
When Will It Happen? — Relationship Prediction in
Heterogeneous Information Networks∗

Yizhou Sun†† Jiawei Han† Charu C. Aggarwal‡ Nitesh V. Chawla§
† University of Illinois at Urbana-Champaign, Urbana, IL, USA

‡ IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
§ University of Notre Dame, Notre Dame, IN, USA
†{sun22, hanj}@illinois.edu ‡charu@us.ibm.com §nchawla@nd.edu

ABSTRACT
Link prediction, i.e., predicting links or interactions between
objects in a network, is an important task in network anal-
ysis. Although the problem has attracted much attention
recently, there are several challenges that have not been ad-
dressed so far. First, most existing studies focus only on
link prediction in homogeneous networks, where all objects
and links belong to the same type. However, in the real
world, heterogeneous networks that consist of multi-typed
objects and relationships are ubiquitous. Second, most cur-
rent studies only concern the problem of whether a link will
appear in the future but seldom pay attention to the prob-
lem of when it will happen. In this paper, we address both
issues and study the problem of predicting when a certain
relationship will happen in the scenario of heterogeneous net-
works. First, we extend the link prediction problem to the
relationship prediction problem, by systematically defining
both the target relation and the topological features, using
a meta path-based approach. Then, we directly model the
distribution of relationship building time with the use of the
extracted topological features. The experiments on citation
relationship prediction between authors on the DBLP net-
work demonstrate the effectiveness of our methodology.
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1. INTRODUCTION
Owing to the popularity of Web and social networks, link

prediction, i.e., predicting the emergence of links in a net-
work in the future based on certain historical network infor-
mation, has been a hot topic in recent years. Its applications
range from social networks to biological networks, as it ad-
dresses the fundamental question of whether a link will form
between two nodes in the future. Most of the existing link
prediction methods [12, 7, 21, 13, 10] are designed for homo-
geneous networks, in which only one type of objects exists
in the network. For example, friendship networks and co-
author networks belong to homogeneous networks. However,
most of the networks in the real world are heterogeneous,
where multiple types of objects and links exist. For exam-
ple, a movie network contains information about types of
movies, actors, users, and comments, with links from types
of view/viewed, post/posted, comment-on/commented-on,
and so on. Other examples of heterogeneous networks in-
clude those extracted from social websites, such as YouTube,
Flickr, and Delicious. A few studies [19] have worked on
the problem of link prediction in heterogeneous networks,
based on the observations of the attributes of the objects.
However, the attribute values of objects are usually difficult
to fully obtain in reality. For example, user profiles in the
movie network is usually incomplete or unreliable.

The heterogeneity of objects and links makes it difficult
to use well-known topological concepts in homogeneous net-
works for algorithmic design. For example, the number of
the common neighbors is frequently used as a feature for
link prediction in homogeneous networks. However, in het-
erogeneous networks, the neighbors of an object could come
from different types, and the number of shared neighbors is
not able to fully represent this heterogeneity. On the other
hand, the focus of traditional link prediction tasks is on the
fact about whether a link will happen in the future, e.g.,
whether two people will become friends. However, in many
applications, it may be more interesting to predict when the
link will be built. Examples include: “what is the probabil-
ity that two authors will co-write a paper within 5 years?”,
and “by when will a user in Netflix rent the movie Avatar
with 80% probability?”.

In this paper, we propose the problem of predicting the
relationship building time between two objects, based on the
topological structure in a heterogeneous network. Different
from link prediction which predicts whether a link should
exist between two homogeneous typed objects, relationship
prediction predicts whether or when a relationship between
two objects will be built, based on the relationships among



heterogeneous typed objects. We first introduce our frame-
work of relationship prediction in heterogeneous information
networks, including the concepts of the target relation and
topological features encoded in a meta-path [17]. Then, a
generalized linear model (GLM) [5] based supervised frame-
work is proposed to model the relationship building time.
In this framework, the building time for relationships are
treated as independent random variables with different ob-
servations and their expectation is modeled as a function
of a linear predictor of the extracted topological features.
We propose and compare models with different distribution
assumptions for relationship building time, where the pa-
rameters for each model are learned separately.

We apply our methodology to predict citation relationship
between authors in DBLP, a heterogeneous bibliographic
network. The results show that our methodology can indeed
handle the task of relationship prediction in heterogeneous
networks, and detect the critical topological features in de-
termining the timing of relationship building. By taking the
relationship building time into consideration, one can ob-
tain not only the relationship building probabilities within
time constrains, but also richer information about the rela-
tionship building time, such as median, mean, and quantile
intervals. The contributions of this paper are as follows:

• We extend the link prediction problem in homogeneous
networks to relationship prediction in heterogeneous net-
works, by systematically defining the target relation and
topological features in heterogeneous networks;

• We extend the traditional prediction problem from
“whether it will happen” to “when it will happen”, and
directly model the relationship building time as a func-
tion of topological features; and

• Experiments on citation relationship prediction in the
DBLP bibliographic network have validated our method-
ology.

The remaining of the paper is organized as follows. We in-
troduce the concepts on heterogeneous information networks
and define the task of relationship building time prediction
in Section 2. Methods for design and calculation of topo-
logical features for relationship prediction are developed in
Section 3. Relationship building time modeling is worked
out in Section 4. We report our experiments in Section 5,
discuss related work and other issues in Sections 6, and con-
clude the study in Section 7.

2. PROBLEM DEFINITION
In this section, we introduce the concepts related to het-

erogeneous information networks and define the relationship
building time prediction task.

