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Abstract

With the recent explosion in usage of the world wide web� the problem of caching web objects

has gained considerable importance� Caching on the web di�ers from traditional caching in

several ways� The non�homogeneity of the object sizes is probably the most important such

di�erence� In this paper we give an overview of caching policies designed speci�cally for web

objects and provide a new algorithm of our own� This new algorithm can be regarded as a

generalization of the standard LRU algorithm� We examine the performance of this and other

web caching algorithms via event and trace driven simulation�



� Introduction

The recent increase in popularity of the world wide web has led to a considerable increase in the

amount of tra�c over the internet� As a result� the web has now become one of the primary

bottlenecks to network performance� When objects are requested by a user who is connected to a

server on a slow network link� there is generally considerable latency noticeable at the client end�

Further� transferring the object over the network leads to an increase in the level of tra�c� This has

the e�ect of reducing the bandwidth available for competing requests� and thus increasing latencies

for other users� In order to reduce access latencies� it is desirable to store copies of popular objects

closer to the user�

Consequently� web caching has become an increasingly important topic ��� �� �	� ��� �
� ���� Caching

can be implemented at various points in the network� On one end of the spectrum� there is typically

a cache in the web server itself� Further� it is increasingly common for a university or corporation

to implement specialized servers in the network called caching proxies� Such proxies act as agents

on behalf of the client in order to locate a cached copy of a object if possible� More information on

caching proxies may be found in ���� Usually caching proxies and web servers behave as secondary

or higher level caches� because they are concerned only with misses left over from client caches�

Such client caches are built into the web browsers themselves� They may store only those accesses

from the current invocation �so�called non�persistent cache�� or they may retain objects between

invocations� Mosaic� for example� uses a non�persistent cache�

In this paper� we shall discuss general main memory cache replacement policies designed speci�cally

for use by web caches� The results are applicable to web server� proxy and client caches�

One of the key complications in implementing cache replacement policies for web objects is that

the objects to be cached are not necessarily of homogeneous size� For example� if two objects are

accessed with equal frequency� the hit ratio is maximized when the replacement policy is biased

towards the smaller object� This is because it is possible to store a larger number of objects of

smaller size� In the standard least recently used �LRU� caching algorithm for equal sized objects

we maintain a list of the objects in the cache which is ordered based on the time of last access�

In particular� the most recently accessed object is at the top of the list� while the least recently

accessed object is at the bottom� When a new object comes in and the cache is full� one object in

the cache must be pruned in order to make room for the newly accessed object� The object chosen

is the one which was least recently used� Clearly the LRU policy needs to be extended to handle

objects of varying sizes�

In addition to non�homogeneous object sizes� there are several other special features of the web

which need to be considered� First� the hit ratio may not be the best possible measure for evaluating

the quality of a web caching algorithm� For example� the transfer time cost for transfering a large

object is more than that for a small object� though the relationship is typically not straightforward�

It will depend� for instance� on the distance of the object from the web server� Furthermore� web

objects will typically have expiration times� So� when considering which objects to replace when a

new object enters a web cache� we must consider not only the relative frequency� but also factors

such as object sizes� transfer time savings and expiration times�

A related issue to that of replacement is admission control� In other words� when should we allow
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an object to enter the cache at all� It may not always be favorable to insert an object into the

cache� because it may lower the probability of a hit to the cache�

We list below some cache replacement policies evaluated in ��� ���� Each of them can be combined

with an admission policy�

��� LRU� In the most straightforward extension of LRU for handling non�homogeneous sized

objects� one would prune o� as many of the least recently used objects as is necessary to

have su�cient space for the newly accessed object� This may involve zero� one or many

replacements� Thus� this extension of LRU takes size into account only peripherally while

performing the cache replacement decisions� As we shall see� such a replacement policy turns

out to be naive in practice�

��� LRUMIN� This policy is biased in favor of smaller sized objects so as to minimize the number

of objects replaced� Let the size of the incoming object be S� Suppose that this object will

not �t in the cache� If there are any objects in the cache which have size at least S� we remove

the least recently used such object from the cache� If there are no objects with size at least

