the cor-
pus which are successively improved by a randomized process.

The algorithm works with an iterative approach in which the set
of k representatives are successively improved with the use of ran-
domized inter-changes. Specifically, we use the average similarity
of each document in the corpus to its closest representative as the
objective function which needs to be improved during this inter-
change process. In each iteration, we replace a randomly picked
representative in the current set of medoids with a randomly picked
representative from the collection, if it improves the clustering ob-
jective function. This approach is applied until convergence is
achieved.

There are two main disadvantages of the use of k-medoids based
clustering algorithms, one of which is specific to the case of text
data. One general disadvantage of k-medoids clustering algorithms
is that they require a large number of iterations in order to achieve
convergence and are therefore quite slow. This is because each iter-
ation requires the computation of an objective function whose time
requirement is proportional to the size of the underlying corpus.

The second key disadvantage is that k-medoid algorithms do not
work very well for sparse data such as text. This is because a large
fraction of document pairs do not have many words in common,
and the similarities between such document pairs are small (and
noisy) values. Therefore, a single document medoid often does
not contain all the concepts required in order to effectively build a
cluster around it. This characteristic is specific to the case of the
information retrieval domain, because of the sparse nature of the
underlying text data.

k-means clustering algorithms: The k-means clustering algo-
rithm also uses a set of k representatives around which the clusters
are built. However, these representatives are not necessarily ob-
tained from the original data and are refined somewhat differently
than a k-medoids approach. The simplest form of the k-means ap-
proach is to start off with a set of k seeds from the original corpus,
and assign documents to these seeds on the basis of closest sim-
ilarity. In the next iteration, the centroid of the assigned points
to each seed is used to replace the seed in the last iteration. In
other words, the new seed is defined, so that it is a better central
point for this cluster. This approach is continued until conver-
gence. One of the advantages of the k-means method over the
k-medoids method is that it requires an extremely small number



94 MINING TEXT DATA

of iterations in order to converge. Observations from [25, 83] seem
to suggest that for many large data sets, it is sufficient to use 5 or
less iterations for an effective clustering. The main disadvantage
of the k-means method is that it is still quite sensitive to the initial
set of seeds picked during the clustering. Secondly, the centroid
for a given cluster of documents may contain a large number of
words. This will slow down the similarity calculations in the next
iteration. A number of methods are used to reduce these effects,
which will be discussed later on in this chapter.

The initial choice of seeds affects the quality of k-means clustering, espe-
cially in the case of document clustering. Therefore, a number of tech-
niques are used in order to improve the quality of the initial seeds which
are picked for the clustering process. For example, another lightweight
clustering method such as an agglomerative clustering technique can be
used in order to decide the initial set of seeds. This is at the core of
the method discussed in [25] for effective document clustering. We will
discuss this method in detail in the next subsection.

A second method for improving the initial set of seeds is to use some
form of partial supervision in the process of initial seed creation. This
form of partial supervision can also be helpful in creating clusters which
are designed for particular application-specific criteria. An example of
such an approach is discussed in [4] in which we pick the initial set
of seeds as the centroids of the documents crawled from a particular
category if the Y ahoo! taxonomy. This also has the effect that the
final set of clusters are grouped by the coherence of content within the
different Y ahoo! categories. The approach has been shown to be quite
effective for use in a number of applications such as text categorization.
Such semi-supervised techniques are particularly useful for information
organization in cases where the starting set of categories is somewhat
noisy, but contains enough information in order to create clusters which
satisfy a pre-defined kind of organization.

3.3 A Hybrid Approach: The Scatter-Gather
Method

While hierarchical clustering methods tend to be more robust because
of their tendency to compare all pairs of documents, they are generally
not very efficient, because of their tendency to require at least O(n2)
time. On the other hand, k-means type algorithms are more efficient
than hierarchical algorithms, but may sometimes not be very effective
because of their tendency to rely on a small number of seeds.
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The method in [25] uses both hierarchical and partitional clustering
algorithms to good effect. Specifically, it uses a hierarchical clustering
algorithm on a sample of the corpus in order to find a robust initial set
of seeds. This robust set of seeds is used in conjunction with a standard
k-means clustering algorithm in order to determine good clusters. The
size of the sample in the initial phase is carefully tailored so as to provide
the best possible effectiveness without this phase becoming a bottleneck
in algorithm execution.

There are two possible methods for creating the initial set of seeds,
which are referred to as buckshot and fractionation respectively. These
are two alternative methods, and are described as follows:

Buckshot: Let k be the number of clusters to be found and n
be the number of documents in the corpus. Instead of picking the
k seeds randomly from the collection, the buckshot scheme picks
an overestimate

√
k · n of the seeds, and then agglomerates these

to k seeds. Standard agglomerative hierarchical clustering algo-
rithms (requiring quadratic time) are applied to this initial sample
of

√
k · n seeds. Since we use quadratically scalable algorithms in

this phase, this approach requires O(k ·n) time. We note that this
seed set is much more robust than one which simply samples for k
seeds, because of the summarization of a large document sample
into a robust set of k seeds.

Fractionation: The fractionation algorithm initially breaks up
the corpus into n/m buckets of size m > k each. An agglomerative
algorithm is applied to each of these buckets to reduce them by a
factor of ν. Thus, at the end of the phase, we have a total of ν · n
agglomerated points. The process is repeated by treating each of
these agglomerated points as an individual record. This is achieved
by merging the different documents within an agglomerated cluster
into a single document. The approach terminates when a total of
k seeds remain. We note that the the agglomerative clustering of
each group ofm documents in the first iteration of the fractionation
algorithm requires O(m2) time, which sums to O(n ·m) over the
n/m different groups. Since, the number of individuals reduces
geometrically by a factor of ν in each iteration, the total running
time over all iterations is O(n ·m · (1+μ+ ν2+ . . .)). For constant
ν < 1, the running time over all iterations is still O(n · m). By
picking m = O(k), we can still ensure a running time of O(n · k)
for the initialization procedure.

The Buckshot and Fractionation procedures require O(k·n) time which is
also equivalent to running time of one iteration of the k means algorithm.
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Each iteration of the K-means algorithm also requires O(k · n) time
because we need to compute the similarity of the n documents to the k
different seeds.

We further note that the fractionation procedure can be applied to
a random grouping of the documents into n/m different buckets. Of
course, one can also replace the random grouping approach with a more
carefully designed procedure for more effective results. One such pro-
cedure is to sort the documents by the index of the jth most common
word in the document. Here j is chosen to be a small number such
as 3, which corresponds to medium frequency words in the data. The
documents are then partitioned into groups based on this sort order by
segmenting out continuous groups of m documents. This approach en-
sures that the groups created have at least a few common words in them
and are therefore not completely random. This can sometimes provide a
better quality of the centers which are determined by the fractionation
algorithm.

Once the initial cluster centers have been determined with the use of
the Buckshot or Fractionation algorithms we can apply standard k-means
partitioning algorithms. Specifically, we each document is assigned to
the nearest of the k cluster centers. The centroid of each such cluster is
determined as the concatenation of the different documents in a cluster.
These centroids replace the sets of seeds from the last iteration. This
process can be repeated in an iterative approach in order to successively
refine the centers for the clusters. Typically, only a smaller number of
iterations are required, because the greatest improvements occur only in
the first few iterations.

