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ABSTRACT

Signed social networks have become increasingly important
in recent years because of the ability to model trust-based
relationships in review sites like Slashdot, Epinions, and
Wikipedia. As a result, many traditional network mining
problems have been re-visited in the context of networks in
which signs are associated with the links. Examples of such
problems include community detection, link prediction, and
low rank approximation. In this paper, we will examine the
problem of ranking nodes in signed networks. In particular,
we will design a ranking model, which has a clear physical
interpretation in terms of the sign of the edges in the net-
work. Specifically, we propose the Troll-Trust model that
models the probability of trustworthiness of individual data
sources as an interpretation for the underlying ranking val-
ues. We will show the advantages of this approach over a
variety of baselines.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications-
Data Mining

Keywords

Signed Networks; Ranking; Data Mining

1. INTRODUCTION
Many social network sites, such1 as Epinions, Slashdot,

and Wikipedia, allow users to contribute opinions, feedback,
and the ability to indicate their trust or distrust in each
other’s opinions. Such networks are useful in the context of
a wide variety of tasks, such as recommendations, cluster-
ing, and classification because they tell us important aspects
of the relations between nodes. The trust and distrust rela-
tionships in such networks are often represented in the form
of signed networks. Some examples of such signed networks,
are as follows:

1. Epinions: Epinions is an online review site, in which
users can provide ratings to items. However, users can
provide positive and negative ratings not just to items
but to other raters. Such positive and negative opin-
ions are represented as directed links between different

1http://snap.stanford.edu/data/index.html#signnets
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users [5]. The sign of the link indicates whether the
relationship is positive or negative.

2. Slashdot: Slashdot is a technology blog, where the
users have the option of designating each other as
friends or foes. Therefore, friends can be viewed as
trusted parties (positive links), whereas foes can be
viewed as distrusted parties (negative links).

3. Wikipedia: In Wikipedia, users are able to cast positive
or negative votes for other admin users. Such votes can
be viewed as positive and negative links.

As evident from the discussion above, the vast majority
of signed networks arise in the context of trust networks.
Such networks are very useful in improving the effectiveness
of many applications such as collaborative filtering [7, 19],
community detection [4, 11], and link prediction [4, 13, 14,
20]. In many of these applications, human-centric prefer-
ences play an important role; therefore, the trust compo-
nent is relatively important in having an impact on the final
results.

An important problem in network analytics is that of
ranking nodes based on their reputation. A classical algo-
rithm in this context is known as the PageRank method [3].
Ranking has traditionally been used for Web page ranking
based on citation mechanisms. PageRank is viewed as a
measure of reputation (or prestige) of a node in a network
because it assumes that only reputable nodes are in-linked
to by other nodes. In other words, each in-linking node is a
vote of confidence in that node. Furthermore, the prestige
of the in-linking node is also accounted for in the PageRank
equations. However, the traditional PageRank equations are
based on only the use of positive links. Developing methods
for signed versions of PageRank is very useful in the context
of a variety of applications such as global trust quantification
of entities [23].

Over the last few years, a number of methods have been
designed for signed network analysis with both positive and
negative links [8, 9, 18, 21]. Most of these methods are
based on simple modifications of the PageRank equations to
account for negative weights on the links. However, many of
these methods do not have natural interpretations in terms
of the reputation values on the nodes. One of the reasons
that the PageRank algorithm works so effectively is that it
can naturally be interpreted in the form of a random surfer
model with a clear physical interpretation for the impor-
tance of the nodes. While one can heuristically extend these
equations with negative values on the links, we will show
that the results can sometimes be unintended. In this paper,



we will propose a Troll-Trust model with clear assumptions
on what negative links mean in terms of the trust that users
have on one another.

One of the reasons that trustworthy computing has be-
come so important is the open nature of online forums in
which users can intentionally post misleading information.
Such users are referred to as trolls. Troll users might either
have malicious intent, profit motives, or simply be inclined
to behave in a disruptive way. Such users often have a se-
rious impact on the quality of interaction in online forums.
Therefore, the ability to identify users in signed networks
based on their trustworthiness is crucial in a myriad of ap-
plications. Troll users can often be identified in signed net-
works, because they often have inbound negative links from
other trustworthy users. This is similar to the PageRank
reputation framework, except that the sign of the link also
plays a critical role in reputation determination.

In our model, we use a Bernoulli distribution to charac-
terize each user as either being trustworthy, or being a troll.
This is used to construct a probabilistic model in terms of
the links between various users. We show the advantages of
using such an approach over heuristic extensions of PageR-
ank. We also extend the approach to other variations such
as personalized Troll-Trust ranking model. We show im-
proved results of our techniques over competing methods in
the literature.

This paper is organized as follows. The remainder of
this section discusses the related work. The motivations
of the Troll-Trust model are discussed in section 2. The
iterative algorithm for the Troll-Trust model is illustrated
in section 3. Methods for personalized PageRank in signed
networks are discussed in section 4. The experiments are
discussed in section 5. The conclusions are presented in sec-
tion 6.