S� then we start removing objects in LRU order of size at least S��� then objects of size at

least S�	� and so on until enough free cache space has been created�

��� SIZE policy� In this policy� the objects are removed in order of size� with the largest object

removed �rst� Ties based on size are somewhat rare� but when they occur they are broken by

considering the time since last access� Speci�cally� objects with higher time since last access

are removed �rst�

Note that all of these policies take into account either the size or the time since last access or both�

It was concluded in ��� ��� that policies which take into account the size tend to perform better

than those which do not� This is because removing larger objects makes room for multiple smaller

ones�

In this paper we devise a web cache replacement policy which appears to achieve performance

better than any of the above schemes� We describe a corresponding admission control policy as

well� The scheme we propose is quite general purpose� is easy to implement� and works well on

many di�erent kinds of workloads�

We brie�y survey and categorize some additional cache replacement schemes for the web� The list

below is certainly not exhaustive� though many replacement algorithms can be classi�ed into one

or more of the following categories�

��� Direct extensions of traditional policies� Besides LRU� traditional policies such as Least

Frequently Used �LFU� and First In First Out �FIFO� are well�known cache replacement

strategies for paging scenarios ��	�� Just as with LRU� it is possible to extend these policies

to handle objects of non�homogeneous size� The policy in ���� can be regarded as an LRU

extension� though time since last access is rounded to the nearest day� The di�culty with

such policies in general is that they fail to pay su�cient attention to object sizes�

��� Key�based policies� The idea in key�based policies is to sort objects based upon a primary

key� break ties based on a secondary key� break remaining ties based on a tertiary key� and
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Name Primary Key Secondary Key Tertiary Key

LRU Time Since Last Access

FIFO Entry Time of Object in Cache

LFU Frequency of Access

SIZE Size Time Since Last Access

LOG��SIZE blog��Size�c Time Since Last Access

HYPER�G Frequency of Access Time Since Last Access Size

Table �� Some examples of Key Based Policies

so on� This class of policies by proposed in ����� For example� a policy called LOG��SIZE

discussed in ���� uses blog�fSizegc as the primary key and the time since last access as the

secondary key� The HYPER�G policy uses frequency of access as the primary key� breaks ties

using the recency of last use� and then �nally uses size as the tertiary key� Some additional

examples of key�based policies are illustrated in Table �� The idea in using the key based

policies is to prioritize some replacement factors over others� However� such prioritization

may not always be ideal�

��� Function�based replacement policies� The idea in function�based replacement policies is

to employ a potentially general function of the di�erent factors such as time since last access�

entry time of the object in the cache� transfer time cost� object expiration time and so on� For

example� the algorithm described in �� employs a weighted rational function of the transfer

time cost� the size and the time since last access� The algorithm described in ��� employs a

weighted exponential function of the access frequency� the size� the latency to the server and

the bandwidth to the server� The Least Normalized Cost Replacement �LNC�R� algorithm

described in ���� employs a rational function of the access frequency� the transfer time cost

and the size� This algorithm is certainly the most similar to our own scheme� which is also

function�based�

The paper is organized as follows� In Section � we concentrate on formulating a theoretical op�

timization model for web caching which generalizes LRU� We devise an optimization model and

show how this can be approximately solved by a simple heuristic� We call the policy derived here

Size�adjusted LRU� or SLRU� In Section � we show how to make this heuristic more easily imple�

mentable in practice� We call the resulting policy the Pyramidal Selection Scheme� or PSS� Section

	 describes web�speci�c extensions to the above two algorithms in order to handle general access

costs and expiration times� In Section � we discuss an admission control policy� Results of event

and trace driven simulations are presented in Section �� In particular� we compare PSS with the

LRU� LRUMIN and SIZE schemes� Finally in Section � we present a summary and conclusion�

� Generalized LRU Replacement

When an object is to be inserted into the cache� more than one object may need to be removed

in order to create su�cient space� In the LRU extension discussed in ��� ���� objects are greedily

removed from the cache in the order of recency of last access until enough space is created for
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the incoming object� But such a policy is not the only possible LRU generalization for handling

objects of non�uniform size� In this section we describe the theoretical foundations of another such

policy� Speci�cally� we de�ne and heuristically solve an optimization problem which mimics but

generalizes the LRU criteria for uniform sized objects�

First we shall need some notation� We assume that there are N objects� and that object i has size