It is also possible to use a number of procedures to further improve
the quality of the underlying clusters. These procedures are as follows:

Split Operation: The process of splitting can be used in order to
further refine the clusters into groups of better granularity. This
can be achieved by applying the buckshot procedure on the individ-
ual documents in a cluster by using k = 2, and then re-clustering
around these centers. This entire procedure requires O(k ·ni) time
for a cluster containing ni data points, and therefore splitting all
the groups requires O(k · n) time. However, it is not necessary
to split all the groups. Instead, only a subset of the groups can
be split. Those are the groups which are not very coherent and
contain documents of a disparate nature. In order to measure the
coherence of a group, we compute the self-similarity of a cluster.
This self-similarity provides us with an understanding of the un-
derlying coherence. This quantity can be computed both in terms
of the similarity of the documents in a cluster to its centroid or
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in terms of the similarity of the cluster documents to each other.
The split criterion can then be applied selectively only to those
clusters which have low self similarity. This helps in creating more
coherent clusters.

Join Operation: The join operation attempts to merge similar
clusters into a single cluster. In order to perform the merge, we
compute the topical words of each cluster by examining the most
frequent words of the centroid. Two clusters are considered similar,
if there is significant overlap between the topical words of the two
clusters.

We note that the method is often referred to as the Scatter-Gather
clustering method, but this is more because of how the clustering method
has been presented in terms of its use for browsing large collections in
the original paper [25]. The scatter-gather approach can be used for
organized browsing of large document collections, because it creates a
natural hierarchy of similar documents. In particular, a user may wish
to browse the hierarchy of clusters in an interactive way in order to
understand topics of different levels of granularity in the collection. One
possibility is to perform a hierarchical clustering a-priori; however such
an approach has the disadvantage that it is unable to merge and re-
cluster related branches of the tree hierarchy on-the-fly when a user
may need it. A method for constant-interaction time browsing with
the use of the scatter-gather approach has been presented in [26]. This
approach presents the keywords associated with the different keywords
to a user. The user may pick one or more of these keywords, which also
corresponds to one or more clusters. The documents in these clusters
are merged and re-clustered to a finer-granularity on-the-fly. This finer
granularity of clustering is presented to the user for further exploration.
The set of documents which is picked by the user for exploration is
referred to as the focus set. Next we will explain how this focus set is
further explored and re-clustered on the fly in constant-time.

The key assumption in order to enable this approach is the cluster
refinement hypothesis. This hypothesis states that documents which be-
long to the same cluster in a significantly finer granularity partitioning
will also occur together in a partitioning with coarser granularity. The
first step is to create a hierarchy of the documents in the clusters. A
variety of agglomerative algorithms such as the buckshot method can be
used for this purpose. We note that each (internal) node of this tree can
be viewed as a meta-document corresponding to the concatenation of all
the documents in the leaves of this subtree. The cluster-refinement hy-
pothesis allows us to work with a smaller set of meta-documents rather
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than the entire set of documents in a particular subtree. The idea is
to pick a constant M which represents the maximum number of meta-
documents that we are willing to re-cluster with the use of the interactive
approach. The tree nodes in the focus set are then expanded (with pri-
ority to the branches with largest degree), to a maximum of M nodes.
These M nodes are then re-clustered on-the-fly with the scatter-gather
approach. This requires constant time because of the use of a constant
number M of meta-documents in the clustering process. Thus, by work-
ing with the meta-documents for M . we assume the cluster-refinement
hypothesis of all nodes of the subtree at the lower level. Clearly, a larger
value of M does not assume the cluster-refinement hypothesis quite as
strongly, but also comes at a higher cost. The details of the algorithm
are described in [26]. Some extensions of this approach are also pre-
sented in [85], in which it has been shown how this approach can be used
to cluster arbitrary corpus subsets of the documents in constant time.
Another recent online clustering algorithm called LAIR2 [55] provides
constant-interaction time for Scatter/Gather browsing. The paralleliza-
tion of this algorithm is significantly faster than a corresponding version
of the Buckshot algorithm. It has also been suggested that the LAIR2
algorithm leads to better quality clusters in the data.

3.3.1 Projections for Efficient Document Clustering.
One of the challenges of the scatter-gather algorithm is that even though
the algorithm is designed to balance the running times of the agglomer-
ative and partitioning phases quite well, it sometimes suffer a slowdown
in large document collections because of the massive number of distinct
terms that a given cluster centroid may contain. Recall that a cluster
centroid in the scatter-gather algorithm is defined as the concatenation
of all the documents in that collection. When the number of documents
in the cluster is large, this will also lead to a large number of distinct
terms in the centroid. This will also lead to a slow down of a number of
critical computations such as similarity calculations between documents
and cluster centroids.

An interesting solution to this problem has been proposed in [83]. The
idea is to use the concept of projection in order to reduce the dimensional-
ity of the document representation. Such a reduction in dimensionality
will lead to significant speedups, because the similarity computations
will be made much more efficient. The work in [83] proposes three kinds
of projections:

Global Projection: In global projection, the dimensionality of
the original data set is reduced in order to remove the least im-
portant (weighted) terms from the data. The weight of a term is
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defined as the aggregate of the (normalized and damped) frequen-
cies of the terms in the documents.

Local Projection: In local projection, the dimensionality of the
documents in each cluster are reduced with a locally specific ap-
proach for that cluster. Thus, the terms in each cluster centroid
are truncated separately. Specifically, the least weight terms in the
different cluster centroids are removed. Thus, the terms removed
from each document may be different, depending upon their local
importance.

Latent Semantic Indexing: In this case, the document-space is
transformed with an LSI technique, and the clustering is applied
to the transformed document space. We note that the LSI tech-
nique can also be applied either globally to the whole document
collection, or locally to each cluster if desired.

It has been shown in [83] that the projection approaches provide com-
petitive results in terms of effectiveness while retaining an extremely
high level of efficiency with respect to all the competing approaches. In
this sense, the clustering methods are different from similarity search
because they show little degradation in quality, when projections are
performed. One of the reasons for this is that clustering is a much less
fine grained application as compared to similarity search, and therefore
there is no perceptible difference in quality even when we work with a
truncated feature space.

4. Word and Phrase-based Clustering

Since text documents are drawn from an inherently high-dimensional
domain, it can be useful to view the problem in a dual way, in which
important clusters of words may be found and utilized for finding clus-
ters of documents. In a corpus containing d terms and n documents,
one may view a term-document matrix as an n × d matrix, in which
the (i, j)th entry is the frequency of the jth term in the ith document.
We note that this matrix is extremely sparse since a given document
contains an extremely small fraction of the universe of words. We note
that the problem of clustering rows in this matrix is that of clustering
documents, whereas that of clustering columns in this matrix is that
of clustering words. In reality, the two problems are closely related, as
good clusters of words may be leveraged in order to find good clusters
of documents and vice-versa. For example, the work in [16] determines
frequent itemsets of words in the document collection, and uses them to
determine compact clusters of documents. This is somewhat analogous
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to the use of clusters of words [87] for determining clusters of documents.
The most general technique for simultaneous word and document clus-
tering is referred to as co-clustering [30, 31]. This approach simultaneous
clusters the rows and columns of the term-document matrix, in order to
create such clusters. This can also be considered to be equivalent to the
problem of re-ordering the rows and columns of the term-document ma-
trix so as to create dense rectangular blocks of non-zero entries in this
matrix. In some cases, the ordering information among words may be
used in order to determine good clusters. The work in [103] determines
the frequent phrases in the collection and leverages them in order to
determine document clusters.