1.1 Related Work
Many data mining applications have been designed in

the context of a wide variety of social networking applica-
tions [1]. In recent years, signed networks have gained in-
creasing attention because of the ability of many social net-
working sites, such as Epinions, Slashdot, and Wikipedia, to
specify trust and distrust relationships between users. Such
relationships are useful in discerning between interactions of
varying trustworthiness. The use of such networks can be
helpful in applications such as collaborative filtering [7, 19],
community detection [4, 11], and link prediction [4, 13, 14,
20].

Ranking is a well known problem in the context of un-
signed networks [3, 10]. The PageRank problem has also
been recently explored in the context of signed networks [8,
9, 18, 21]. Methods for finding node bias and prestige are
discussed in [16], and this approach is based on the HITS
algorithm. PageRank is useful for assessing the reputation
of nodes, and it is also used in other applications such as
sign prediction [18, 23]. One of the problems with existing
variants of PageRank methods is that they heuristically try
to modify the PageRank equations with the use of negative
links. Such heuristic modifications often lose their inter-
pretability, and they do not necessarily reflect the level of
trust a given user has in another. In this paper, we will use a
model, which is firmly grounded in probabilistic understand-
ing of trust, which is the semantic interpretation in most
signed networks. We show that the resulting approach is

more robust than the traditional methods for signed PageR-
ank.

2. MOTIVATION OF THE TROLLTRUST

MODEL
Before discussing the Troll-Trust model in detail, we will

first revisit the PageRank method, and discuss how it is used
in the context of a variety of applications. The traditional
PageRank model was defined in the context of random surfer
model on the Web. The PageRank model calculates the
probability that a random surfer on the Web visits a given
Web page by traversing links outgoing from Web pages in
random fashion. In addition, in order to avoid the effect of
dead-ends and smooth the ranking values, a restart proba-
bility is imposed on nodes. Let G = (N,A) be a directed
network with the node set N and the edge set A. Let us
assume that the number of nodes in the set N is denoted by
n. The nodes are indexed from 1 . . . n. The weights of the
edges between nodes are stored in an n × n weight matrix
W . Note that an edge weight is non-zero in W only when it
is present in A. For traditional networks, all the weights in
W are non-negative. In signed networks, however, some of
these weights might be negative. The semantic interpreta-
tion of the sign in these cases is often one of trust or distrust.

In some signed networks, all weights in W are always
drawn from +1 or −1, although this is not always the case.
In some applications [20], positive or negative weights can
be associated with the links, depending on the strength of
the interactions. In the traditional random walk model, each
node is associated with a probability of visit π(i). Further-
more, the transition probability pij of each edge (i, j) ∈ A
is obtained by dividing each row in W by the sum of the
corresponding entries in that row. This can be represented
in matrix form as follows. Let D be the diagonal matrix in
which the (i, i)th entry is given by the sum of the entries of
W in the ith row.

Dii =
n
∑

j=1

wij (1)

Then, the PageRank transition matrix is given by the fol-
lowing matrix P = [pij ]:

P = D−1W (2)

Then, the PageRank equations may be stated in the form of
a random surfer having transition probabilities pij . At each
step, the surfer may restart to a random node with proba-
bility α. The steady state probability of visit of the random
surfer is denoted by π(i), and it represents the PageRank
value. The steady state probability can be related to the
transition probabilities by setting π(i) to be the probability
that the random surfer transitions into node i at a given
step:

π(i) = (1− α) ·
n
∑

j=1

π(j) · pji + α/n (3)

Note that the values π(i) intuitively represent transition
probabilities, and they sum up to 1 over all the different
nodes. Larger values of π(i) indicate a better reputation for
the node.

It is noteworthy that the random surfer model is intu-
itively interpretable only when the edge weights are non-
negative and can be interpreted as transition probabilities.



The PageRank equations yield stochastic probabilities pre-
cisely because of this non-negativity. If one naturally tries
to modify the PageRank equations with negative weights,
it leads to negative ranking values. Unfortunately, this has
the impact of making the equations less easily interpretable.
In some cases, the resulting reputation values of π(i) also
become misleading. We will discuss this issue later in this
section.

2.1 Problems with Existing Methods
In order to handle the problem of signed networks, a num-

ber of possible modifications have been made to the PageR-
ankmethodology. For example, the work in [9] multiplies the
right-hand side of Equation 3 with a heuristic correction fac-
tor so that nodes with many incoming negative edges auto-
matically have a lower reputation. The exponential ranking
approach [21] uses an exponential variation of the PageR-
ank equations in order to model the trust values of nodes.
This approach still models the node-specific reputation in
a heuristic as a (positive and negative) linear combination
of the node-specific trust probabilities. The coefficients of
the linear combination correspond to the edge weights. Al-
though the approach provides a relative ranking of a heuris-
tic nature, it is often hard to assign an absolute interpretabil-
ity to the reputation values in terms of how much one should
trust a particular user.