2.1 Heterogeneous Information Network
A heterogeneous information network is a network

containing multiple types of objects and links, which is de-
fined as a directed graph G = (V,E) with a type mapping
function φ : V → A and a link mapping function ψ : E →R.
Each object v ∈ V belongs to one particular type φ(v) ∈ A,
and each link e ∈ E belongs to a particular link type or
relation ψ(e) ∈ R. Notice that, if a relation exists between
two types A and B, denoted as A R B, the reverse relation
R−1 holds naturally for BR−1A. In most cases, R and its
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Figure 1: Schema for DBLP Bibliographic Network

reverse relation R−1 are not equal, unless the two types are
the same and R is symmetric.

Further, in order to describe a heterogeneous network at
the meta-level, we use the concept of network schema
following [17]. Let G = (V,E) be a heterogeneous network
with type mapping φ : V → A and relation mapping ψ :
E → R, the network schema of G is a directed graph with
nodes from object types A and edges from relation types R,
denoted as TG = (A,R).

Here we give one example of heterogeneous networks,
namely the DBLP bibliographic network, in its network
schema form.

Example 3.1 (DBLP bibliographic network.) The
DBLP bibliographic network integrated with citation rela-
tionships between papers, which is provided by [18], consists
of rich information about publications. The network con-
tains 4 types of objects, namely papers, authors, terms, and
venues (conferences or journals). Links exist between au-
thors and papers by the relation of “write” and “written by”
(denoted as write−1), between papers and terms by “men-
tion” and “mentioned by” (denoted as mention−1), between
venues and papers by“publish”and “published by” (denoted
as publish−1), and between papers by “cite” and “cited by”
(denoted as cite−1). Its network schema is summarized in
Fig. 1.

For abbreviation, we use the first capital letters to denote
these object types, namely P for papers, A for authors, T
for terms, and V for venues.

2.2 Target Relation
Given a heterogeneous network, we generalize the link pre-

diction task to relationship prediction, which is to pre-
dict whether two objects will build a relationship following
a certain target relation in the future. Notice that tar-
get relationships between objects are instances of the tar-
get relation. For example, we say that Jim and Mike have
built a co-author relationship, if they follow a co-author re-
lation. The target relation can be either a relation in R or
a composite relation concatenated from existing relations.
For example, the co-author relation on author set is not
defined in our original DBLP network schema, but can be
defined through concatenation of two relations “write” and
“write−1”, namely two authors ai and aj are co-authors, if
and only if ai has authored a paper p that is also authored
by aj .

Formally, we use the concept of meta-path [17, 16] de-
fined over the network schema to describe the general rela-
tions that can be derived from the network. A meta-path is



a path defined on the graph of network schema TG = (A,R),

and is denoted in the form of A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1,

which defines a composite relation R = R1 ◦ R2 ◦ . . . ◦ Rl

over type A1 and Al+1, where ◦ denotes the composi-
tion operator. For example, in the DBLP network, the
co-author relation can be described using the meta-path

A
write−→ P

write−1−→ A, and is short for A − P − A if there
is no ambiguity for either the meaning or order of the rela-
tions. Another example is A − P → P − A, which is short

for A
write−→ P

cite−→ P
write−1−→ A, and describes the citation

relation between authors.
From the topological view, a target relationship is a path

instance following the meta-path that defines the target re-
lation. In real cases, the relationship building between two
objects can be affected by many factors. In this paper, we
are particularly interested in how topological structures in
heterogeneous networks affect the relationship building. For
example, for the co-authorship prediction, we want to know
what kind of connections between two authors in the histori-
cal network can help build new co-author relationship in the
future. We show that topological features in heterogeneous
networks can be defined systematically using meta-paths,
which is covered in Section 3.

2.3 Relationship Building Time Prediction
In addition, in this paper we aim at predicting the rela-

tionship building time between objects, which differs from
the traditional link prediction problem in another aspect.
Examples of relationship building time prediction tasks in-
clude predicting when two users will be friends in Delicious
network; predicting when an author will publish papers in
a conference in DBLP network; and predicting when a user
will review a movie in IMDB network.

Generally, given a target relation 〈A,B〉 between two
types A ∈ A and B ∈ A, a history interval T0 = [t0, t1),
we want to use the topological features extracted from the
aggregated network in time period T0, to predict the rela-
tionship building time t (t ≥ t1) in the future.

Following the seminal work of link prediction in homo-
geneous networks [12], we are interested in predicting the
generation of new relationships rather than existing ones.
Taking the co-authorship prediction as an example, we are
interested in predicting the first time of relationship build-
ing between two authors who have never co-authored be-
fore rather than predicting how many times the existing co-
authors will co-author again in the future.

3. TOPOLOGICAL FEATURES IN HET-
EROGENEOUS NETWORKS

In this section, we study how to systematically define the
topological features in heterogeneous networks. Topological
features are also called structural features, which are ex-
tracted connectivity properties for pairs of objects in the
networks. Topological feature-based link prediction aims at
inferring the future connectivity by the current connectivity
of the network, namely, using the topology of the network
itself to infer the evolution of the network.

There are some frequently used topological features de-
fined in homogeneous networks, such as common neigh-
bors, preferential attachment [2, 14], katzβ [9], Adamic/Adar
[1], and PropFlow [13]. Most of these features are either

neighbor-based or path-based. Recently, frequent graph pat-
terns are proposed as another topological feature in detect-
ing the link formation rules [4, 11], which can be used for
link prediction. However, most of these features are based
on homogeneous networks. As there are multi-typed ob-
jects and multi-typed relations in heterogeneous networks,
the neighbors of an object could belong to multiple types
of objects, and the paths between two objects could follow
different meta-paths and indicate different relations. For
example, for the paths between two authors, it may follow
the meta-paths A − P → P − A, A − P − V − P − A,
A − P − T − P − A and so on. Thus, we need to design a
more sophisticated strategy to generate topological features
in heterogeneous networks.