Si� A counter is maintained and incremented each time there is a request for an object� The set

of objects in the cache at the kth iteration is denoted by C�k�� Let ik denote the object accessed

at the kth iteration� If ik is present in the cache in the �k � ��st iteration we have a hit� and it

does not need to be brought into the cache� On the other hand� if ik is not present then we have a

miss� Assuming ik satis�es the admission control requirements� we have to decide which objects to

purge from the cache� Let R � � denote the amount of additional space in the cache which must

be created in order to accommodate ik� an easy calculation� Consider the decision variable yi for

object i de�ned to be � if we wish to purge it� and � if we want to retain it� The decision variable

yi is de�ned only for objects which are present in the cache� We assume that �Tik is the number

of accesses since the last time object i was accessed� This number is well�de�ned for all objects

which have been accessed before� We shall refer to ���Tik as the dynamic frequency of object i at

iteration k�

Note that the LRU policy for uniform size objects removes the object with the smallest dynamic

frequency from the cache� and thus tends to retain the objects with high frequency of access� While

the dynamic frequency is an imperfect estimator of the true frequency of an object� LRU turns out

to be a very robust algorithm in practice� at least for the case of uniform size objects�

Roughly speaking� for non�uniform sized objects we would like the sum of dynamic frequencies for

the outgoing objects to be as small as possible� Speci�cally� we have the following model�

Minimize
X

i�C�k�

yi��Tik

such that
X

i�C�k�

Si � yi � R

and yi � f�� �g�

The above mathematical programming problem is a version of the knapsack problem �	�� �Said

precisely� the objects we place in the knapsack are actually those which will be purged from the

cache�� The knapsack problem is known to be NP�hard� However� there exist fast heuristics which

do well in practice� One well�known knapsack problem heuristic is the following greedy policy�

Order the objects by the ratio of cost to size� Then choose the objects with the best cost�to�size

ratio� one by one� until no more can �t into the knapsack� The cost�to�size ratio for the object

i is ���Si � �Tik�� So� we reindex the objects �� �� � � � � jC�k�j in order of non�decreasing values of

Si � �Tik� After sorting we have�

S� � �T�k � S� � �T�k � � � �� SjC�k�j � �TjC�k�jk�

Then we greedily pick the highest index objects one by one and purge them from the cache until we

	



Figure �� The Pyramidal Selection Scheme

have created su�cient space for the incoming object� We call this replacement scheme Size�adjusted

LRU� or SLRU�

� The Pyramidal Selection Scheme

We should note that the SLRU policy described in the previous section may be somewhat unrealistic

to implement in practice� because of the di�culty in comparing the product of the size and the

time since last access for every object in the cache� A somewhat more practical variant� known as

the Pyramidal Selection Scheme� or PSS� will be described in this section�

The primary idea behind the PSS scheme is that we make a pyramidal classi�cation of objects

depending upon their size� All objects of group i will have sizes ranging between �i�� and �i � ��

Thus there will be N � dlog�M���e di�erent groups of objects� where M is the cache size� For the

cache� as illustrated in Figure �� the objects in each group i are maintained as a separate LRU list�

Whenever we need to decide which object to eject from the cache� we compare the Si ��Tik values

of only the least recently used objects in each group� The result of using this mechanism is that

we will choose the object with the largest overall value of Si � �Tik to within a factor of ���� even

in the worst case�

Theorem ��� Let Z� be the least value of Si � �Tik among all the objects i in the cache� and let

Z� be the corresponding value for the PSS scheme� Then Z� � �����Z��

Proof� Let us de�ne the PSS group leaders as the set of least recently used objects in each of the

N groups� Let j be the object among these group leaders chosen by the PSS scheme� and let m be

the object with the optimal value of Si ��Tik when request k is received� Let l be the least recently

used object �group leader� in the group to which object m belongs� Then� we must have Sl � Sm��
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and �Tlk � �Tmk� Consequently� we must have Sl � �Tlk � Sm � �Tmk��� But� since j is the

optimal object within the set of group leaders and l is also a group leader� it must be the case that

Sj ��Tjk � Sl ��Tlk� Combining the above two inequalities� we get that Sj ��Tjk � Sm ��Tmk���

In other words� Z� � �����Z��

In reality� the value of Z� is typically so close to Z� that the performance di�erence between the

PSS scheme� and a policy which uses a direct size�time product is almost imperceptible� We shall

illustrate a comparison of the hit ratios of these two policies in Section ��

Notice that the LOG��SIZE discussed in ���� bears at least some resemblance to the independently

derived PSS scheme� The LOG��SIZE scheme always chooses the least recently used items in the

non�empty stacks corresponding to the largest size ranges� In contrast� the PSS scheme looks at

the least recently used objects of each stack� and among these picks the objects which have the

least product of the Si ��Tik�

� Web�Speci�c Extensions

��� Handling General Access Costs

The scheme of the Section � attempts to maximize the probability of a cache hit� Although the

hit probability is certainly a reasonable measure to maximize via a cache replacement strategy� it

could also be argued that not all objects on the web have the same access costs� For example� the

transfer time costs for larger objects are higher� though this relationship is somewhat noisy and

far from linear� Similarly� the access cost of an object requested from a distant web server is likely

to be more than that of one requested from a nearby server� In this subsection we notice that the

above replacement scheme may easily be extended to handle non�uniform access costs� assuming of

course that such costs are known�

Let ci be the cost of accessing object i� Then the generalized objective function can be written

as
P

i�C�k� ci � yi��Tik� Similarly� the generalized size adjusted LRU rule would place objects in

non�decreasing order of �Si � �Tik��ci� and greedily purge those objects with the highest indexes�

Note that if all values of ci are uniform ��� for example�� then the replacement policy reverts back

to our original one�

��� Handling Object Expiration Times

Objects on the web are often assigned expiration times� and our replacement algorithm should be

able to factor these in e�ectively� It is tempting here to employ the time to live for an object�

namely the di�erence between the expiration time of the object and the current time� For example�

if an object has only a short time to live� or perhaps is already stale� it would seem to be a good

candidate for replacement by the incoming object� Unfortunately� this approach can lead to a very

unstable cache and also appears impractical to implement because of high maintenance costs� We

shall use more static data instead� data which is computed once for each object at the time it enters

the cache� In particular� suppose an object i enters the cache at time t� Let us de�ne �ti� to be

the di�erence between t and the time when it was last accessed� Let �ti� be the di�erence between
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the object expiration time and t� �Note that we are using � to refer to time di�erences� we had

previously used � to refer to di�erences in terms the number of accesses�� We de�ne the refresh

overhead factor for an incoming object i to be ri � minf�� �ti���ti�g� This value is approximately

the reciprocal of the number of expected accesses before the object needs to be refreshed� We

incorporate the refresh overhead factor into the replacement policy by ordering objects in terms

of non�decreasing values of �Si � �Tik���ci � �� � ri��� and greedily purging those objects with the

highest indexes�

If object i has no expiration date then �ti� is in�nite� so that the refresh overhead factor ri � ��

Thus the replacement policy reverts back to our original one� On the other hand� if object i has not

been accessed before� then we can assume that �ti� is in�nite� so that the refresh overhead factor

ri � �� �In fact� the statement ri � � holds whenever �ti� � �ti��� This would result in a quick

purge from the cache� However� the admission policy described in the next section will generally

not allow such an object to enter the cache in the �rst place�� The refresh overhead factor will have

only a marginal e�ect on the replacement policy if objects are accessed much more frequently than

they expire� Conversely� when an object has an expiration rate nearly as big as the access rate� the

refresh overhead factor will have a signi�cant e�ect�

Similarly� the more implementable PSS scheme can be adapted to the case when there are access

costs and�or expiration times� Instead of grouping together objects based upon the value of their

sizes� we group together objects based upon geometrically increasing ranges for the value of Si��ci �

�� � ri���

� An Admission Control Policy

An admission control policy decides whether or not it is worthwhile caching an object in the �rst

place� Having a good admission control policy is especially important when caching non�uniform

size objects� because a considerable amount of disruption can be caused when an object is added

and others are purged from the cache� Having too frequent replacements may lead to wasted space

and to storing objects which are never hit at all� Admission control makes the scheme less sensitive

to the transients in the workload�

In order to do a good job with admission control� we propose the construction of a small auxiliary

cache which maintains the identities of some number X of objects� For each object in this auxiliary

cache we also maintain timestamps of the last access� measured both in terms of the number of

object accesses and time� together with access cost and expiration time data� The access counter

is incremented each time an object is requested from the cache� whether or not that request can be