Recently, a very simple modification of PageRank [18]
computes the PageRank separately on the positive and neg-
ative subgraphs. If the corresponding ranks for the node i
are r+i and r−i , respectively, then the overall reputation is
computed as r+i −r−i . Unfortunately, this approach does not
account for the relative density of the positive and negative
links in the network. For example, if a network contains a
large number of positive links relative to the negative links,
and vice versa, it should affect the reputation values. Un-
fortunately, the value of r+i − r−i is relatively insensitive to
the proportion of positive and negative links. For example,
if either the positive or the negative links are down-sampled
in isolation, it will make only modest differences to the rep-
utation values, as computed by r+i − r−i . This scenario is
intuitively undesirable. When the relative proportion of neg-
ative links in a network increases, it is likely that the net-
work contains a larger number of trolls. This should change
not only the absolute reputation values, but it should also
have an impact on the relative ranking and the nature of
the interaction between the various users.

A number of modifications of the HITS algorithm are also
proposed in [18]. In all these cases, again the basic approach
is divide the graph into positive and negative subgraphs to
compute the hub and authority scores separately for each
subgraph. The authority scores for the positive and negative
subgraphs are subtracted from one another to provide the
final score. However, this approach has similar issues to the
modified PageRank method in that it is relatively insensitive
to the relative proportion of positive and negative links.

2.2 The TrollTrust Model
The key of the Troll-Trust model is to replace the ran-

dom surfer model with a new set of probabilities associated
with the nodes, which have a clear physical interpretation
in terms of the global trustworthiness of the participants.
Unlike the random surfer model, in which the steady-state
probabilities define random walk probabilities, the probabil-

ity π(i) in this model defines the likelihood that a participant
is either trustworthy or a troll. Let Ei be the event that the
ith person is trustworthy. Therefore, we have:

Ei =

{

1 Person i is trustworthy with probability π(i)

0 Person i is a troll with probability 1− π(i)

(4)
Therefore, Ei is a Bernoulli random variable with the pa-
rameter π(i), and our goal is to determine P (Ei) = π(i),
which gives us a measure of the reputation of individual
i. Intuitively, one can also interpret this probability as the
likelihood of a user providing misleading information in a
trust-centric network where negative links have the seman-
tic interpretation of untrustworthiness. Note that this in-
terpretation of π(i) is different from what is normally used
in a random surfer model. The default (or a priori) value of
π(i), in a network is set to the global parameter β. Thus, if
a network has no positive or negative interactions between
users, then the value of π(i) for all nodes would be β. The
parameter β is useful for settings where the network is very
sparse, although its impact is often somewhat limited.

Next, we define the significance of the weights W = [wij ]
in the probabilistic modeling process. Intuitively, these weig-
hts represents statements of the level to which user i feels
that user j is trustworthy. Therefore, we define the event
Uij as follows:

Uij =

{

1 Person i views j as trustworthy

0 Person i views j as a troll
(5)

Then, we model the probability distribution of the Bernoulli
variable Uij as a logistic function of the weights wij . Large
positive values of wij means that the expected value of Uij

should be close to 1. On the other hand, when the weight
wij is negative, the expected value of Uij should be close
to 0. In the event that wij is 0, the expected value of Uij

should be β, which is the default value of the trust between
any pair of participants. We model Uij as Bernoulli random
variable whose parameters are defined as logistic function of
the weights wij . Therefore, we have:

Uij =

{

1 with probability 1

1+e
−λ0−λ1wij

0 with probability 1

1+e
λ0+λ1wij

(6)

Here λ0 and λ1 are user-defined parameters. The value of λ1

is always set to a nonnegative value. Therefore, increasing
the weight wij also increases the trust probability P (Uij =
1). The value of λ0 can be derived in terms of the default
trustworthiness probability β. Note that when wij = 0, it is
necessary for P (Uij = 1) to be β because a zero weight edge
corresponds to a neutral opinion and it does not change the
default belief of user i in user j. We can use this relationship
to derive the value of λ0 in terms of β. Therefore, we have:

P (Uij = 1)wij=0 = β =
1

1 + e−λ0−λ1(0)
(7)

By simplifying the aforementioned expression, we obtain:

λ0 = ln

(

β

1− β

)

(8)

How can these probability values be used to model the
steady-state probability of trustworthiness of an individual?
Trust modeling is often used in fact-finding applications. An
important point to keep in mind is that if an individual is a



troll, it is not necessary that the opposite of their stated facts
are always correct. Rather, a lower value of the trust sim-
ply lowers the probability of their stated facts, included their
stated trust in other individuals, to be correct. Therefore,
it makes sense to model the reputation of each individual
by using the probability of their trustworthiness. In other
words, we want to create a model in which the feedback of
each individual about other individuals (in terms of the sign
and weight of links) is weighted by the probability of their
trustworthiness. Just as the PageRank model simulates a
random walk through the network, the Troll-Trust model
simulates the following probabilistic process:

Sample a node j selected from the incoming neighbors of
a node i, such that the probability of the node j being se-
lected is proportional to its modeled trustworthiness prob-
ability P (Ej = 1). Then the trustworthiness probability
P (Ei = 1) is modeled as the expected value of P (Uji = 1)
over this sampling.