To design the topological features in the heterogeneous
networks, we first define the topology using the concept of
meta-path, and then define measures to quantify the specific
topology.

3.1 Meta Path-Based Topology
As introduced in Section 2, a meta-path is a path defined

over a network schema, and denotes a composite relation
over a heterogeneous network. Each meta-path defines a
unique topology between objects, and can be used to define
the topological features with different semantic meanings. In
[16], a case study of meta-path preparation for co-authorship
prediction is given. In this section, we give a general frame-
work in preparing reasonable meta path-based topological
features for the target relation.

In general, for a target relation RT = 〈A,B〉, any meta-
paths starting with type A and ending with type B other
than the target relation itself can be used as the topological
features. These meta-paths can be obtained by traversing
on the network schema, for example, using BFS (breadth-
first search). In particular, we are considering three forms
of relations as topological features:

1. ARsimARTB, where Rsim is a similarity relation defined
between type A and RT is the target relation. The in-
tuition is that if ai in type A is similar to many ak’s in
type A that have relationships with bj in type B, then ai

is likely to build a relationship with bj in the future.

2. ARTBRsimB, where RT is the target relation, and Rsim

is a similarity relation between type B. The intuition is
that if ai in type A has relationships with many bk’s in
type B that are similar to bj in type B, then ai is likely
to build a relationship with bj in the future.

3. AR1CR2B, where R1 is some relation between A and C
and R2 is some relation between C and B. The intuition
is that if ai in type A has relationships with many ck’s
in type C that have relationships with bj in type B, then
ai is likely to build a relationship with bj in the future.
Notice that the previous two forms are special cases of
this one, which can be viewed as triangle connectivity
property. Also, ARsimA is another special case of this
type.

For topological features, we confine similarity relations
Rsim and other partial relations R1 and R2 to those that can
be derived from the network using meta-paths. Moreover,
we only consider similarity relations that are symmetric.

Taking the author citation relation, which is defined as
A−P → P −A, as the target relation, we consider 6 author-



Table 1: Meta-Paths Denoting Similarity Relations
between Authors

Meta-path Semantic meaning of the relation

A− P −A ai and aj are co-authors
A− P −A− P −A ai and aj have the same co-authors
A− P − V − P − A ai and aj have publications in the same

venues
A− P − T − P −A ai and aj write the same terms
A− P → P ← P − A ai and aj cite the same papers
A− P ← P → P − A ai and aj are cited by the same papers

author similarity relations defined in Table 1. For each sim-
ilarity relation, we can concatenate the target relation in
its left side or in its right side. We then have 12 topology
features with the form ARsimARTB and ARTBRsimB in
total. Besides, we can consider the concatenation of“author-
cites-paper” relation (A− P → P ) and “paper-cites-author”
relation (P → P −A), as well as all the 6 similarity relations
listed in Table 1, in the form of AR1CR2B. Now we have
19 topological features in total.

For each type of the meta-paths, we illustrate a concrete
example to show the possible relationship building in Figure
2. In Figure 2(a), authors a1 and a2 are similar, as they
publish papers containing similar terms, and a2 cites papers
published by a3. In the future, a1 is likely to cite papers
published by a3 as well, since she may follow the behavior
of her fellows. In Figure 2(b), author a1 cites a2, and a2 and
a3 are cited by common papers together (p5, p6, p7). Then
a1 is likely to cite a3 in the future, as she may cite authors
similar to a2. In Figure 2(c), a1 and a2 publish in the same
venue, then a1 is likely to cite a2 in the future as they may
share similar interests if publishing in the same conference.

By varying the similarity relations and partial relations,
we are able to generate other topological features in arbi-
trary heterogeneous networks.

3.2 Quantify the Topology Features
Once the topologies defined by meta-paths are deter-

mined, the next stage is to propose measures on these meta-
paths. We can use the count of the path instances, random
walk-based measures, and others to define the measures be-
tween any two objects given the meta-path. For similarity
relations, say A − P − T − P − A, we can treat each term
as a 2-hop neighbor of authors and use weighted count or
cosine similarity to measure the similarity between two au-
thors. More discussion of measures defined on meta-paths
can be found in [17] and [16].

In this paper, without loss of generality, we use the count
of path instances as the default measure. Thus, each meta-
path corresponds to a measure matrix. For a single relation
in R ∈ R, the measure matrix is just the adjacency matrix
of the sub-network extracted by R. Given a composite re-
lation, the measure matrix can be calculated by the matrix
multiplication of the partial relations.

In Figure 2(a), the count of path instances between a1

and a3 following the given meta-path is 2, which are:

1. a1 − p1 − t1 − p2 − a2 − p3 → p4 − a3;

2. a1 − p1 − t2 − p2 − a2 − p3 → p4 − a3.

In Figure 2(b), the count of path instances between a1 and
a4 following the given meta-path is 3, which are:

1. a1 − p1 → p2 − a2 − p3 ← p5 → p4 − a4;

2. a1 − p1 → p2 − a2 − p3 ← p6 → p4 − a4;

3. a1 − p1 → p2 − a2 − p2 ← p7 → p4 − a4.

In Figure 2(c), the count of path instances between a1 and
a3 following the given meta-path is 1, which is:

1. a1 − p1 − v1 − p2 − a3.

Measures for different meta-paths have different scales.
For example, longer meta-paths usually have more path in-
stances due to the adjacency matrix multiplication. We will
normalize the measure using Z-score for each meta-path.