�lled� Because the auxiliary cache contains identities of objects rather than the objects themselves�

its size is negligible compared to that of the main cache� �As a rule of thumb� we set X to be about

twice the average number of objects in the main cache�� The auxiliary cache is maintained in strict

LRU order� Figure � illustrates the auxiliary and main caches�

We would like to have an admission control policy which ensures that at the kth iteration the

potential incoming object ik is popular enough to o�set the loss of the objects it displaces� So

we proceed as follows� In the event that there is enough free space available for the object ik� we

simply bring ik into the cache� Otherwise� we check if ik occurs in the auxiliary cache� If it does
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Figure �� Performing Admission Control

not� then the object ik does not enter the main cache� �It is however� added to the auxiliary cache

in accordance with LRU rules�� On the other hand� if ik does occur in the auxiliary cache� then we

determine if the decision which the replacement policy heuristic makes would be pro�table� That

is� we compare the value �cik � �� � rik����Tikk with the sum
P

i �ci � �� � ri����Tik of the set of

candidate outgoing objects determined using the replacement scheme� We admit an object only if

it is pro�table to do so� Observe that the information needed can be obtained from the auxiliary

cache� After this iteration� the time stamp of the object ik is updated�

The idea of admission control bears some resemblance in spirit to the �Q approximation of LRU�K

proposed in ���� ��� for making cache more robust to workload transients� However� the method of

doing so is di�erent in this case�

	 Empirical Results

In this section we experimentally compare the performance the performance of four di�erent caching

schemes� the naive LRU policy extension� the LRUMIN policy of ���� the SIZE policy discussed in

���� and the PSS policy proposed in this paper� We employ both event and trace driven simulations�

Note that the PSS scheme was obtained as a more easily implementable variant of the SLRU

algorithm described in Section �� Both of these schemes were implemented in conjunction with the

admission control of Section �� We compare SLRU to PSS in order to show that the two schemes

are virtually identical in terms of performance�

We are interested in examining the performance of the algorithms under the assumption that objects

have varying sizes� relative frequencies� and combinations of these two factors� The following were

the key performance metrics�

�



x   PSS 

*   SLRU

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Fraction of maximum required cache capacity

H
it 

R
at

io

A comparison of PSS and SLRU

x   PSS   

o   LRUMIN

*   SIZE  

+   LRU   

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fraction of maximum cache capacity required

H
it 

R
at

io

Uncorrelated Case: Zipf Parameter 0.8

Figure �� Figure �� PSS and SLRU���������������������������������Figure 	� Hit Ratio� No Correlation

��� The hit ratio is� of course� the primary measure

��� Cost savings� as noted in Section 	� can also be important�

��� A �nal measure is the robustness of the various schemes� It is well known that the perfor�

mance of caching policies for web objects often depends upon whether smaller objects have

higher frequency or vice versa� The LRU scheme is very robust for uniform size objects and

varying distributions of relative frequencies� All the schemes that we compare are in fact

generalizations of LRU in one fashion or another� and consequently it is useful to see how the

correlation of size and frequency factors into the robustness of the proposed schemes�

��� Event Driven Simulation

The primary motivation for performing event driven simulation is to understand the e�ect of the

varying parameters on the performance of the schemes� We test the caching schemes on objects

of sizes uniformly distributed between � and ���� That is� we assume that there are ��� di�erent

objects� with one object of each size i� The objects were chosen to have Zipf�like frequency distrib�

utions ����� Thus the frequency of object i is proportional to ����i��� where � is the Zipf parameter�

and � is a permutation vector� By varying � we can a�ect the relationship between the size and

frequency�

Since we used the PSS scheme as a more implementable surrogate for SLRU� it is useful to compare

the performance of the PSS and the SLRU schemes� In Figure � we consider the case where object

size and frequency are uncorrelated� That is� we choose � randomly� In this case� we chose a Zipf

parameter of �� which yields a fully Zipf distribution� As we see from the �gure� the hit ratios of

these two are so similar that it is almost impossible to distinguish between them� In other words�

the PSS scheme is in practice no worse than its theoretical ancestor�

We next tested three di�erent relationships between the frequency of an object and its size� For

each of these cases� we considered a Zipf parameter equal to ���� which is somewhat less skewed�

��� There is no correlation between the object size and the frequency� In this case� Figure 	
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Figure 	� Figure �� Hit Ratio� Positive Correlation����������Figure �� Hit Ratio� Negative Correlation

shows that the LRUMIN scheme outperforms LRU most of the time� though for relatively

small cache sizes �and also for very skewed frequency distributions� the situation is reversed�

The SIZE policy is outperformed by both the LRU and the LRUMIN policies� The reason

for this is that the SIZE policy is unable to take advantage of the frequency skew� A lack

of correlation between size and relative frequency prevents this� The PSS policy consistently

outperforms each of the other schemes here�

��� There is complete positive correlation between object size and frequency� Thus the value

of ��i� is chosen to be ��� � i� so that the ith object has size i and relative frequency

������ � i��� So the largest object has the highest frequency� and the smallest object has

the lowest frequency� The corresponding hit ratio curve is shown in Figure �� As we can

see� in this case the LRUMIN policy and the SIZE policy perform very poorly since they are

biased too strongly towards objects of smaller size� The SIZE and LRUMIN schemes result

in more frequently accessed objects being displaced for the sake of less frequently accessed

objects� The normal advantage of keeping small objects in the cache is o�set by the fact that

the cache gets clogged with many infrequently accessed objects� In this case� even the LRU

policy outperforms LRUMIN by a substantial margin� The performance of the PSS policy�

however� is clearly best�

��� There is complete negative correlation between object size and frequency� In other words�

��i� is chosen to be equal to i� so that the ith object has size i and relative frequency ��i��

Thus� the largest object has the lowest frequency and the smallest object has the highest

frequency� Figure � shows the corresponding hit ratio curves� This is the most favorable case

for the LRUMIN policy� The small objects have high frequency� and the LRUMIN scheme

generally retains these objects in its cache� However� even in this case� we see that it performs

only marginally better than the PSS policy� The LRU policy� on the other hand� does not do

well at all� This is because large objects will occasionally enter the cache and displace many

frequently accessed small objects�

We also tested how the various policies performed when access costs instead of hit ratios were

considered� Note that the access cost of an object may not necessarily be directly related to size�

This is especially the case for proxy caches in which web objects may be at varying distances from

��
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the cache� In order to test the e�ects of di�erent relationships between the size of an object and

its access cost we used the following weighting scheme�

Cost�Object� � K� � �Size Component� � K� � �Noise Component��

By varying K� and K�� it is possible to test the e�ect of di�erent kinds of access costs on the

performance� More speci�cally� the values of K� and K� are decided as follows� We choose a cost

correlation parameter q which lies between � and �� Let A be the average size of an object� In

other words� A �
P���

i�� Si � fi� where fi is the relative frequency of object i� Then� the cost Ci of

accessing an object i is as follows�

Ci � q � Si � � � �� � q� �A � random��� ���

Here random��� �� is a random number between � and �� Note that when q � ���� the noise and

size components contribute equally to the access costs on average� because of the way in which the

noise component is scaled by the value A� Increasing q from � to � increases the size component in

the access cost� and vice�versa�

We tested the four schemes for di�ering values of the parameter q� We choose the cache capacity

to be ���� �
P���

i�� Si and the Zipf parameter to ����� Again we tested for three di�erent cases�

depending upon whether size and frequency were uncorrelated� negatively correlated or positively

correlated� These cases are plotted in Figures � � and 
� respectively� On the X�axis we show

the value of the parameter q� while the Y�axis shows the percentage cost savings by caching� The

following observations can be made�

��� The e�ect of size�frequency correlation on the relative performance of the schemes was pretty

much the same� as it was for the case when hit ratio was used as the performance measure�

This is substantiated by the fact that in the negatively correlated case �Figure ��� the LRU�

MIN and SIZE policies perform very well� However� in other cases these policies do not fare

very well�

��� The e�ect of cost correlation with size had the greatest e�ect on the performance of the