In other words, we use the sampled opinion of the neigh-
bors in a node in order to model its trustworthiness. Fur-
thermore, because the neighbors are weighted by their trust
probabilities, this definition is recursive, just like the PageR-
ank equations. Therefore, we have the following recursive
relationship:

P (Ei = 1) =

∑

j;(j,i)∈A P (Ej = 1) · P (Uji = 1)
∑

j;(j,i)∈A P (Ej = 1)
(9)

One can express this relationship directly in terms of the
aforementioned variables π(i), and the edge weights:

π(i) =

∑

j;(j,i)∈A π(j) · 1

1+e
−λ0−λ1wji

∑

j:(j,i)∈A π(j)

=

∑

j;(j,i)∈A π(j) · 1

1+e
−ln[β/(1−β)]−λ1wji

∑

j;(j,i)∈A π(j)

Of course, this definition does not yet account for the prior
probability β, which is particularly useful in cases where
the node i has no incoming nodes, which are also presum-
ably trustworthy. The probability that none of the incoming
nodes is trustworthy is given2 by

∏

j:(j,i)∈A(1 − π(j)). In

that case, the trustworthiness of node i is set to the default
value β. Therefore, the aforementioned sampling needs to
include an additional case in which the trustworthiness of
the user i needs to be set to β when the case with probabil-
ity

∏

j:(j,i)∈A(1−π(j)) occurs. This default scenario can also

be viewed as a form of Laplacian smoothing, and it serves a
similar goal to the restart step in the PageRank algorithm.
Therefore, accounting for this default scenario, we need to
add the term β

∏

j:(j,i)∈A(1 − π(j)) to the numerator, and

the term
∏

j:(j,i)∈A(1−π(j)) to the denominator. Therefore,

we obtain the following:

π(i) =

∑
j;(j,i)∈A

π(j)

1+e
−ln[β/(1−β)]−λ1wji

+ β
∏

j:(j,i)∈A(1 − π(j))

∑
j;(j,i)∈A π(j) +

∏
j:(j,i)∈A(1 − π(j))

(10)

The aforementioned condition needs to hold for each node
i ∈ {1 . . . n}. Furthermore, when the node i has no incoming

2We make the naive assumption that the trustworthiness of
nodes is independent of one another.

edges, it is easy to verify that the value of π(i) will be set
to β by the above equation. The values of β and λ1 are two
user-defined parameters in this algorithm. The selection of
these parameters will be described later.

3. ITERATIVE ALGORITHM
The condition for π(i) in the previous section defines a

system of equations. In this particular case, the system of
equation is nonlinear. Unlike PageRank, such a nonlinear
system of equations is hard to solve in closed form. Such
non-linear systems of equations are often solved using itera-
tive methods by starting with an initial set of default values
and cycling through the system of equations and updating
each value of π(i).

Correspondingly, we use an iterative approach to update
the probabilities of all the nodes. Let πt(i) be the value of
the trust probability π(i) of the ith node in the tth iteration.

1. Initialize iteration index t ⇐ 0.

2. Initialize πt(i) = β for each i.

3. For each i update from the probability values in the
tth iteration to (t+ 1)th iteration as follows:

π
t+1

(i) ⇐

∑

j∈I(i)

πt(j)

1+e
−ln[β/(1−β)]−λ1wji

+ β
∏

j∈I(i)
(1 − πt(j))

∑

j∈I(i)
πt(j) +

∏

j∈I(i)
(1 − πt(j))

(11)

, where I(i) = {j|(j, i) ∈ A} is an index set.

4. Update t ⇐ t+ 1

5. If converged then report the converged values πt(1) . . .
πt(n) and terminate; else go to step 3

This approach is continued to convergence. In the next sec-
tion, we will discuss the convergence behavior of this ap-
proach.

3.1 Convergence Behavior
We provide the convergence proof of the simplified Troll-

Trust algorithm. First, we rewrite Eq. 9 in matrix form as
follows:

πt+1 = ((A⊙ P )Tπt)⊘ (ATπt)

Here, A is the adjacency matrix, and P is a matrix with
entries Pij = 1

1+exp{− lnβ/(1−β)−λ1wij}
. ⊙ and ⊘ denotes

element-wise multiplication and division respectively. Let
us focus on the ith element πt+1(i) of the probability vector
in the (t+ 1)th iteration,

πt+1(i) =
(Ai ⊙ Pi)

Tπt

AT
i π

t
=

AiiPiiπ
t(i) +B

Aiiπt(i) +D
(12)

Here, Ai and Pi are the ith columns of A and P , respec-
tively. We further denote B =

∑

j 6=i

AijPijπ
t(j), and D =

∑

j 6=i

Aijπ
t(j). Since Aii ∈ {0, 1}, Pij ∈ (0, 1), we immediately

have B < D and πt+1(i) < 1,∀i, and thus D ∈ [0, n− 1).
To prove convergence of Eq. 12, we use Banach Fixed

Point theorem [2], which we introduce below.



Definition 1. Let (X, d) be a metric space. Then, a map
T : X → X is called a contraction map on X if there exists
q ∈ [0, 1) such that

d(T (x), T (y)) ≤ qd(x, y),∀ x, y in X

Theorem 1 (Banach Fixed Point Theorem). Con-
sider a non-empty complete metric space (X, d) with a con-
traction mapping T : X → X. Then, T admits a unique
fixed-point x∗ in X (i.e., T (x∗) = x∗).