3.3 Discussions on Meta Path-based Feature
Preparation

How to prepare the meta path-based features is an import
issue from a feature engineering point of view. This can be
done systematically as well. Note that each meta-path is a
path defined on the graph of network schema. For A R B
type of meta-paths, we need to find a path starting from
type A and ending with type B. We can use graph traverse
algorithms such as BFS (breadth-first search) to enumer-
ate all the possible meta-paths starting from A and ending
with B with a length constraint. In particular, if we re-
quire ARsimA be a symmetric meta-path between type A
to denote a similarity relation, we can confine the meta-path
as a round trip path on the network schema. For example,
A−P ← P → P−A is a round trip meta-path, which comes
back from one type in a reverse manner, while A−P → P−A
is not a round trip path.

4. MODELING RELATIONSHIP BUILD-
ING TIME

So far, we have provided a systematic way to define the
topological features in heterogeneous networks, which is a
large space defined over topology ×measure.

In this section, we propose the generalized linear model-
based prediction model, which directly model the relation-
ship building time as a function of topological features, and
provide methods to learn the coefficients of each topological
feature, under different assumptions for relationship build-
ing time distributions. After that, we introduce how to use
the learned model to make inferences.

4.1 Overview
We model the relationship building time prediction prob-

lem in a supervised learning framework. In the training
stage, we first collect the topological features xi in the
history interval T0 = [t0, t1) for each sampled object pair
〈ai, bi〉, where φ(ai) = A and φ(bi) = B. Then, we record
their relative first relationship building time yi = ti − t1, if
ti is in the future training interval T1 = [t1, t2); record the
building time yi ≥ t2 − t1, if no new relationship has been
observed in T1. Note that in the training stage, we are only
given limited time to observe whether and when two objects
will build their relationship, it is very possible that two ob-
jects build their relationship after t2, which needs careful
handling in the training model. A generalized linear model
(GLM) based relationship building time model is introduced
in Section 4, and the goal is to learn the best coefficients
associated with each topological feature that maximize the
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Figure 2: Feature Meta-Path Illustration for Author Citation Relationship Prediction

current observations of the relationship building time. In the
test stage, we apply the learned coefficients of the topolog-
ical features to the test pairs, and compare the predicted
relationship building time with the ground truth.

Different from the existing link prediction task, in the
training stage, we are collecting relationship building time
yi for each training pair, which is a variable ranging from 0
to ∞, rather than a binary value denoting whether a link
exists future interval or not. Similarly, in the test stage, we
are predicting the relationship building time yi for test pairs
that range from 0 to ∞, rather than predicting whether the
link exists or not in the given future interval.

4.2 The Relationship Building Time Predic-
tion Model

We first introduce the generalized linear model [5] as a
general framework to solve the relationship building time
prediction problem. Then we propose several reasonable dis-
tributions for the relationship building time, and use gener-
alized linear model to build the connection between the ob-
served building time and the observed topological features,
under different distribution assumptions. We provide the
methods to learn the model as well as the model inference
in Section 4.3 and 4.4.

4.2.1 The Generalized Linear Model Framework
The main idea of generalized linear model (GLM) [5] is to

model the expectation of a dependent random variable Y ,
E(Y ), as some function (“link function”) of the linear combi-
nation of features, i.e., Xβ, where X is the observed feature
vector, and β is the coefficient vector. Then the goal is to
learn β according to the training data set using maximum
likelihood estimation. Under different distribution assump-
tions for Y , usually from the exponential family, E(Y ) has
different forms of parameter set, and the link functions are
with different forms too. Note that the most frequently used
Least-Square regression and logistic regression are special
cases of GLM, where Y follows Gaussian distribution and
Bernoulli distribution respectively.

Suppose we have n training pairs for the target relation
〈A,B〉. We denote each labeled pair as ri = 〈ai, bi〉, and

yi as the observed relative relationship building time in the
future interval. We denote Xi as the d dimensional topolog-
ical feature vector extracted for ai and bi in the historical
interval plus a constant dimension.

4.2.2 Distributions for Relationship Building Time
The first issue of the prediction model is to select a suit-

able distribution for the relationship building time. Intu-
itively, a relationship building between two objects can be
treated as an event, and we are interested in when this event
will happen.

Let Y be the relationship building time relative to the be-
ginning of the future interval (yi = ti − t1), and let T be
the length of future training interval. For training pairs, Y
has the observations in [0, T ) ∪ {T+} in a continuous case,
and {0, 1, 2, . . . , T −1, T+} in a discrete case, where y = T+

means no event happens within the future training interval;
for testing pairs, Y has the observations in [0,∞] in a con-
tinuous case, and nonnegative integers in a discrete case. In
this paper, we consider three types of distributions for re-
lationship building time, namely exponential, Weibull and
geometric distribution. For each of the distribution assump-
tions over yi, we set up the models separately.