It is important to understand that the problem of word clusters and
document clusters are essentially dual problems which are closely re-
lated to one another. The former is related to dimensionality reduction,
whereas the latter is related to traditional clustering. The boundary be-
tween the two problems is quite fluid, because good word clusters provide
hints for finding good document clusters and vice-versa. For example,
a more general probabilistic framework which determines word clusters
and document clusters simultaneously is referred to as topic modeling
[49]. Topic modeling is a more general framework than either cluster-
ing or dimensionality reduction. We will introduce the method of topic
modeling in a later section of this chapter. A more detailed treatment
is also provided in the next chapter in this book, which is on dimen-
sionality reduction, and in Chapter 8 where a more general discussion
of probabilistic models for text mining is given.

4.1 Clustering with Frequent Word Patterns

Frequent pattern mining [8] is a technique which has been widely used
in the data mining literature in order to determine the most relevant pat-
terns in transactional data. The clustering approach in [16] is designed
on the basis of such frequent pattern mining algorithms. A frequent
itemset in the context of text data is also referred to as a frequent term
set, because we are dealing with documents rather than transactions.
The main idea of the approach is to not cluster the high dimensional
document data set, but consider the low dimensional frequent term sets
as cluster candidates. This essentially means that a frequent terms set
is a description of a cluster which corresponds to all the documents
containing that frequent term set. Since a frequent term set can be con-
sidered a description of a cluster, a set of carefully chosen frequent terms
sets can be considered a clustering. The appropriate choice of this set
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of frequent term sets is defined on the basis of the overlaps between the
supporting documents of the different frequent term sets.

The notion of clustering defined in [16] does not necessarily use a strict
partitioning in order to define the clusters of documents, but it allows
a certain level of overlap. This is a natural property of many term- and
phrase-based clustering algorithms because one does not directly control
the assignment of documents to clusters during the algorithm execution.
Allowing some level of overlap between clusters may sometimes be more
appropriate, because it recognizes the fact that documents are complex
objects and it is impossible to cleanly partition documents into specific
clusters, especially when some of the clusters are partially related to one
another. The clustering definition of [16] assumes that each document
is covered by at least one frequent term set.

Let R be the set of chosen frequent term sets which define the cluster-
ing. Let fi be the number of frequent term sets in R which are contained
in the ith document. The value of fi is at least one in order to ensure
complete coverage, but we would otherwise like it to be as low as possi-
ble in order to minimize overlap. Therefore, we would like the average
value of (fi − 1) for the documents in a given cluster to be as low as
possible. We can compute the average value of (fi − 1) for the docu-
ments in the cluster and try to pick frequent term sets such that this
value is as low as possible. However, such an approach would tend to
favor frequent term sets containing very few terms. This is because if a
term set contains m terms, then all subsets of it would also be covered
by the document, as a result of which the standard overlap would be
increased. The entropy overlap of a given term is essentially the sum of
the values of −(1/fi) · log(1/fi) over all documents in the cluster. This
value is 0, when each document has fi = 1, and increases monotonically
with increasing fi values.

It then remains to describe how the frequent term sets are selected
from the collection. Two algorithms are described in [16], one of which
corresponds to a flat clustering, and the other corresponds to a hierar-
chical clustering. We will first describe the method for flat clustering.
Clearly, the search space of frequent terms is exponential, and therefore
a reasonable solution is to utilize a greedy algorithm to select the fre-
quent terms sets. In each iteration of the greedy algorithm, we pick the
frequent term set with a cover having the minimum overlap with other
cluster candidates. The documents covered by the selected frequent term
are removed from the database, and the overlap in the next iteration is
computed with respect to the remaining documents.

The hierarchical version of the algorithm is similar to the broad idea in
flat clustering, with the main difference that each level of the clustering
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is applied to a set of term sets containing a fixed number k of terms. In
other words, we are working only with frequent patterns of length k for
the selection process. The resulting clusters are then further partitioned
by applying the approach for (k+1)-term sets. For further partitioning
a given cluster, we use only those (k + 1)-term sets which contain the
frequent k-term set defining that cluster. More details of the approach
may be found in [16].

4.2 Leveraging Word Clusters for Document
Clusters

A two phase clustering procedure is discussed in [87], which uses the
following steps to perform document clustering:

In the first phase, we determine word-clusters from the documents
in such a way that most of mutual information between words and
documents is preserved when we represent the documents in terms
of word clusters rather than words.

In the second phase, we use the condensed representation of the
documents in terms of word-clusters in order to perform the final
document clustering. Specifically, we replace the word occurrences
in documents with word-cluster occurrences in order to perform the
document clustering. One advantage of this two-phase procedure
is the significant reduction in the noise in the representation.

Let X = x1 . . . xn be the random variables corresponding to the rows
(documents), and let Y = y1 . . . yd be the random variables correspond-
ing to the columns (words). We would like to partition X into k clusters,

and Y into l clusters. Let the clusters be denoted by X̂ = x̂1 . . . x̂k and
Ŷ = ŷ1 . . . ŷl. In other words, we wish to find the maps CX and CY ,
which define the clustering:

CX : x1 . . . xn ⇒ x̂1 . . . x̂k

CY : y1 . . . yd ⇒ ŷ1 . . . ŷl

In the first phase of the procedure we cluster Y to Ŷ , so that most
of the information in I(X,Y ) is preserved in I(X, Ŷ ). In the second

phase, we perform the clustering again from X to X̂ using exactly the
same procedure so that as much information as possible from I(X, Ŷ )

is preserved in I(X̂, Ŷ ). Details of how each phase of the clustering is
performed is provided in [87].

How to discover interesting word clusters (which can be leveraged for
document clustering) has itself attracted attention in the natural lan-
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guage processing research community, with particular interests in discov-
ering word clusters that can characterize word senses [34] or a semantic
concept [21]. In [34], for example, the Markov clustering algorithm was
applied to discover corpus-specific word senses in an unsupervised way.
Specifically, a word association graph is first constructed in which related
words would be connected with an edge. For a given word that poten-
tially has multiple senses, we can then isolate the subgraph representing
its neighbors. These neighbors are expected to form clusters according to
different senses of the target word, thus by grouping together neighbors
that are well connected with each other, we can discover word clusters
that characterize different senses of the target word. In [21], an n-gram
class language model was proposed to cluster words based on minimiz-
ing the loss of mutual information between adjacent words, which can
achieve the effect of grouping together words that share similar context
in natural language text.

4.3 Co-clustering Words and Documents

In many cases, it is desirable to simultaneously cluster the rows and
columns of the contingency table, and explore the interplay between
word clusters and document clusters during the clustering process. Since
the clusters among words and documents are clearly related, it is often
desirable to cluster both simultaneously when when it is desirable to find
clusters along one of the two dimensions. Such an approach is referred
to as co-clustering [30, 31]. Co-clustering is defined as a pair of maps
from rows to row-cluster indices and columns to column-cluster indices.
These maps are determined simultaneously by the algorithm in order to
optimize the corresponding cluster representations.

We further note that the matrix factorization approach [58] discussed
earlier in this chapter can be naturally used for co-clustering because it
discovers word clusters and document clusters simultaneously. In that
section, we have also discussed how matrix factorization can be viewed
as a co-clustering technique. While matrix factorization has not widely
been used as a technique for co-clustering, we point out this natural
connection, as possible exploration for future comparison with other co-
clustering methods. Some recent work [60] has shown how matrix fac-
torization can be used in order to transform knowledge from word space
to document space in the context of document clustering techniques.