Furthermore, x∗ can be found by using the following ap-
proach. We start with an arbitrary element x0 in X and
define a sequence xn by xn = T (xn−1). Then it can be
shown that xn → x∗.

Theorem 2. The Troll-Trust algorithm converges to a
fixed point.

Proof. Let us map the problem within the terminology
of the Banach fixed point theorem. Here, in our case T (x) =
AiiPiix+B
Aiix+D

, and we use the common Euclidean space, with

L2-norm as the associated distance function. The case where
Aii = 0 (q can be any value in [0, 1)) is trivial and we focus
on the case where Aii = 1, and now T (x) = Piix+B

x+D
, x ∈

[0, 1)

T (x)− T (y) =
PiiD −B

(x+D)(y +D)
(x− y)

According to the aforementioned theorem, the conver-
gence proof only requires us to show that

q =
|PiiD −B|

(x+D)(y +D)
< 1

. We consider three cases:
Case 0. PiiD −B = 0
In this case q = 0, which satisfies the condition trivially.
Case 1. PiiD −B < 0

q =
B − PiiD

(x+D)(y +D)
< 1 ⇔ (x+D)(y +D) > B − PiiD

⇐ D2 + (x+ y + Pii − 1)D + xy > 0 [D > B] (13)

The equation above contains the quadratic function ϕ(D) =
D2 + (x + y + Pii − 1)D + xy > 0 with D ∈ [0, n − 1).
Notice when x + y + Pii − 1 > 0, the minimum of ϕ in
[0, n − 1) is ϕ(0) = xy > 0, and we can choose Pii =

1
1+exp{− lnβ/(1−β)−λ1wii}

to satisfy such a condition. There-

fore, convergence is guaranteed.
Case 2. PiiD −B > 0
When PiiD −B > 0, similarly, we have

q < 1 ⇔ D2 + (x+ y − Pii)D + xy +B > 0 (14)

We can now choose Pii so that (x + y − Pii) > 0, and thus
ϕ = D2+(x+y−Pii)D+xy > ϕ(0) = xy > 0. Since B ≥ 0,
Eq. 14 holds, we also have convergence in Case 2.

3.2 Selecting the Parameters
An important aspect is the choice of the parameters β and

λ1. Much like PageRank this is a heuristic choice. However,
one can choose the parameters by using the principle of self
consistency with the network structure. The basic idea is to
compute the trust values on a network in which around 90%
of the links are retained, and the remaining 10% are held out.
The computed trust values values are then used to perform

sign prediction on the remaining 10% of the links. Various
choices of β and λ1 are tested on these links. After selecting
these values of β and λ1, the approach is then applied to
the full data set. A more effective approach for selecting
the parameters is to use cross-validation in which the data
is divided into various folds and the parameter choices are
decided by averaging the performance over various folds.

4. EXTENSIONS TO PERSONALIZED

RANKING
In many scenarios, it is desired to determine the person-

alized ranking values for individuals. For a given user i, one
may wish to determine the most similar users to i in the
signed network. In other cases, a subset of nodes may be se-
lected and it may be desirable to determine the most similar
nodes to this subset. For generality, let us consider the case,
where it is desired to personalize the ranking with respect to
a subset S of nodes. There are two types of personalization
which are possible:

• Weighted personalization: In this case, prior probabil-
ities are provided for each node in S. These can also
be viewed as weights specifying the importance of each
node ir ∈ S. For each node ir ∈ S, its prior proba-
bility is specified as β(ir), as part of the input to the
problem. For each node ir 6∈ S, it is assumed that its
prior probability is a small default value of β, which
is less than that the prior probabilities of the nodes in
S. This case is a very straightforward modification of
the global Troll-Trust method. Specifically, the prior
probabilities in Equation 10 are modified to replace
the prior probabilities as follows:

π(i) =

∑

j∈I(i)

π(j)

1+e
−ln[β(i)/(1−β(i))]−λ1wji

+ β(i)
∏

j∈I(i)
(1 − π(j))

∑

j∈I(i)
π(j) +

∏

j∈I(i)
(1 − π(j))

Note that β(i) is set to a small default value for nodes
which are not in S. The iterative update is based on
the aforementioned relationship.

• Hard personalization: Unlike weighted personalization,
it is assumed that the nodes in S are completely trusted,
and therefore the values of both π(i) and β(i) are set
to 1 for those nodes. Therefore, the Equation 10 is not
applied to those nodes, which are in S. For nodes that
are not in S, a small default value of β is assumed. For
each node i, which is not in S, the following relation-
ship is used to compute π(i):

π(i) =

∑

j∈I(i)

π(j)

1+e
−ln[β/(1−β)]−λ1wji

+ β
∏

j∈I(i)
(1 − π(j))

∑

j∈I(i)
π(j) +

∏

j∈I(i)
(1 − π(j))

The main difference between weighted personalization and
hard personalization is the level of trust placed in elements
in set S. In the case of hard personalization, it is assumed
that the elements of set S are completely trusted, irrespec-
tive of how many other users might have pointed to these
nodes with negative links. On the other hand, in the case
of weighted personalization, even though a prior bias is pro-
vided, the final trust probability of these nodes may be dif-
ferent from the prior values. Therefore, the weighted form
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Figure 1: A four-node signed network with 4 pos-
itive links and 3 negative (dashed) links. Edge
weights are labeled on each edge.

of personalization may be viewed as a softer way of biasing
the process.