The first distribution is exponential distribution,
which is the most frequently used distribution in modeling
waiting time for an event. The probability density function
of an exponential distribution is:

fY (y) =
1

θ
exp{−y

θ
} (1)

where y ≥ 0, and θ > 0 is the parameter denoting the
mean waiting time for the event. The cumulative distri-
bution function is:

FY (y) = Pr(Y ≤ y) = 1− exp{−y
θ
} (2)

The second distribution is Weibull distribution, which
is a generalized version of exponential distribution and is
another standard way to model the waiting time of an event.
The probability density function of a Weibull distribution is:

fY (y) =
λyλ−1

θλ
exp{−(

y

θ
)λ} (3)



where y ≥ 0, and θ > 0 and λ > 0 are two parameters
related to mean waiting time for the event and hazard of
happening of the event along with the time. λ is also called
the shape parameter, as it affects the shape of probability
function. When λ > 1, it indicates an increasing happen-
ing rate along the time (if an event does not happen at an
early time, it is getting higher probability to happen at later
time); and when λ < 1, it indicates a decreasing happening
rate along the time (if an event does not happen at an early
time, it is getting less possible in happening in later time).
Notice that when λ = 1, Weibull distribution becomes ex-
ponential distribution with mean waiting time as θ, and the
happening rate does not change along the time. The cumu-
lative distribution function is:

FY (y) = Pr(Y ≤ y) = 1− exp{−(
y

θ
)λ} (4)

The third distribution is the geometric distribution,
which is a distribution that models how many times of fail-
ures it needs to take before the first-time success. As in our
case, the time of failure is the discrete time that we need
to wait before a relationship is built. The probability mass
function of a geometric distribution is:

Pr(Y = k) = (1− p)kp (5)

where k = 0, 1, 2, . . ., and p is the probability of the occur-
rence of the event at each discrete time. The cumulative
distribution function is:

Pr(Y ≤ k) = 1− (1− p)k+1 (6)

In our case, each relationship building is an independent
event, and each relationship building time Yi is an inde-
pendent random variable, following the same distribution
family, but with different parameters. With the distribution
assumptions, we build relationship building time prediction
models in the following.

4.2.3 Model under Exponential and Weibull Distri-
bution

Notice that, as exponential distribution is a special case of
Weibull distribution (with λ = 1), we only discuss prediction
model with Weibull distribution.

In this case, we assume relationship building time Yi for
each training pair is independent of each other, following
the same Weibull distribution family with the same shape
parameter λ, but with different mean waiting time param-
eters θi. Namely, we assume that different relationships for
the target relation share the same trend of hazard happen-
ing along with the time, but with different expectation in
building time. Under this assumption, the expectation for
each random variable Yi, E(Yi) = θiΓ(1 + 1

λ
). We then

use the link function E(Yi) = exp{−Xiβ}Γ(1 + 1
λ
), that

is log θi = −β0 −∑d
j=1Xi,jβj = −Xiβ, where β0 is the

constant term.
Then we can write the log-likelihood function:

logL =
n∑

i=1

(fY (yi|θi, λ)I{yi<T} + P (yi ≥ T |θi, λ)I{yi≥T})

where I{yi<T} and I{yi≥T} are indicator functions, which
equals to 1 if the predicate holds, otherwise 0. It is easy to
see that the log-likelihood function includes two parts: if yi is
observed in the future interval, we use its real density in the
function; otherwise, we are only able to use the probability

of yi ≥ T in the function. By plugging in log θi = −Xiβ,
we can get the log-likelihood with parameters β and λ:

LLW (β, λ) =

n∑

i=1

I{yi<T} log
λyλ−1

i

e−λXiβ
−

n∑

i=1

(
yi

e−Xiβ
)λ (7)

We refer this model as Weibull model.

4.2.4 Model under Geometric Distribution
In this case, we assume relationship building time Yi for

each training pair is independent of each other, following
the same geometric distribution family, but with different
success probability pi. Under this assumption, the expecta-
tion for each random variable Yi, E(Yi) = 1−pi

pi
. We then

let E(Yi) = exp{−Xiβ}, namely, log 1−pi
pi

= −Xiβ. The

log-likelihood function is then:

LLG(β)

=
n∑

i=1

(Pr(Yi = yi)I{yi<T} + P (yi ≥ T )I{yi≥T})

=

n∑

i=1

( − I{yi<T}(−Xiβ) + (yi + 1)(−Xiβ − log(e−Xiβ + 1))
)

(8)

We refer this model as geometric model.

4.3 Model Learning
The learning of the models is becoming an optimization

problem, which aims at finding β̂ and other parameters (e.g.,

λ̂ in the Weibull model) that maximize the log-likelihood. As
there are no closed form solutions for Eq. 7 and Eq. 8, we
use standard Newton-Raphson method to derive the update
formulas, which are based on the first derivative and second
derivative (Hessian matrix) of the log-likelihood function.
The learning algorithms for Weibull model and geometric
model are introduced as below.

4.3.1 The Learning Algorithm for Weibull Model
For Weibull model, there are two sets of parameters,

namely, the coefficients for each topological feature β and
the shape parameter λ. An iterative algorithm is proposed
to solve this model, where β and λ are updated alternatively.
Initially, we set λ(0) = 1, and at the t-th iteration, β and λ
are updated using the Newton-Raphson method:

• Updating β with λ = λ(t) by setting β(t+1) =
maxβ LLW (β, λ(t)), where β(t+1) is derived using an in-
ner iteration of Newton-Raphson method:

β(t′+1) = β(t′) − [H LLW (β(t′), λ(t))]−1∇LLW (β(t′), λ(t))

where t′ is the inner iteration number,H denotes the Hes-
sian matrix and ∇ denotes the first derivative of function
LLW for β.

• Updating λ with β = β(t+1) by setting λ(t+1) =
maxλ LLW (β(t+1), λ), where λt+1 is derived using an-
other inner iteration of Newton-Raphson method:

λ(t′+1) = λ(t′) − [H LLW (β(t+1), λ(t′))]−1∇LLW (β(t+1), λ(t′))

where t′ is the inner iteration number,H denotes the Hes-
sian matrix and ∇ denotes the first derivative of function
LLW for λ.



Please refer to Appendix A for the concrete formulas for
Hessian matrices and first derivatives for β and λ. Note
that, as for discrete time we may observe 0 for yi’s, which
will cause ill-condition of the log-likelihood. Therefore, we
will add a small time gap δy to all yi’s in the training period
and extract the gap in the test period.