LRUMIN and SIZE policy and the least e�ect on the LRU scheme� For example� in the

��



case of Figure � as the cost correlation with size increases the performance of the LRU

scheme remains virtually unchanged� This is because the LRU scheme does not discriminate

against either smaller or larger objects� and a di�ering structure of access cost does not a�ect

the performance of the policy� All the other schemes �PSS� LRUMIN and SIZE� discriminate

against larger objects� Consequently when cost correlation with size increases� the cost savings

are reduced as well� even though the hit ratios are the same� Since the LRUMIN and the

SIZE schemes are most aggressive in discriminating against larger objects� this e�ect is felt

most strongly in these� In the uncorrelated case for example� the LRU policy is actually

better than the LRUMIN and SIZE policies when cost correlation to size is high�

��� On the whole� in terms of access costs� the PSS policy usually performs competitively with

or better than the best of the other three schemes �LRUMIN� SIZE� and LRU�� Even in the

negatively correlated case� the PSS scheme is only marginally worse than the LRUMIN and

SIZE schemes�

We examine the robustness of the schemes to the size�frequency correlation� In general� for any

given scheme and choice of Zipf parameter and cache capacity� we expect the hit ratio of the

scheme corresponding to the negatively correlated case to be much higher than the hit ratio for the

positively correlated case� This is because in the negatively correlated case smaller objects have

higher frequency� and this is bene�cial from the point of view of e�ciency in the occupancy of the

cache� We de�ne the robustness of a policy A as follows�

Robustness�Policy A� �
Hit Ratio�Policy A� Negatively Correlated Case�

Hit Ratio�Policy A� Positively Correlated Case�
� ���

So� for a given scheme� we expect this ratio to be larger than �� In general� we desire a policy to

be predictable� and not vary too much depending upon the characteristics of the workload� Thus

good schemes will have lower values of robustness which are closer to �� As we see from Figure ���

the LRUMIN and SIZE policies are the least robust� This is because these policies always tends to

keep the smallest objects in the cache� even if they are less frequently accessed� Consequently� as

evidenced by Figures � and 
 in the positively correlated case� these schemes perform very poorly�

The PSS and the LRU schemes are the most robust� However� the LRU policy is dominated by

the PSS scheme on the primary performance measure �hit ratio� in almost every case� no matter

how size and frequency are correlated� Furthermore� the PSS policy is only marginally worse than

the LRU scheme in terms of robustness�

��� Trace Driven Simulation

Aside from the parametric simulations which have been described above� we also performed some

trace driven simulations using data from both server as well as proxy traces� We chose both kinds

of traces in order to show that the PSS algorithm is quite general purpose� The performance is

good for both kinds of workloads� For each of the logs� we had two traces whose lengths were

between ������ to ������ user accesses each� Most of the frequently accessed pages had relatively

smaller sizes� We ran the simulation for varying values of the cache capacity�

The performance curves for the case of the two server traces are illustrated in Figures �� and ���

Again� the PSS scheme performs signi�cantly better than the LRU� LRUMIN and SIZE schemes�

��
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In the case of the two proxy traces �Figures �� and �	�� the performance di�erence is less stark�

though in both cases� the PSS policy performs at least as well as the better of the two schemes

LRUMIN and SIZE� In the case of the proxy traces� the skew in the relative frequency is much

less than that for the case of the server� As a result� size becomes the primary deciding factor in

determining the hit ratio� This� in conjunction with the fact that objects of smaller size tended

to have somewhat higher frequency accounted for the good performance of the PSS� LRUMIN and

the SIZE schemes�


 Summary and Conclusion

In this paper we have discussed various schemes for handling the caching of web objects� Such

schemes typically involve both a cache replacement and a cache admission policy� The non�uniform

size of web objects causes standard LRU to perform less well than one would normally anticipate�

We devised a new scheme called PSS speci�cally oriented towards web caching� The PSS scheme

is the more implementable variant of its theoretical ancestor SLRU� also developed in this paper�

We compared the hit ratios and robustness of PSS and other web replacement policy algorithms�

using both event and trace driven simulations� Based on these experimental results� we conclude

that PSS is a practical and viable caching algorithm� PSS has good hit ratio performance� and is

also robust to varying workload characteristics�
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