4.1 Interesting Special Cases and Applications
Personalized ranking has many applications in informa-

tion search and recommender systems [22, 17]. The Troll-
Trust model can be applied to various applications such as
link prediction problem. It is well known that similar nodes
are more likely to form connections [6]. This is the reason
that personalized ranking methods were among the earliest
methods used for unsigned link prediction [15]. This general
principle can also be used in the case of signed networks. Us-
ing the same intuition as in the case of unsigned networks, we
can make the assumption that an individual node in a signed
network is more likely to initiate positive/negative edges to
nodes with higher/lower personalized ranking scores with
respect to that node. In general, since personalized ranking
methods are used in a host of other network-centric applica-
tions, such as collective classification, it is conceivable that
these methods can also be extended to those cases.

5. EXPERIMENTAL RESULTS
In this section, we will show the effectiveness of the Troll-

Trust model with respect to baseline methods. We will first
use an illustrative example to show that the ranking values
obtained from the Troll-Trust model are semantically in-
terpretable compared to other straightforward adaptations
of ranking algorithms to the signed network scenario. We
also apply the approach to an application-centric scenario to
show that the underlying ranking approach is more robust.
We use three different real datasets from the signed network
domain, which are Wikipedia, Slashdot, and Epinions.

5.1 Comparative methods
To study the effectiveness of the Troll-Trust algorithm, we

compare it to the following baselines. Each of these baselines
can be applied to compute global ranking scores for all the
nodes in the network:

• Prestige [24]

Prestige is a simple algorithm that considers only pos-
itive and negative incoming links. It assumes that a

node receiving more positive than negative incoming
links is more likely to be trusted.

• PageRank [3]

PageRank was originally designed for unsigned net-
works. Here, we apply PageRank on G+, the subgraph
of a signed network where all the negative links are
removed, and positive links are preserved to obtain
global trust values.

• Exponential ranking(Exp) [21]

Exponential ranking was designed for ranking nodes in
signed networks by heuristically using an exponential
variation of the PageRank equations to deal with neg-
ative links.

• Modified PageRank(MPR) [18]

Modified PageRank applies PageRank separately on both
G+, the positive subgraph, and G−, the negative sub-
graph. Suppose the corresponding ranks for the node
i are r+i and r−i respectively. The overall reputation is
computed as r+i − r−i .

• PageTrust [9]

PageTrust is a modified version of PageRank, which
multiplies the right-hand side of the PageRank equa-
tion with a heuristic correction factor in an effort to
account for negative links.

• Bias and Prestige(BAP) [16]

Bias and Prestige models both bias, which shows the
expected weight of an outgoing edge of a node, and
prestige, which reflects the expected weight of an in-
coming edge of a node, recursively in signed networks.
The assumption is that the opinions of biased users,
even with high prestige, should not be discounted.

• HITS [10]

HITS was originally proposed to analyze the link struc-
ture in the World Wide Web (WWW). To apply HITS
in signed networks, HITS is run separately on both
G+ and G−. Similar to Modified PageRank, the over-
all authority value is computed as a+

i − a−
i , where a+

i

and a−
i denote the corresponding authority values for

the node i respectively.

5.2 Synthetic Case Study
Before providing the results of ranking algorithms in ap-

plication-centric scenarios, we provide a synthetic case study
on a toy data set, to provide an intuitive understanding of
why the results from a Troll-Trust model may make semantic
sense over competing methods. This also explains the later
results on why its use in application settings provides more
accurate results.

As shown in Figure 1, a signed network is constructed
with 4 nodes, 4 positive links, and 3 negative links. The
trust/distrust weights on the edges are also indicated. It
is intuitively evident that node A is the most trustworthy,
given the positive incoming links from other nodes and no
negative incoming link. The trustworthiness of node C is
more controversial, because it is distrusted by node A and
B but partially trusted by node D. We run the Troll-Trust
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Figure 2: Predictive performance of Rep (Eq 15) and Opt (Eq 16) based on different ranking algorithms,
including Troll-Trust, Exp, BAP, PageRank, Prestige, MPR and HITS. Various evaluation measures, such as
the AUC, F1 Score, Accuracy, Precision and Recall, are shown on the Wikipedia network.

Table 1: Global trust values from different models
on the signed network in Figure 1

Model A B C D

Prestige 1.0 0.5 0.3333 1.0
PageRank 0.2025 0.1650 0.5001 0.1324

Exp 0.7074 0.5226 0.4591 0.5168
MPR 0.5687 0.4182 0.5719 0.4412

PageTrust 0.1723 0.1220 0.2154 0.1204
BAP 0.9201 0.4965 0.4568 0.5496
HITS 0.7366 0.4348 0.2473 0.7508

Troll-Trust 0.6708 0.5094 0.4790 0.5168

algorithm together with 8 other baselines on this signed net-
work. The obtained trust values are shown in Table 1. All
results are linearly scaled into [0, 1].