4.3.2 The Learning Algorithm for Geometric Model
For geometric model, there is only one set of parameters

β, and we directly use Newton-Raphson method to optimize
the objective function LLG:

β(t+1) = β(t) − [H LLG(β(t))]−1∇LLG(β(t))

where t is the iteration number, H denotes the Hessian ma-
trix and ∇ denotes the first derivative of function LLG for
β.

Please refer to Appendix B for the concrete formulas for
Hessian matrix and first derivative for β.

4.4 Model Inference
Once the parameters such as β and λ are learned from the

training data set through MLE, we can apply the model to
the test pairs of objects, as long as their topological features
in the historical network are given. Let the learned param-
eter values be β̂ and λ̂ for β and λ, and let the topological
feature vector for the test pairs be Xtest (with constant 1 as
the first dimension), we now consider three types of ques-
tions people may be interested in for the new relationship
building time, and provide the solutions in the following.

1. Whether a new relationship between two test objects will
be built within t years?

This question is equal to the query for the probability
Pr(ytest ≤ t), which can be evaluated by plugging in the
MLE estimators to derive the distribution parameters.
Notice that for traditional link prediction tasks, t should
be the same as the length of training interval. For our
task, t can be any nonnegative values. For Weibull model,
we have:

θ̂test = exp{−Xtestβ̂}
Pr(ytest ≤ t) = 1− exp{−(

t

θ̂test

)λ̂} (9)

For geometric model, we have:

p̂test =
1

exp {−Xtestβ̂}+ 1

Pr(ytest ≤ t) = 1− (1 − p̂test)
t+1

(10)

2. What is the average relationship building time for two
test objects?

This is simply the query for E(Ytest). Using the same

estimators for θ̂test and p̂test as above, we can have the
estimator for E(Ytest) as E(Ytest) = θ̂testΓ(1 + 1

λ̂
) for

Weibull model, where Γ(·) is the Gamma function, and
E(Ytest) = 1−p̂test

p̂test
for geometric model.

3. The quantile: by when a relationship will be built with a
probability α?

This is equal to query for the solution of FY (ytest) = α,

and we can get answers as ytest = θ̂test(− log(1 − α))
1
λ̂

for Weibull model, and ytest = max{ log(1−α)
log(1−p̂test)

− 1, 0}
for geometric model. When α = 0.5, the quantile is just
the median.

5. EXPERIMENTS
In this section, we apply our methodology on DBLP bib-

liographic network, and select the target relation as the au-
thor citation relationship (A − P → P − A). The goal is
to study the effectiveness of our time-involved relationship
prediction model in the heterogeneous network scenario.

5.1 The Dataset
We select a subset of authors in the DBLP bibliographic

network, who published more than 5 papers in top confer-
ences in four areas1 that are related to data mining between
year 1996 and 2000 (T0 = [1996, 2000]). The total number
of the author set is 2721. Then we sampled 7000 pairs of
authors in the form of 〈ai, aj〉 that ai did not cite aj in T0,
but have citation relationship between year 2001 and 2009
(T1 = [2001, 2009] and T = 9) as positive samples; and we
sampled another 7000 pairs of authors that have no citation
relationship during either T0 or T1. The citation relationship
is defined if ai cites papers written by aj published before
year 2000. Notice that, we have this time constraint for
papers as we want to infer citation relationship via the his-
torical network. 19 topological features introduced in Sec.
3 are calculated for each year in T0 and then aggregated to-
gether. The first (relative) time of the citation relationship
is recorded for each pair of authors; and if there is no cita-
tion relationship between them in T1, the time is recorded
as a value bigger than 9.

5.2 Experimental Setting
In order to show the power of using time-involved model

in relationship prediction, we use logistic regression [15] (de-
noted as logistic) that is frequently used in binary link pre-
diction tasks as the baseline. Notice that, the output of the
logistic regression is a probability denoting whether a rela-
tionship will be built in T1 for each test pair. In our models,
the output is the parameter set for the distribution of the
relationship building time, from which we can infer much
more information rather than a simple probability. We de-
note our models with different distribution assumptions as
GLM geo, GLM exp, and GLM weib respectively.

To compare the four models, we use two sets of measures
to evaluate the effectiveness of each model. First, we mea-
sure the effectiveness according to the predicted probability
for each relationship. We define the accuracy of the relation-
ship prediction as the ratio between the number of correctly
predicted relationship (under the cut-off 0.5) and the to-
tal number of the test pairs. Also, another frequently used
measure AUC (the area under ROC curve) [3] is used to
compare the accuracy.

Second, we directly compare the predicted time with the
ground truth, among our proposed models. Mean absolute
error (MAE ) that is the mean of the absolute error between
predicted relationship building time and the ground truth is
used. Also, we use the ratio of the relationships that occur in
some confidence interval derived from the models as another
measure to test the accuracy of the predicted time. Notice
that, relationships yet to happen are not considered in these
two measures.

1Data Mining: KDD, PKDD, ICDM, SDM, PAKDD;
Database: SIGMOD Conference, VLDB, ICDE, PODS,
EDBT; Information Retrieval: SIGIR, ECIR, ACL, WWW,
CIKM; and Machine Learning: NIPS, ICML, ECML, AAAI,
IJCAI.