The problem of co-clustering is also closely related to the problem
of subspace clustering [7] or projected clustering [5] in quantitative data
in the database literature. In this problem, the data is clustered by
simultaneously associating it with a set of points and subspaces in multi-
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dimensional space. The concept of co-clustering is a natural application
of this broad idea to data domains which can be represented as sparse
high dimensional matrices in which most of the entries are 0. Therefore,
traditional methods for subspace clustering can also be extended to the
problem of co-clustering. For example, an adaptive iterative subspace
clustering method for documents was proposed in [59].

We note that subspace clustering or co-clustering can be considered a
form of local feature selection, in which the features selected are specific
to each cluster. A natural question arises, as to whether the features can
be selected as a linear combination of dimensions as in the case of tra-
ditional dimensionality reduction techniques such as PCA [53]. This is
also known as local dimensionality reduction [22] or generalized projected
clustering [6] in the traditional database literature. In this method,
PCA-based techniques are used in order to generate subspace represen-
tations which are specific to each cluster, and are leveraged in order to
achieve a better clustering process. In particular, such an approach has
recently been designed [32], which has been shown to work well with
document data.

In this section, we will study two well known methods for document
co-clustering, which are commonly used in the document clustering liter-
ature. One of these methods uses graph-based term-document represen-
tations [30] and the other uses information theory [31]. We will discuss
both of these methods below.

4.3.1 Co-clustering with graph partitioning. The core
idea in this approach [30] is to represent the term-document matrix as a
bipartite graph G = (V1 ∪ V2, E), where V1 and V2 represent the vertex
sets in the two bipartite portions of this graph, and E represents the
edge set. Each node in V1 corresponds to one of the n documents, and
each node in V2 corresponds to one of the d terms. An undirected edge
exists between node i ∈ V1 and node j ∈ V2 if document i contains the
term j. We note that there are no edges in E directly between terms,
or directly between documents. Therefore, the graph is bipartite. The
weight of each edge is the corresponding normalized term-frequency.

We note that a word partitioning in this bipartite graph induces a
document partitioning and vice-versa. Given a partitioning of the doc-
uments in this graph, we can associate each word with the document
cluster to which it is connected with the most weight of edges. Note
that this criterion also minimizes the weight of the edges across the par-
titions. Similarly, given a word partitioning, we can associate each docu-
ment with the word partition to which it is connected with the greatest
weight of edges. Therefore, a natural solution to this problem would
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be simultaneously perform the k-way partitioning of this graph which
minimizes the total weight of the edges across the partitions. This is of
course a classical problem in the graph partitioning literature. In [30],
it has been shown how a spectral partitioning algorithm can be used
effectively for this purpose. Another method discussed in [75] uses an
isometric bipartite graph-partitioning approach for the clustering pro-
cess.

4.3.2 Information-Theoretic Co-clustering. In [31], the
optimal clustering has been defined to be one which maximizes the mu-
tual information between the clustered random variables. The normal-
ized non-negative contingency table is treated as a joint probability dis-
tribution between two discrete random variables which take values over
rows and columns. Let X = x1 . . . xn be the random variables corre-
sponding to the rows, and let Y = y1 . . . yd be the random variables
corresponding to the columns. We would like to partition X into k clus-
ters, and Y into l clusters. Let the clusters be denoted by X̂ = x̂1 . . . x̂k
and Ŷ = ŷ1 . . . ŷl. In other words, we wish to find the maps CX and CY ,
which define the clustering:

CX : x1 . . . xn ⇒ x̂1 . . . x̂k

CY : y1 . . . yd ⇒ ŷ1 . . . ŷl

The partition functions CX and CY are allowed to depend on the joint
probability distribution p(X,Y ). We note that since X̂ and Ŷ are higher
level clusters ofX and Y , there is loss in mutual information in the higher
level representations. In other words, the distribution p(X̂, Ŷ ) contains

less information than p(X,Y ), and the mutual information I(X̂, Ŷ ) is
lower than the mutual information I(X,Y ). Therefore, the optimal co-
clustering problem is to determine the mapping which minimizes the loss
in mutual information. In other words, we wish to find a co-clustering for
which I(X,Y )− I(X̂, Ŷ ) is as small as possible. An iterative algorithm
for finding a co-clustering which minimizes mutual information loss is
proposed in [29].

4.4 Clustering with Frequent Phrases

One of the key differences of this method from other text clustering
methods is that it treats a document as a string as opposed to a bag of
words. Specifically, each document is treated as a string of words, rather
than characters. The main difference between the string representation
and the bag-of-words representation is that the former also retains or-
dering information for the clustering process. As is the case with many
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clustering methods, it uses an indexing method in order to organize the
phrases in the document collection, and then uses this organization to
create the clusters [103, 104]. Several steps are used in order to create
the clusters:
(1) The first step is to perform the cleaning of the strings representing
the documents. A light stemming algorithm is used by deleting word
prefixes and suffixes and reducing plural to singular. Sentence bound-
aries are marked and non-word tokens are stripped.
(2) The second step is the identification of base clusters. These are
defined by the frequent phases in the collection which are represented
in the form of a suffix tree. A suffix tree [45] is essentially a trie which
contains all the suffixes of the entire collection. Each node of the suffix
tree represents a group of documents, and a phrase which is common to
all these documents. Since each node of the suffix-tree also corresponds
to a group of documents, it also corresponds to a base clustering. Each
base cluster is given a score which is essentially the product of the num-
ber of documents in that cluster and a non-decreasing function of the
length of the underlying phrase. Therefore, clusters containing a large
number of documents, and which are defined by a relatively long phrase
are more desirable.
(3) An important characteristic of the base clusters created by the suf-
fix tree is that they do not define a strict partitioning and have overlaps
with one another. For example, the same document may contain mul-
tiple phrases in different parts of the suffix tree, and will therefore be
included in the corresponding document groups. The third step of the
algorithm merges the clusters based on the similarity of their underlying
document sets. Let P and Q be the document sets corresponding to two
clusters. The base similarity BS(P,Q) is defined as follows:

BS(P,Q) =

⌊ |P ∩Q|
max{|P |, |Q|} + 0.5

⌋
(4.11)

This base similarity is either 0 or 1, depending upon whether the two
groups have at least 50% of their documents in common. Then, we con-
struct a graph structure in which the nodes represent the base clusters,
and an edge exists between two cluster nodes, if the corresponding base
similarity between that pair of groups is 1. The connected components
in this graph define the final clusters. Specifically, the union of the
groups of documents in each connected component is used as the final
set of clusters. We note that the final set of clusters have much less over-
lap with one another, but they still do not define a strict partitioning.
This is sometimes the case with clustering algorithms in which modest
overlaps are allowed to enable better clustering quality.
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5. Probabilistic Document Clustering and Topic
Models

A popular method for probabilistic document clustering is that of
topic modeling. The idea of topic modeling is to create a probabilistic
generative model for the text documents in the corpus. The main ap-
proach is to represent a corpus as a function of hidden random variables,
the parameters of which are estimated using a particular document col-
lection. The primary assumptions in any topic modeling approach (to-
gether with the corresponding random variables) are as follows:

The n documents in the corpus are assumed to have a probability
of belonging to one of k topics. Thus, a given document may have
a probability of belonging to multiple topics, and this reflects the
fact that the same document may contain a multitude of subjects.
For a given document Di, and a set of topics T1 . . . Tk, the prob-
ability that the document Di belongs to the topic Tj is given by
P (Tj |Di). We note that the the topics are essentially analogous to
clusters, and the value of P (Tj |Di) provides a probability of clus-
ter membership of the ith document to the jth cluster. In non-
probabilistic clustering methods, the membership of documents to
clusters is deterministic in nature, and therefore the clustering is
typically a clean partitioning of the document collection. However,
this often creates challenges, when there are overlaps in document
subject matter across multiple clusters. The use of a soft cluster
membership in terms of probabilities is an elegant solution to this
dilemma. In this scenario, the determination of the membership of
the documents to clusters is a secondary goal to that of finding the
latent topical clusters in the underlying text collection. Therefore,
this area of research is referred to as topic modeling, and while it is
related to the clustering problem, it is often studied as a distinct
area of research from clustering.