It can be observed from Table 1 that some of the base-
line algorithms yield poorly interpretable results. Prestige
is too focused on the number of positive and negative in-
coming links without taking into account the network struc-
ture. PageRank on the positive subgraph doesn’t take into
account negative links at all, therefore node C has the the
highest trust value, which is not desirable given the negative
links from node A and node B. PageTrust tries to incorpo-
rate negative links into the PageRank model but node C
still receives the highest trust value in the modified model.
MPR and HITS, respectively, apply the original PageRank
and HITS separately on the positive and negative subgraph
and obtain the difference as the global trust value. However,
this type of decomposed approach fails to take the interac-
tion among the two types of links into account.

The results of BAP, Exp and Troll-Trust are more in ac-
cordance with intuitive expectations. Although the results
of Exp and Troll-Trust are very similar in this case, further
experiments on real datasets will show their difference in
prediction tasks.

We should notice that each trust score in the results of the
Troll-Trust model represents the probability of a node being
trustworthy. On the other hand, other baselines, although
whose results are able to be scaled into [0, 1], actually lack

a probabilistic explanation in their models. Therefore their
results are only an intuitive analogy to the trust values from
the hidden probabilistic model.

5.3 Data Set Descriptions
We test our proposed work on three real signed network

datasets, Epinions, Slashdot andWikipedia, where each edge
is labeled explicitly with either a positive (+1) or a negative
(−1) sign. All three datasets are available online.

Table 2: Dataset statistics

Dataset Node Edge +Edge(%) −Edge(%)

Epinions 131,828 841,372 85.0 15.0
Slashdot 82,144 549,202 77.4 22.6
Wikipedia 10,835 159,388 78.7 21.2

• Epinions: Epinions is an online review site, in which
users are connected by directed links with positive
(+1) or negative (−1) signs. Epinions can be viewed
as a directed graph with 131, 828 nodes and 841, 372
edges, of which 85% are labeled positive.

• Slashdot: Slashdot is a technology blog, where the
users can tag each other as ’friends’ or ’foes’. The
’Friends’ tag is indicative of a positive link, whereas
the ’foes’ tag is indicative of a negative (−1) link.
Therefore, Slashdot can represent a signed network
with 82, 144 nodes and 549, 202 edges, of which 77.4%
are labeled positive.

• Wikipedia: In Wikipedia, users are able to cast sup-
porting or opposing votes for other admin users. Votes
are extracted as signed links (+1 for positive votes and
−1 for negative votes). This dataset contains 10, 835
nodes and 159, 388 edges, of which 78.7% are labeled
positive.

In all these networks, the proportion of positive links is
around 80%. Topological details including the number of
nodes, the number of edges, and the proportion of positive
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Figure 3: Predictive performance for Slashdot dataset. Other designations are the same as Fig 2

and negative links of all three datasets are summarized in
Table 2.

5.4 Testing Methodology
How can we show that one ranking method is better than

another? After all, there is no ground-truth availability for
the ranks of the nodes in any of the data sets. Therefore, we
use an indirect approach, which conforms to the methodol-
ogy generally used in the literature [18, 21]. The key idea
is that the node rankings are often used as a component of
various applications, whose effectiveness can be measured
more easily. For example, the rank (or trust) of a node is an
integral input as a feature to many sign prediction methods.
The quality of the latter can be measured easily against a
concrete ground-truth. We emphasize that our goal is not to
provide new sign prediction methods, but to test the effec-
tiveness of incorporated ranking methods with this indirect
approach. Therefore, we will use sign prediction methods to
test our approach.

5.4.1 Description of Sign prediction Task

Consider a signed network in which the signs on some
edges are not recorded. The sign prediction problem is to
predict those hidden signs based on the information obtained
from the rest of the network, such as the structure of the
network and the signs of other links [13]. To accomplish the
prediction task [18], the nodes are ranked in terms of global
trust values, which are further used to calculate the reputa-
tion (Rep) and optimism (Opt) scores. With Rep and Opt
used as features, logistic regression is used as the predictive
model. The accuracy is evaluated with the use of measures
such as the Accuracy, F1-Score, AUC, Precision and Recall.

Consider a signed network in which s(i, j) = ±1 denotes
the sign of the edge from from node i to node j. If no edge
exists from i to j, then the sign is 0. In the sign prediction
problem, we predict the signs of edges for which the sign is
unknown.

We adopt the two measures in [18], denoted by reputation
and optimism, as features for sign prediction tasks. Both
these features are expressed in terms of ranking scores, and
therefore a good performance by the sign prediction task
with these features is indicative of a ranking of good qual-

ity. The reputation feature quantifies the popularity of a
node in the network, whereas optimism quantifies the pat-
tern of votes a node make in the network. Let π(i) de-
note the global trust score we obtain for node i. Then, the
reputation (Repi) and the optimism (Opti) features of node
i are expressed in terms of π(i) (or any other baseline rank-
ing mechanism) as follows:

Repi =

∑

j;(j,i)∈A+ πj −
∑

j;(j,i)∈A− πj
∑

j;(j,i)∈A+ πj +
∑

j;(j,i)∈A− πj
(15)

Opti =

∑

j;(i,j)∈A+ πj −
∑

j;(i,j)∈A− πj
∑

j;(i,j)∈A+ πj +
∑

j;(i,j)∈A− πj
(16)

Here, A+ and A− denote the adjacency matrices for the
positive and negative subgraphs, respectively. For any given
edge, these two features are extracted from its endpoints in
order to perform the learning process.