Table 2: Relationship Prediction Accuracy Compar-
ison

T = 1 T = 5 T = 9
Acc. AUC Acc. AUC Acc. AUC

logistic 0.9312 0.7356 0.7097 0.7751 0.6995 0.8083

GLM-geo 0.9310 0.7037 0.6909 0.7758 0.6659 0.8021
GLM-exp 0.9304 0.7262 0.6922 0.7680 0.7096 0.7917
GLM-weib 0.9304 0.7273 0.6915 0.7680 0.7031 0.7917

All the results in this section are the average results using
10-fold cross-validation.

5.3 Prediction Power Study
We now compare our time-involved models with the base-

line logistic regression, using the first set of measures.
First, we vary the future interval used in the training stage

T train
1 (with the length T train) and test stage T test

1 (with the
length T test) but force them the same (T = T train = T test),
and compare the predicted probability of the relationship
building within time T (Pr(ytest) < T ) for test pairs. The
results are summarized in Table 2. From the results, we can
see that logistic regression has the best overall performance
in predicting the probability of relationship building, when
the training future interval equals to the test future interval.

Next, we test the generality power for different models,
namely, when the training future interval is not equal to
the test future interval (T train 
= T test). On one hand, we
may want to know the probability of relationship building
within each year in the training interval (T test < T train); on
the other hand, we may want to infer longer term probabil-
ity given a short term training interval (T test > T train).
We show the two cases in Table 3 and Table 4. Notice
that, since logistic regression can only output the probability
when T test = T train, we use the same predicted probability
for different test intervals. In Table 3, we fix the training in-
terval with length T train = 9, namely, T train

1 = [2001, 2009],
and vary the test intervals with length from 1 to 4. We
can see that when T test is small, time-involved models can
give much better prediction accuracy, especially in terms of
the measure accuracy. In other words, time-involved models
carry more information in telling the probability of relation-
ship building in finer time periods. In Table 4, we fix the test
interval with length T test = 9 and vary the training inter-
vals with length from 2 to 5. We can see that, time-involved
models can better utilize the short term training than logis-
tic regression, and output better prediction results for longer
term relationship building behavior. It is interesting to no-
tice that by using the measure AUC, which does not require
users to specify a cut-off value in the predicted probabili-
ties, the performance of logistic regression is still comparable
with other models. This is due to AUC only uses the rank-
ing order of the predicted values, while accuracy requires
that the absolute values of the predicted probabilities are
also correct.

In all, for time-involved model, it contains more infor-
mation and can answer different questions and with strong
generalization power. Logistic regression can only answer
the question of whether a link will happen or not, given a
fixed time interval, and the experiments show that it has the
strength in answering this certain type of question. However,
if we are asking more, it fails in most of the scenarios.

5.4 Time Prediction Accuracy Study
We now evaluate the predicted time using different time-

Table 5: MAE of Predicted Time with the Ground
Truth

T train = 5, T test = 9 T train = 9, T test = 9

GLM-geo 4.9883 4.7219
GLM-exp 2.7774 3.0685
GLM-weib 3.1025 3.1692

involved models. Here, we use the predicted median time
as the predicted time. Table 5 shows the MAE between the
predicted median time and the ground truth under different
training and test intervals. It turns out that GLM-exp has
the lowest error. Also, both GLM-exp and GLM-weib per-
form even better using shorter interval as training, whereas
GLM-geo has the opposite behavior, that is, longer term of
training leads to better performance. Notice that, we only
calculate the error for the positive relationships happened
in the test interval.

In Table 6, we infer different confidence intervals from
the predicted relationship building time distribution, and
test the ratio of the true relationship in different confidence
intervals. A confidence interval (range) rather than a simple
value, say the median time, can give users a better view
of the relationship building time. It is shown that GLM-exp
and GLM-weib has a higher ratio of giving correct confidence
intervals for the true relationship building time, especially
when using a small confidence interval. This is very useful
in practice as they can give tight bound estimations.

5.5 Case Studies
To better understand the output of our model, we now

show a case study of citation relationship between “Philip
S. Yu” and other candidates. The model is trained by
GLM-weib using a training interval of 9 years (T train

1 =
[2001, 2009]), with the learned parameter λ = 0.9331,
slightly less than 1, which means the citation relationship
has a higher hazard happening at an earlier time. The
ground truth of the citation building time, and the pre-
dicted median, mean, 25% quantile and 75% quantile for
several test pairs are shown in Table 7. It can be seen that
the predicted median and confidence interval are very sug-
gestive for predicting the true citation relationship building
time. For those authors whose predicted being cited time is
significantly different from the ground truth, in-depth stud-
ies may be needed. For example David Maier is a prolific
researcher in database area, and by intuition as well as sug-
gested by the model, Philip should cite him. However, the
ground truth says otherwise. Furthermore, this function can
be used to recommend authors to any author in DBLP for
citation purpose.

For the above model, the learned top-4 most important
topological features with the highest coefficients are:

1. A−P − T −P −A, namely, if two authors are very similar in
terms of writing similar topics, they tend to cite each other;

2. A− P ← P → P −A, namely, if two authors are very similar
in terms of being frequently co-cited by the common papers,
they tend to cite each other;

3. A− P −A− P → P −A, namely, an author tends to cite the
authors that are frequently cited by her co-authors;

4. A− P − T − P −A− P → P −A, namely, if two authors are
similar in terms writing similar topics, they tend to cite the
same authors.

These topological features provide insightful knowledge for
people in understanding the citation relationship building.