The value of P (Tj |Di) is estimated using the topic modeling ap-
proach, and is one of the primary outputs of the algorithm. The
value of k is one of the inputs to the algorithm and is analogous
to the number of clusters.

Each topic is associated with a probability vector, which quantifies
the probability of the different terms in the lexicon for that topic.
Let t1 . . . td be the d terms in the lexicon. Then, for a document
that belongs completely to topic Tj , the probability that the term
tl occurs in it is given by P (tl|Tj). The value of P (tl|Tj) is another
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important parameter which needs to be estimated by the topic
modeling approach.

Note that the number of documents is denoted by n, topics by k and
lexicon size (terms) by d. Most topic modeling methods attempt to
learn the above parameters using maximum likelihood methods, so that
the probabilistic fit to the given corpus of documents is as large as pos-
sible. There are two basic methods which are used for topic modeling,
which are Probabilistic Latent Semantic Indexing (PLSI) [49] and Latent
Dirichlet Allocation (LDA)[20] respectively.

In this section, we will focus on the probabilistic latent semantic in-
dexing method. Note that the above set of random variables P (Tj |Di)
and P (tl|Tj) allow us to model the probability of a term tl occurring
in any document Di. Specifically, the probability P (tl|Di) of the term
tl occurring document Di can be expressed in terms of afore-mentioned
parameters as follows:

P (tl|Di) =

k∑
j=1

p(tl|Tj) · P (Tj |Di) (4.12)

Thus, for each term tl and document Di, we can generate a n × d ma-
trix of probabilities in terms of these parameters, where n is the number
of documents and d is the number of terms. For a given corpus, we
also have the n × d term-document occurrence matrix X, which tells
us which term actually occurs in each document, and how many times
the term occurs in the document. In other words, X(i, l) is the number
of times that term tl occurs in document Di. Therefore, we can use a
maximum likelihood estimation algorithm which maximizes the product
of the probabilities of terms that are observed in each document in the
entire collection. The logarithm of this can be expressed as a weighted
sum of the logarithm of the terms in Equation 4.12, where the weight
of the (i, l)th term is its frequency count X(i, l). This is a constrained
optimization problem which optimizes the value of the log likelihood
probability

∑
i,l X(i, l) · log(P (tl|Di)) subject to the constraints that the

probability values over each of the topic-document and term-topic spaces
must sum to 1:

∑
l

P (tl|Tj) = 1 ∀Tj (4.13)

∑
j

P (Tj |Di) = 1 ∀Di (4.14)
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The value of P (tl|Di) in the objective function is expanded and expressed
in terms of the model parameters with the use of Equation 4.12. We
note that a Lagrangian method can be used to solve this constrained
problem. This is quite similar to the approach that we discussed for
the non-negative matrix factorization problem in this chapter. The La-
grangian solution essentially leads to a set of iterative update equations
for the corresponding parameters which need to be estimated. It can be
shown that these parameters can be estimated [49] with the iterative up-
date of two matrices [P1]k×n and [P2]d×k containing the topic-document
probabilities and term-topic probabilities respectively. We start off by
initializing these matrices randomly, and normalize each of them so that
the probability values in their columns sum to one. Then, we iteratively
perform the following steps on each of P1 and P2 respectively:

for each entry (j, i) in P1 do update

P1(j, i) ← P1(j, i) ·
∑d

r=1 P2(r, j) · X(i,r)
∑k

v=1 P1(v,i)·P2(r,v)

Normalize each column of P1 to sum to 1;
for each entry (l, j) in P2 do update

P2(l, j) ← P2(l, j) ·
∑n

q=1 P1(j, q) · X(q,l)
∑k

v=1 P1(v,q)·P2(l,v)

Normalize each column of P2 to sum to 1;

The process is iterated to convergence. The output of this approach
are the two matrices P1 and P2, the entries of which provide the topic-
document and term-topic probabilities respectively.

The second well known method for topic modeling is that of Latent
Dirichlet Allocation. In this method, the term-topic probabilities and
topic-document probabilities are modeled with a Dirichlet distribution
as a prior. Thus, the LDA method is the Bayesian version of the PLSI
technique. It can also be shown the the PLSI method is equivalent to
the LDA technique, when applied with a uniform Dirichlet prior [42].

The method of LDA was first introduced in [20]. Subsequently, it has
generally been used much more extensively as compared to the PLSI
method. Its main advantage over the PLSI method is that it is not quite
as susceptible to overfitting. This is generally true of Bayesian meth-
ods which reduce the number of model parameters to be estimated, and
therefore work much better for smaller data sets. Even for larger data
sets, PLSI has the disadvantage that the number of model parameters
grows linearly with the size of the collection. It has been argued [20] that
the PLSI model is not a fully generative model, because there is no ac-
curate way to model the topical distribution of a document which is not
included in the current data set. For example, one can use the current set
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of topical distributions to perform the modeling of a new document, but
it is likely to be much more inaccurate because of the overfitting inherent
in PLSI. A Bayesian model, which uses a small number of parameters in
the form of a well-chosen prior distribution, such as a Dirichlet, is likely
to be much more robust in modeling new documents. Thus, the LDA
method can also be used in order to model the topic distribution of a new
document more robustly, even if it is not present in the original data set.
Despite the theoretical advantages of LDA over PLSA, a recent study
has shown that their task performances in clustering, categorization and
retrieval tend to be similar [63]. The area of topic models is quite vast,
and will be treated in more depth in Chapter 5 and Chapter 8 of this
book; the purpose of this section is to simply acquaint the reader with
the basics of this area and its natural connection to clustering.

We note that the EM-concepts which are used for topic modeling are
quite general, and can be used for different variations on the text cluster-
ing tasks, such as text classification [72] or incorporating user feedback
into clustering [46]. For example, the work in [72] uses an EM-approach
in order to perform supervised clustering (and classification) of the doc-
uments, when a mixture of labeled and unlabeled data is available. A
more detailed discussion is provided in Chapter 6 on text classification.

6. Online Clustering with Text Streams

The problem of streaming text clustering is particularly challenging
in the context of text data because of the fact that the clusters need to
be continuously maintained in real time. One of the earliest methods
for streaming text clustering was proposed in [112]. This technique is
referred to as the Online Spherical k-Means Algorithm (OSKM), which
reflects the broad approach used by the methodology. This technique
divides up the incoming stream into small segments, each of which can
be processed effectively in main memory. A set of k-means iterations
are applied to each such data segment in order to cluster them. The
advantage of using a segment-wise approach for clustering is that since
each segment can be held in main memory, we can process each data
point multiple times as long as it is held in main memory. In addition,
the centroids from the previous segment are used in the next iteration
for clustering purposes. A decay factor is introduced in order to age-
out the old documents, so that the new documents are considered more
important from a clustering perspective. This approach has been shown
to be extremely effective in clustering massive text streams in [112].