5.5 Evaluation metrics
Next, we briefly introduce our evaluation metrics. In the

succeeding discussion, we denote y as the ground truth and
ŷ as our prediction.

• Accuracy

The accuracy measures the proportion of the success-
fully predicted instances, which can be biased in the
case of unbalanced datasets. Therefore we also use
metrics discussed below.

• Precision and Recall

Sign prediction is a binary classification task, and thus
we have the following possible outcomes as in Table 3

Table 3: Possible Outcomes in Link Prediction Tasks

Total population + Link − Link

Predicted + Link True Positive(tp) False Positive(fp)
Predicted − Link False Negative(fn) True Negative(tn)

Based on counts in each categories, precision and recall
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Figure 4: Predictive performance for Epinions dataset. Other designations are the same as Fig 2

is defined as follows:

precision =
tp

tp+ fp

recall =
tp

tp+ fn

Typically, there is a trade-off between precision and
recall.

• F1-Score

To account for the trade-off between precision and re-
call, we also use F1-Score, the harmonic mean of pre-
cision and recall

F1 = 2
precision× recall

precision+ recall

F1-Score falls in the range of [0, 1] and higher value
indicates higher predictive power.

• Area Under ROC Curve (AUC)

Another measure accounts for such trade-off is the area
under receiver operating characteristics (ROC) curve,
which measures the probability that the classifier will
rank a randomly chosen positive instance higher than
a randomly chosen negative one; a higher AUC would
indicate a better predictive performance.

5.6 Experimental setup
For each data set, 10-fold cross-validation is performed

to evaluate the predictive model. In each round of cross-
validation, for any node i in the signed network G from
the dataset, we first run the ranking algorithms to obtain
the global trust value π(i). Then for any edge e(u, v), four
features, Repu, Optu, Repv, Optv, are extracted based on
π(u) and π(v) to construct a feature vector. We use logistic
regression with L1 regularization as the classifier and evalu-
ate the predictive performance by Accuracy, F1-Score, AUC,
Precision and Recall. For clarity, here we use the names of
different ranking algorithms to denote different classifiers
respectively.

In our Troll-Trust model, the parameters are selected via
cross-validation on the training data, with the aim of achiev-
ing the highest Accuracy. As generally assumed, the damp-

ing factor in PageRank is set to 0.85 and both the initial
Authority and Hub values in HITS are set to 1. To guar-
antee convergence, the µ in Exp is set to 1 [21]. In the
PageTrust algorithm, multiplication of large dense matrices
is inevitable, and therefore this algorithm is excluded in our
experiments due to the memory limit.

All experiments were conducted on machines with In-
tel(R) Xeon(R), CPUs @ 2.60GHz and 125GB RAM.

5.7 Results
The predictive performances of the sign prediction meth-

ods, based on features derived from different ranking algo-
rithms on Wikipedia, Slashdot and Epinions, are shown in
Fig 2, Fig 3 and Fig 4 respectively.

We can observe that on all three datasets our Troll-Trust
model significantly outperforms other baselines in terms of
comprehensive evaluation metrics AUC, F1 Score and Accu-
racy. High Recall scores achieved by baselines indicate that
they can be overly aggressive in the prediction task, which
yields extremely poor Precision scores and mediocre overall
performance.

With the Troll-Trust model giving the best results, the
pattern of the performances of other algorithms seems to
vary on different datasets. Surprisingly, we found the un-
signed PageRank to be reasonably stable on all the datasets,
even though it was not the best performer. There can be
multiple reasons behind it. First of all, although the infor-
mation about negative links is completely ignored in PageR-
ank algorithm, it is taken into account into the computation
of the Rep and Opt during the feature extraction process.
Furthermore, all three datasets are highly imbalanced with
about 80% positive links. As a result, the the PageRank
model is able to perform well on at least the positive parts
of the network. Nevertheless, it is still outperformed by the
Troll-Trust model.

Another model that is relatively stable is Prestige, while
the results are not desirable, which is expected since it does
not differentiate the trustworthiness of the incoming neigh-
bors. The performance of other algorithms including Exp,
BAP, MPR and HITS fluctuates according to the datasets.
The heuristic modifications in these model can account for
such instability. Although Exp performed well in the case



study presented in Section 5.2, it does not perform as well
in the sign prediction tasks.

6. CONCLUSIONS AND SUMMARY
This paper presents a Troll-Trust model for ranking in

signed networks. One of the interesting aspects of the model
is that there is a clear semantic interpretation of the ranking
values in terms of the trust probabilities. Such a semantic
interpretation provides a model which is more clearly rooted
in the dynamics of such signed networks. This is also re-
flected in the fact that our model provides predictions of
high quality. We also develop a personalized version of the
ranks, which can be used for other applications such as link
prediction. Our experimental results show that the Troll-
Trust model provides more accurate results than competing
methods for the sign prediction tasks.
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