Table 3: Prediction Generalization Power Comparison: T test < T train and T train = 9
T test = 1 T test = 2 T test = 3 T test = 4

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

logistic 0.7106 0.7619 0.7246 0.7535 0.7669 0.7347 0.7349 0.7731
GLM-geo 0.9284 0.7626 0.8436 0.7532 0.7829 0.7657 0.7347 0.7696
GLM-exp 0.9290 0.7553 0.8442 0.7464 0.7821 0.7569 0.7328 0.7603
GLM-weib 0.9287 0.7273 0.8441 0.7452 0.7826 0.7559 0.7334 0.7597

Table 4: Prediction Generalization Power Comparison: T test > T train and T test = 9
T train = 2 T train = 3 T train = 4 T train = 5

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

logistic 0.5157 0.7810 0.5379 0.7805 0.5599 0.7841 0.5952 0.7896
GLM-geo 0.5942 0.7910 0.6209 0.7926 0.6366 0.7902 0.6522 0.7982
GLM-exp 0.5015 0.7802 0.5214 0.7833 0.6709 0.7841 0.7143 0.7870
GLM-weib 0.7081 0.7816 0.7021 0.7832 0.7002 0.7833 0.7103 0.7862

6. RELATED WORK
The link prediction problem has been first studied on ho-

mogeneous networks. Early works mainly study unsuper-
vised methods [1, 12], namely they propose different sim-
ilarity measures according to either topological structures
of the networks or proximity of object attributes that are
consistent with the link appearance in the future. Later, su-
pervised methods that are able to combine different features
with different coefficients via training data sets are proposed
by different studies [7, 21, 13]. A recent study [10] has dis-
cussed the link prediction problem when the network is not
fully observed and thus is modeled in a probabilistic way. A
survey in link prediction can be found in [6]. In this paper,
we extend the link prediction problem to the more general
heterogeneous networks, by extending link prediction to re-
lationship prediction and exploring the topological features
in such scenarios.

Recently, some studies [4, 11] propose frequent graph pat-
tern mining-based methodology to detect graph evolution
rules, which provides some clues for proposing new topolog-
ical features in the network for link prediction. However,
the focus on the two papers are still on homogeneous net-
works, and they have not considered how different frequent
evolution patterns affect the link formation speed yet. That
is, this methodology cannot answer the “when” problem of
link formation.

Another line of study similar to our problem is the link
prediction task in relational data [15, 19], as relational data
also involves different types of objects and complex relation-
ships between objects. However, these studies have a focus
different from our paper. As in [15], they study feature selec-
tion in a relational environment using relational languages,
and feed these features into supervised link prediction mod-
els; for [19], their goal is to model the relational data via
a probabilistic model. In our paper, we aim at designing a
model for relationship building time by systematically ex-
ploring the topological features in heterogeneous networks.

A novel meta path-based similarity measure called Path-
Sim is proposed in [17], which also defines the framework
of similarity measure in a heterogeneous network scenario.
In [16], the authors study the relationship prediction prob-
lem using co-authorship prediction as a case study in the
heterogeneous network. However, they have not systemati-
cally study the relationship prediction in a general case and
they are only focus on the “whether” problem rather than
the“when”problem. In this paper, we build a framework for

general relationship prediction in heterogeneous networks by
systematically extracting meta path-based topological fea-
tures, and study when the relationship will happen in the
future.

The general setting of link prediction task is set by Liben-
Nowell and Kleinberg [12], which is to predict whether a link
between two existing objects will be added to the network
during the time interval [t, t+ Δt] given the snapshot of the
network at time t. In other words, the task has not consid-
ered the issue when a link will appear in this time interval.
Recently, several studies have considered the extension on
usage of time. In [20], a methodology that assigns weights
to events and edges according to their appearing time is
proposed, which produces better link prediction accuracy
by using more time information in the feature side. In [8], a
time series model is proposed to predict the frequency of re-
peated links in networks. In comparison to these studies, our
paper focuses on the new relationship prediction and aims
at modeling the relationship building time in the future.

In all, in this paper, we extend the traditional link predic-
tion in homogeneous networks into relationship prediction
in the more complex heterogeneous networks, and aims at
modeling the relationship building time in the future.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a new problem of study rela-

tionship building time prediction in heterogeneous networks.
This problem on one hand extends the traditional link pre-
diction problem in homogeneous networks into relationship
prediction in heterogonous networks; and on the other hand
it extends the traditional “whether a link will happen in a
fixed future interval” to “when it will happen.” We system-
atically study how to define relationship and how to select
topological features in heterogeneous networks, using a meta
path-based concept. Time-involved relationship prediction
models are proposed. Experiments have shown the effective-
ness of our proposed models.

Predicting relationship building time is still an open prob-
lem. It is worth of considering a broader range of target
relations in different heterogeneous networks, and propose a
systematic methodology of model selection and model com-
parison. More future work can be done along this line.
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APPENDIX
A. FORMULAS FOR WEIBULL MODEL
• First derivative and Hessian matrix for β:

∇LLW (β) = −(−λX′(I{Y <T}) + λX′ exp{λ(log(Y )Xβ)})
H LLW (β) = −λ2((X. ∗ (exp{λ(log(Y ) + Xβ)}11×p))′X)

• First derivative and second derivative for λ:

∇LLW (λ) =
∑

i

(
I{yi<T}

λ
+ λ(log(yi) + Xiβ)−

(log(yi) + Xβ) exp{λ(log(yi) + Xiβ)})

H LLW (λ) =
∑

i

(− I{yi<T}
λ2

−

(log(yi) + Xiβ)2 exp{λ(log(yi) + Xiβ)})

B. FORMULAS FOR GEOMETRIC
MODEL

• First derivative and Hessian matrix for β:

η = exp{−Xβ}
∇LLG(β) = −X

′
(−(I{Y <T}) + Y + 1n×1)./(η + 1n×1)

H LLG(β) = −((Y + 1n×1). ∗ η./(η + 1n×1).
2))X11×p)′X