A different method for clustering massive text and categorical data
streams is discussed in [3]. The method discussed in [3] uses an approach
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which examines the relationship between outliers, emerging trends, and
clusters in the underlying data. Old clusters may become inactive, and
eventually get replaced by new clusters. Similarly, when newly arriving
data points do not naturally fit in any particular cluster, these need
to be initially classified as outliers. However, as time progresses, these
new points may create a distinctive pattern of activity which can be
recognized as a new cluster. The temporal locality of the data stream
is manifested by these new clusters. For example, the first web page
belonging to a particular category in a crawl may be recognized as an
outlier, but may later form a cluster of documents of its own. On the
other hand, the new outliers may not necessarily result in the formation
of new clusters. Such outliers are true short-term abnormalities in the
data since they do not result in the emergence of sustainable patterns.
The approach discussed in [3] recognizes new clusters by first recognizing
them as outliers. This approach works with the use of a summarization
methodology, in which we use the concept of condensed droplets [3] in
order to create concise representations of the underlying clusters.

As in the case of the OSKM algorithm, we ensure that recent data
points are given greater importance than older data points. This is
achieved by creating a time-sensitive weight for each data point. It is
assumed that each data point has a time-dependent weight defined by the
function f(t). The function f(t) is also referred to as the fading function.
The fading function f(t) is a non-monotonic decreasing function which
decays uniformly with time t. The aim of defining a half life is to quantify
the rate of decay of the importance of each data point in the stream
clustering process. The decay-rate is defined as the inverse of the half
life of the data stream. We denote the decay rate by λ = 1/t0. We denote
the weight function of each point in the data stream by f(t) = 2−λ·t.
From the perspective of the clustering process, the weight of each data
point is f(t). It is easy to see that this decay function creates a half life
of 1/λ. It is also evident that by changing the value of λ, it is possible
to change the rate at which the importance of the historical information
in the data stream decays.

When a cluster is created during the streaming process by a newly
arriving data point, it is allowed to remain as a trend-setting outlier
for at least one half-life. During that period, if at least one more data
point arrives, then the cluster becomes an active and mature cluster.
On the other hand, if no new points arrive during a half-life, then the
trend-setting outlier is recognized as a true anomaly in the data stream.
At this point, this anomaly is removed from the list of current clusters.
We refer to the process of removal as cluster death. Thus, a new cluster
containing one data point dies when the (weighted) number of points
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in the cluster is 0.5. The same criterion is used to define the death of
mature clusters. A necessary condition for this criterion to be met is
that the inactivity period in the cluster has exceeded the half life 1/λ.
The greater the number of points in the cluster, the greater the level by
which the inactivity period would need to exceed its half life in order
to meet the criterion. This is a natural solution, since it is intuitively
desirable to have stronger requirements (a longer inactivity period) for
the death of a cluster containing a larger number of points.

The statistics of the data points are captured in summary statistics,
which are referred to as condensed droplets. These represent the word
distributions within a cluster, and can be used in order to compute the
similarity of an incoming data point to the cluster. The overall algorithm
proceeds as follows. At the beginning of algorithmic execution, we start
with an empty set of clusters. As new data points arrive, unit clusters
containing individual data points are created. Once a maximum number
k of such clusters have been created, we can begin the process of online
cluster maintenance. Thus, we initially start off with a trivial set of k
clusters. These clusters are updated over time with the arrival of new
data points.

When a new data point X arrives, its similarity to each cluster droplet
is computed. In the case of text data sets, the cosine similarity measure
between DF1 and X is used. The similarity value S(X, Cj) is computed
from the incoming document X to every cluster Cj . The cluster with
the maximum value of S(X, Cj) is chosen as the relevant cluster for
data insertion. Let us assume that this cluster is Cmindex. We use a
threshold denoted by thresh in order to determine whether the incoming
data point is an outlier. If the value of S(X, Cmindex) is larger than the
threshold thresh, then the point X is assigned to the cluster Cmindex.
Otherwise, we check if some inactive cluster exists in the current set of
cluster droplets. If no such inactive cluster exists, then the data point
X is added to Cmindex. On the other hand, when an inactive cluster
does exist, a new cluster is created containing the solitary data point
X. This newly created cluster replaces the inactive cluster. We note
that this new cluster is a potential true outlier or the beginning of a new
trend of data points. Further understanding of this new cluster may
only be obtained with the progress of the data stream.

In the event that X is inserted into the cluster Cmindex, we update
the statistics of the cluster in order to reflect the insertion of the data
point and temporal decay statistics. Otherwise, we replace the most
inactive cluster by a new cluster containing the solitary data point X.
In particular, the replaced cluster is the least recently updated cluster
among all inactive clusters. This process is continuously performed over
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the life of the data stream, as new documents arrive over time. The
work in [3] also presents a variety of other applications of the stream
clustering technique such as evolution and correlation analysis.

A different way of utilizing the temporal evolution of text documents
in the clustering process is described in [48]. Specifically, the work in
[48] uses bursty features as markers of new topic occurrences in the data
stream. This is because the semantics of an up-and-coming topic are
often reflected in the frequent presence of a few distinctive words in the
text stream. At a given period in time, the nature of relevant topics could
lead to bursts in specific features of the data stream. Clearly, such fea-
tures are extremely important from a clustering perspective. Therefore,
the method discussed in [48] uses a new representation, which is referred
to as the bursty feature representation for mining text streams. In this
representation, a time-varying weight is associated with the features de-
pending upon its burstiness. This also reflects the varying importance
of the feature to the clustering process. Thus, it is important to remem-
ber that a particular document representation is dependent upon the
particular instant in time at which it is constructed.

Another issue which is handled effectively in this approach is an im-
plicit reduction in dimensionality of the underlying collection. Text is
inherently a high dimensional data domain, and the pre-selection of some
of the features on the basis of their burstiness can be a natural way to
reduce the dimensionality of document representation. This can help in
both the effectiveness and efficiency of the underlying algorithm.

The first step in the process is to identify the bursty features in the
data stream. In order to achieve this goal, the approach uses Klein-
berg’s 2-state finite automaton model [57]. Once these features have
been identified, the bursty features are associated with weights which
depend upon their level of burstiness. Subsequently, a bursty feature
representation is defined in order to reflect the underlying weight of the
feature. Both the identification and the weight of the bursty feature are
dependent upon its underlying frequency. A standard k-means approach
is applied to the new representation in order to construct the clustering.
It was shown in [48] that the approach of using burstiness improves the
cluster quality. Once criticism of the work in [48] is that it is mostly
focused on the issue of improving effectiveness with the use of tempo-
ral characteristics of the data stream, and does not address the issue of
efficient clustering of the underlying data stream.

In general, it is evident that feature extraction is important for all
clustering algorithms. While the work in [48] focuses on using temporal
characteristics of the stream for feature extraction, the work in [61] fo-
cuses on using phrase extraction for effective feature selection. This work
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is also related to the concept of topic-modeling, which will be discussed
in detail in the next section. This is because the different topics in a
collection can be related to the clusters in a collection. The work in [61]
uses topic-modeling techniques for clustering. The core idea in the work
of [61] is that individual words are not very effective for a clustering
algorithm because they miss the context in which the word is used. For
example, the word “star” may either refer to a celestial body or to an
entertainer. On the other hand, when the phrase “fixed star” is used,
it becomes evident that the word “star” refers to a celestial body. The
phrases which are extracted from the collection are also referred to as
topic signatures.

The use of such phrasal clarification for improving the quality of the
clustering is referred to as semantic smoothing because it reduces the
noise which is associated with semantic ambiguity. Therefore, a key part
of the approach is to extract phrases from the underlying data stream.
After phrase extraction, the training process determines a translation
probability of the phrase to terms in the vocabulary. For example, the
word “planet” may have high probability of association with the phrase
“fixed star”, because both refer to celestial bodies. Therefore, for a given
document, a rational probability count may also be assigned to all terms.
For each document, it is assumed that all terms in it are generated either
by a topic-signature model, or a background collection model.

The approach in [61] works by modeling the soft probability p(w|Cj)
for word w and cluster Cj . The probability p(w|Cj) is modeled as a linear
combination of two factors; (a) A maximum likelihood model which com-
putes the probabilities of generating specific words for each cluster (b)
An indirect (translated) word-membership probability which first deter-
mines the maximum likelihood probability for each topic-signature, and
then multiplying with the conditional probability of each word, given the
topic-signature. We note that we can use p(w|Cj) in order to estimate
p(d|Cj) by using the product of the constituent words in the document.
For this purpose, we use the frequency f(w, d) of word w in document
d.

p(d|Cj) =
∏
w∈d

p(w|Cj)
f(w,d) (4.15)

We note that in the static case, it is also possible to add a background
model in order to improve the robustness of the estimation process. This
is however not possible in a data stream because of the fact that the
background collection model may require multiple passes in order to
build effectively. The work in [61] maintains these probabilities in online
fashion with the use of a cluster profile, that weights the probabilities
with the use of a fading function. We note that the concept of cluster
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profile is analogous to the concept of condensed droplet introduced in [3].
The key algorithm (denoted by OCTS) is to maintain a dynamic set of
clusters into which documents are progressively assigned with the use of
similarity computations. It has been shown in [61] how the cluster profile
can be used in order to efficiently compute p(d|Cj) for each incoming
document. This value is then used in order to determine the similarity of
the documents to the different clusters. This is used in order to assign the
documents to their closest cluster. We note that the methods in [3, 61]
share a number of similarities in terms of (a) maintenance of cluster
profiles, (b) use of cluster profiles (or condensed droplets) to compute
similarity and assignment of documents to most similar clusters, and (c)
the rules used to decide when a new singleton cluster should be created,
or one of the older clusters should be replaced.

The main difference between the two algorithms is the technique which
is used in order to compute cluster similarity. The OCTS algorithm
uses the probabilistic computation p(d|Cj) to compute cluster similarity,
which takes the phrasal information into account during the computation
process. One observation about OCTS is that it may allow for very
similar clusters to co-exist in the current set. This reduces the space
available for distinct cluster profiles. A second algorithm called OCTSM
is also proposed in [61], which allows for merging of very similar clusters.
Before each assignment, it checks whether pairs of similar clusters can
be merged on the basis of similarity. If this is the case, then we allow the
merging of the similar clusters and their corresponding cluster profiles.
Detailed experimental results on the different clustering algorithms and
their effectiveness are presented in [61].

A closely related area to clustering is that of topic modeling, which
we discussed in an earlier section. Recently, the topic modeling method
has also been extended to the dynamic case which is helpful for topic
modeling of text streams [107].

7. Clustering Text in Networks

Many social networks contain both text content in the nodes, as well
as links between the different nodes. Clearly, the links provide useful
cues in understanding the related nodes in the network. The impact of
different link types on the quality of the clustering has been studied in
[109], and it has been shown that many forms of implicit and explicit
links improve clustering quality, because they encode human knowledge.
Therefore, a natural choice is to combine these two factors in the process
of clustering the different nodes. In this section, we will discuss a number
of such techniques.
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In general, links may be considered as a kind of side-information,
which can be represented in the form of attributes. A general approach
for incorporating side attributes into the clustering process has been pro-
posed in [1]. This algorithm uses a combination of a k-means approach
on the text attributes, and Bayesian probability estimations on the side
attributes for the clustering process. The idea is to identify those at-
tributes, which are helpful for the clustering process, and use them in
order to enhance the quality of the clustering. However, this approach is
really designed for general attributes of any kind, rather than link-based
attributes, in which an underlying graph structure is implied by the
document-to-document linkages. In spite of this, it has been shown in
[1], that it is possible to significantly enhance the quality of clustering by
treating linkage information as side-attributes. Many other techniques,
which will be discussed in this section, have been proposed specifically
for the case of text documents, which are linked together in a network
structure.

The earliest methods for combining text and link information for the
clustering process are proposed in [12]. Two different methods were
proposed in this paper for the clustering process. The first method
uses the link information in the neighbors of a node in order to bias
the term weights in a document. Term weights which are common be-
tween a document and its neighbors are given more importance in the
clustering process. One advantage of such an approach is that we can
use any of the existing clustering algorithms for this purpose, because
the link information is implicitly encoded in the modified term weights.
The second method proposed in [12] is a graph-based approach which
directly uses the links in the clustering process. In this case, the ap-
proach attempts to model the probability that a particular document
belongs to a given cluster for a particular set of links and content. This
is essentially a soft-clustering, in which a probability of assignment is
determined for each cluster. The cluster with the largest probability of
assignment is considered the most relevant cluster. A Markov Random
Field (MRF) technique is used in order to perform the clustering. An
iterative technique called relaxation labeling is used in order to compute
the maximum likelihood parameters of this MRF. More details of this
approach may be found in [12].

A recent method to perform clustering with both structural and at-
tribute similarities is proposed in [113]. The techniques of this paper can
be applied to both relational and text attributes. This paper integrates
structural and attribute-based clustering by adding attribute vertices to
the network in addition to the original structural vertices. In the context
of text data, this implies that a vertex exists for each word in the lexi-
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con. Therefore, in addition to the original set of vertices V in the graph
G = (V,E), we now have the augmented vertex set V ∪ V1, such that
V1 contains one vertex for each nodes. We also augment the edge set, in
order to add to the original set of structural edges E. We add an edge
between a structural vertex i ∈ V and an attribute vertex j ∈ V1, if word
j is contained in the node i. This new set of edges added is denoted by
E1. Therefore, we now have an augmented graph G1 = (V ∪V1, E ∪E1)
which is semi-bipartite. A neighborhood random walk model is used in
order to determine the closeness of vertices. This closeness measure is
used in order to perform the clustering. The main challenge in the algo-
rithm is to determine the relative importance of structural and attribute
components in the clustering process. In the context of the random walk
model, this translates to determining the appropriate weights of differ-
ent edges during the random walk process. A learning model has been
proposed in [113] in order to learn these weights, and leverage them for
an effective clustering process.

The problem of clustering network content is often encountered in the
context of community detection in social networks. The text content in
the social network graph may be attached to either the nodes [101] of
the network, or to the edges [74]. The node-based approach is generally
more common, and most of the afore-mentioned techniques in this paper
can be modeled in terms of content attached to the nodes. In the method
proposed in [101], the following link-based and content-based steps are
combined for effective community detection:

A conditional model is proposed for link analysis, in which the
conditional probability for the destination of given link is modeled.
A hidden variable is introduced in order to capture the popularity
of a node in terms of the likelihood of that node being cited by
other nodes.

A discriminative content model is introduced in order to reduce the
impact of noisy content attributes. In this model, the attributes
are weighed by their ability to discriminate between the different
communities.

The two models are combined into a unified framework with the
use of a two-stage optimization algorithm for maximum likelihood
inference. One interesting characteristic of this broad framework
is that it can also be used in the context of other complementary
approaches.

The details of the algorithm are discussed in [101].
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For the case of edge-based community detection, it is assumed that
the text content in the network is attached to the edges [74]. This is
common in applications which involve extensive communication between
the different nodes. For example, in email networks, or online chat net-
works, the text in the network is associated with the communications
between the different entities. In such cases, the text is associated with
an edge in the underlying network. The presence of content associated
with edges allows for a much more nuanced approach in community de-
tection, because a given node may participate in communities of different
kinds. The presence of content associated with edges helps in separat-
ing out these different associations of the same individual to different
communities. The work in [74] uses a matrix-factorization methodology
in order to jointly model the content and structure for the community
detection process. The matrix factorization method is used to transform
the representation into multi-dimensional representation, which can be
easily clustered by a simple algorithm such as the k-means algorithm.
It was shown in [74], that the use of such an approach can provide
much more effective results than a pure content- or link-based clustering
methodology.

A closely related area to clustering is that of topic modeling, in which
we attempt to model the probability of a document belonging to a partic-
ular cluster. A natural approach to network-based topic modeling is to
add a network-based regularization constraint to traditional topic mod-
els such as NetPLSA [65]. The relational topic model (RTM) proposed
in [23] tries to model the generation of documents and links sequentially.
The first step for generating the documents is the same as LDA. Sub-
sequently, the model predicts links based on the similarity of the topic
mixture used in two documents. Thus, this method can be used both
for topic modeling and predicting missing links. A more unified model
is proposed in the iTopicModel [91] framework which creates a Markov
Random Field model in order to create a generative model which si-
multaneously captures both text and links. Experimental results have
shown this approach to be more general and superior to previously ex-
isting methods. A number of other methods for incorporating network
information into topic modeling are discussed in the next chapter on
dimensionality reduction.

8. Semi-Supervised Clustering

In some applications, prior knowledge may be available about the
kinds of clusters that are available in the underlying data. This prior
knowledge may take on the form of labels attached with the documents,
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which indicate its underlying topic. For example, if we wish to use the
broad distribution of topics in the Y ahoo! taxonomy in order to supervise
the clustering process of a new web collection, one way to performing
supervision would be add some labeled pages from the Y ahoo! taxonomy
to the collection. Typically such pages would contain labels of the form
@Science@Astronomy or @Arts@Painting, which indicate the subject
area of the added pages. Such knowledge can be very useful in creating
significantly more coherent clusters, especially when the total number of
clusters is large. The process of using such labels to guide the clustering
process is referred to as semi-supervised clustering. This form of learning
is a bridge between the clustering and classification problem, because it
uses the underlying class structure, but it is not completely tied down by
the specific structure. As a result, such an approach finds applicability
both to the clustering and classification scenarios.

The most natural method for incorporating supervision into the clus-
tering process is to do so in partitional clustering methods such as k-
means. This is because the supervision can be easily incorporated by
changing the seeds in the clustering process. For example, the work in [4]
uses the initial seeds in the k-means clustering process as the centroids
of the original classes in the underlying data. A similar approach has
also been used in [15], except a wider variation of how the seeds may be
selected has been explored.

A number of probabilistic frameworks have also been designed for
semi-supervised clustering [72, 14]. The work in [72] uses an iterative
EM-approach in which the unlabeled documents are assigned labels us-
ing a naive Bayes approach on the currently labeled documents. These
newly labeled documents are then again used for re-training a Bayes
classifier. This process is iterated to convergence. The iterative labeling
approach in [72] can be considered a partially supervised approach for
clustering the unlabeled documents. The work in [14] uses a Heteroge-
neous Markov Random Field (HMRF) model for the clustering process.

A graph-based method for incorporating prior knowledge into the clus-
tering process has been proposed in [52]. In this method, the documents
are modeled as a graph, in which nodes represent documents and edges
represent the similarity among them. New edges may also be added
to this graph, which correspond to the prior knowledge. Specifically,
an edge is added to the graph, when it is known on the basis of prior
knowledge that these two documents are similar. A normalized cut al-
gorithm [84] is then applied to this graph in order to create the final
clustering. This approach implicitly uses the prior knowledge because
of the augmented graph representation which is used for the clustering.
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Since semi-supervised clustering forms a natural bridge between the
clustering and classification problems, it is natural that semi-supervised
methods can be used for classification as well [68]. This is also referred
to as co-training, because it involves the use of unsupervised document
clustering in order to assist the training process. Since semi-supervised
methods use both the clustering structure in the feature space and the
class information, they are sometimes more robust in classification sce-
narios, especially in cases where the amount of available labeled data is
small. It has been shown in [72], how a partially supervised co-training
approach which mixes supervised and unsupervised data may yield more
effective classification results, when the amount of training data avail-
able is small. The work in [72] uses a partially supervised EM-algorithm
which iteratively assigns labels to the unlabeled documents and refines
them over time as convergence is achieved. A number of similar methods
along this spirit are proposed in [4, 14, 35, 47, 89] with varying levels
of supervision in the clustering process. Partially supervised clustering
methods are also used feature transformation in classification using the
methods as discussed in [17, 18, 88]. The idea is that the clustering
structure provides a compressed feature space, which capture the rele-
vant classification structure very well, and can therefore be helpful for
classification.

Partially supervised methods can also be used in conjunction with pre-
existing categorical hierarchies (or prototype hierarchies) [4, 56, 67]. A
typical example of a prototype hierarchy would be the Yahoo! taxonomy,
the Open Directory Project, or the Reuters collection. The idea is that
such hierarchies provide a good general idea of the clustering structure,
but also have considerable noise and overlaps in them because of their
typical manual origins. The partial supervision is able to correct the
noise and overlaps, and this results in a relatively clean and coherent
clustering structure.

An unusual kind of supervision for document clustering is the method
of use of a universum of documents which are known not to belong to
a cluster [106]. This is essentially, the background distribution which
cannot be naturally clustered into any particular group. The intuition
is that the universum of examples provide an effective way of avoiding
mistakes in the clustering process, since it provides a background of
examples to compare a cluster with.

9. Conclusions and Summary

In this chapter, we presented a survey of clustering algorithms for text
data. A good clustering of text requires effective feature selection and a
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proper choice of the algorithm for the task at hand. Among the different
classes of algorithms, the distance-based methods are among the most
popular in a wide variety of applications.

In recent years, the main trend in research in this area has been in
the context of two kinds of text data:

Dynamic Applications: The large amounts of text data being
created by dynamic applications such as social networks or online
chat applications has created an immense need for streaming text
clustering applications. Such streaming applications need to be
applicable in the case of text which is not very clean, as is often
the case for applications such as social networks.

Heterogeneous Applications: Text applications increasingly
arise in heterogeneous applications in which the text is available
in the context of links, and other heterogeneous multimedia data.
For example, in social networks such as Flickr the clustering often
needs to be applied in such scenario. Therefore, it is critical to ef-
fectively adapt text-based algorithms to heterogeneous multimedia
scenarios.

We note that the field of text clustering is too vast to cover comprehen-
sively in a single chapter. Some methods such as committee-based clus-
tering [73] cannot even be neatly incorporated into any class of methods,
since they use a combination of the different clustering methods in order
to create a final clustering result. The main purpose of this chapter is
to provide a comprehensive overview of the main algorithms which are
often used in the area, as a starting point for further study.
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